

MPGD-based RICH at COMPASS

Fulvio Tessarotto (INFN – Trieste) on behalf of the COMPASS RICH Group

The COMPASS RICH-1 upgrade

The MPGD-based PD design and construction

HV control, spark rates, noise level

Uniformity and stability

MPGD-based PD characterization

Conclusions

The 2024 International Workshop on Future Tau Charm Facilities

Hefei, 16/01/2024 - International Workshop on Future Tau Charm Facilities FTCF2024

COMPASS RICH-1 upgrade

field shaping electrodes

Why THGEMs with no rim

Hefei, 16/01/2024 - International Workshop on Future Tau Charm Facilities FTCF2024

THGEM raw material selection

Our thickness uniformity requirements are stricter than those offered by producers \rightarrow material selection 50 foils of 1245 mm x 1092 mm \rightarrow cut out borders \rightarrow 800 mm x 800 mm \rightarrow thickness measurement

Elite Material Co., Ltd. http://www.emctw.com						
PRODUCT				EM 37		
Thickness						
Copper				35µ/35µ		
Sheet S	ize		1 245 x 1 092 mm			
Permittivity	1 MHz	2.5.5.9	C-24/23/50	-	4.8	
(RC 50%)	1 GHz			-	4.3	
Volume resistivity		2.5.17.1	C-96/35/90	MΩ-cm	>10 ¹⁰	
Surface resistivity		2.5.17.1	C-96/35/90	MΩ	>109	

Mitutoyo EURO CA776

coordinate measuring machine with ruby touch probe, hosted in a thermalized room

Positioning blocks

700 X 700 mm² active area borders

for each foil 36 x 36 points in square pattern are measured 2 measurements (direct and reversed) to allow consistency checks.

Hefei,

FulvioTESSAROTTO10

FTCF2024

quality control

Hefei, 16/01/2024 - International Workshop on Future Tau Charm Facilities FTCF2024

Hefei, 16/01/2024 - International Workshop on Future Tau Charm Facilities FTCF2024

Csl coating of THGEMs

16/01/2024 - International Workshop on Future Tau Charm Facilities FTCF2024

Hefei,

Fulvio TESSAROTTO 13

INFN

19 Csl evaporations perform on 15 pieces: 13 THGEMs, 1 and 1 reference piece (best find 11 coated THGEMs available)	16 I _{Normali}	$I_{Normalized} = \frac{I_{CsI} - I_{CsI_{Noise}}}{I_{Ref} - I_{Ref_{Noise}}}$		
	THGEM number	evaporation date	at 60 degrees	at 25 degrees
THGEM 421,	Thick GEM 319	1/18/2016	2.36	2.44
2.3 QE measurements	Thick GEM 307	1/25/2016	2.65	2.47
2.1	Thick GEM 407	2/2/2016	2.14	2.47
1.9	Thick GEM 418	2/8/2016	2.79	2.98
1.7	Thick GEM 410	2/15/2016	2.86	3.14
1.5	Thick GEM 429	2/22/2016	2.75	2.74
-174 -58 -27 12 60 108	Thick GEM 334	2/29/2016	2.77	3.00
116 -84 -36	Thick GEM 421 re-coating	3/10/2016	2.61	2.83
■ 1.5-1.7 ■ 1.7-1.9	Reference piece	7/4/2016	3.98	3.76

QE uniformity

- 3 % r.m.s. within a photocathode
- 10 % r.m.s. among photocathodes

Optical transparency:

Hefei, 16/01/2024

International Workshop on Future Tau Charm Facilities

~ 0.23

FTCF2024

Fulvio TESSAROTTO 14

coated by T. Schnider and M. Van Stenis

mean THGEM QE:

~ 93% of reference

Csl THGEM mounting

The combined COMPASS PDs

Installation of hybrids on RICH-1

Hefei, 16/01/2024 - International Workshop on Future Tau Charm Facilities FTCF2024

Equipping the hybrids on RICH_1

16/01/2024 - International Workshop on Future Tau Charm Facilities FTCF2024

Hefei,

16/01/2024

International Workshop on Future Tau Charm Facilities FTCF2024

Spark: event with I > 23 nA

Current sparks in THGEMs

- Rate < 1/h per detector
- Recovery time: ~ 10 s
- Fully correlated between the two layers
- Mild dependence on beam intensity

Current sparks in MICROMEGAS

- Induced by THGEMs
- Recovery time: ~1 s

Gain stability in time

Noise figure for the 62208 ch.

INFN Istituto Nazionale di Fisica Nucleare

22

Noise level and pedestal stability

INFN

The COMPASS/AMBER MPGD-based PDs have been stably operating since years.

Number of photons per ring

Number of photons per ring

Extrapolate to saturation, number of photon= **12.9** First part of the function = 11.5 +/- 0.4 Second part of the function= 1.4 +/- 0.3

The COMPASS/AMBER MPGD-based PDs have 11.5 average detected photons per ring at saturation, higher gain and higher stability than the MWPCs +CsI.

STCF RICH

26

STCF Conceptual Design Report

Abstract

The Super τ -Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^{35} cm⁻²s⁻¹ or higher. The STCF will produce a data sample about a factor of 100 larger than that of the present τ -Charm factory — the BEPCII, providing a unique platform for exploring the asymmetry of matterantimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies.

arXiv:2303.15790v3 [hep-ex] 5 Oct 2023

Figure 3.46: Examples of Cherenkov images in a RICH module. The blue image depicts the distribution of hits for 2 GeV/c pion with incident angle $\theta = 0^\circ$, perpendicular to RICH, while the red image depicts $\theta = 40^\circ$.

Hybrid THGEM-Micromegas PD's have recently been proposed for the RICH of the STCF

- COMPASS RICH-1 has been upgraded with 1.4 m² of MPGD-based PDs.
- Specific solutions to achieve control over THGEM gain response.
- The Hybrid PD: 2 THGEMs (1 with Csl) + Micromegas are nicely operating.
- Good stability, low IBF, low spark rate. Spark effects mitigation measures.
- 1.83 mrad single photon angular resolution, 11.5 detected photons per ring.
- Future RICH projects are considering the use of this technology.