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Introduction

I Belle II Analysis Software Framework (basf2)

I source code publicly available at https://github.com/belle2/basf2
I documentation publicly available at https://software.belle2.org

I basf2 links against defined set of third-party libraries that we call externals
I publicly available at https://github.com/belle2/externals

I repository with scripts to install and set up basf2 called tools
I publicly available at https://github.com/belle2/tools

I repository with script for version managing (recommended releases and global tags)

I publicly available at https://github.com/belle2/versioning

I LGPL (GNU Lesser General Public License) version 3 or later

I header in each file:

basf2 (Belle II Analysis Software Framework)

Author: The Belle II Collaboration

See git log for contributors and copyright holders.

This file is licensed under LGPL-3.0, see LICENSE.md.
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Externals

I versioned set of external software packages used and linked against the Belle II software

I dependency between packages considered and compatibility guaranteed

I C++ packages like

I ROOT, XRootD
I gcc, clang, gdb, cmake, Python
I boost, Eigen, gsl
I EvtGen, Geant4, clhep, PYTHIA
I git, cppcheck, doxygen

I includes patches

I python packages like pandas, matplotlib, torch, tensorflow, jupyter, …

I source files uploaded to web server to never lose availability
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Tools

I collection of scripts to prepare environment for execution of Belle II software

I b2setup

I setting environment variables

I b2code-create, b2code-style-check, b2code-style-fix, b2code-clean

I creating local directory for core software development and fixing style issues

I b2install-prepare, b2install-release, b2install-externals, b2install-data

I installing pre-compiled software versions or example data on local machine

I b2analysis-create, b2analysis-get, b2analysis-update

I creating local directory for development of analysis code including preparation of build system and

addition of repository to git
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Basf2 structure

I basf2 divided into 35 packages

I one for each subdetector: arich, cdc, ecl klm, pxd, svd, top, vxd
I core packages: framework, reconstruction, tracking
I data taking: daq, hlt, rawdata, trg
I data quality: alignment, calibration, dqm, validation
I data storage tables: mdst, skim
I MC: decfiles, generators, geometry, simulation, structure
I background: background, beast, ir
I offline analysis: analysis, b2bii, mva
I documentation / outreach: display, masterclass, online_book

I each package has one or two librarians (total number of librarians: 37)

I code written in C++

I one shared library created per package and installed in top-level lib

directory

I build system based on SCons
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Modular structure

I linear arrangement of C++ modules in a path

I core functions of modules

I initialize
I beginRun
I event
I endRun
I terminate

I python steering script to set up path
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Conditions Database

I storage place of additional data needed to interpret and analyze the data that can change over time, e.g.,

detector configuration or calibration constants

I payloads: binary objects (usually ROOT files) identified by name and revision number

I each payload has defined intervals of validity (iov), i.e., experiment and run range

I globaltag: collection of payloads and iovs for a certain dataset, identified by unique name

I once prepared globaltag is immutable and cannot be modified any further to ensure reproducibility of

analyses

I different processing iterations use different globaltags

I globaltag of reconstruction stored in metadata and automatically applied

I chain of globaltags possible
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Data-taking

I basf2 runs on 12 high-level trigger nodes

I ZeroMQ

I acts like concurrency framework while looking like an embeddable networking library
I sockets that carry atomic messages across various transports like in-process, inter-process, TCP, and

multicast
I fast
I asynchronous I/O model → scalable to multi-core operation
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Reconstruction chain

I RootInputModule

I geometry

I clustering of calorimeter

I clustering of pixel and silicon vertex detectors

I track finding

I track fitting

I track extrapolation

I track-cluster matching

I software trigger

I post-filter tracking

I PID

I RootOutputModule
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Tracking

I pattern recognition / track finding

I finding hits belonging to the same charged particle
I SectorMaps → Segment Network → Cellular Automaton to find longest paths
I inter-detector track finding via Combinatorial Kalman Filter

I track fit

I extracting track parameters from fit to collection of hits
I Deterministic Annealing Filter (DAF)
I in Belle II currently use GenFit package (DOI:10.5281/zenodo.10301439)
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Unit-tests

I first layer of software validation

I run full test suite for each commit of open merge requests and each merge into main or release branch

I currently about 1000 unit-tests of C++ code using GoogleTest

I check basic functionality of modules, return values of functions and variables

I about 300 additional python tests

I make sure that standard scripts do not crash
I compare output of certain scripts with reference expectation, e.g. for mdst backward compatibility

I unit-tests intended to catch non-trivial dependencies and implications of code changes

I running all tests (in 16 parallel processes) takes 15 - 20min

Frank Meier (Duke University) The Belle II Analysis Software Framework 17.01.2024 11 / 18



Nightly validation

I run once per day (night)

I workflow of nightly validation

1. generate smallish samples

2. run validation scripts

3. create output histograms

4. comparison with reference

I calculate p value of histogram compatibility
I calculate performance numbers, e.g., width of distribution

I plots of various software releases uploaded to web server

I email notifications sent out to assigned contacts
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Nightly validation
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Monitoring

I nightly build run with different configurations (debug, intel, clang)

I many resource checks (memory consumption, execution time, output file size)

I summarize build warnings, cppcheck, doxygen check, dependency check, geometry overlap check

I history plots of warning and error counters as well as resource usage
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Documentation

I good documentation crucial to (recruiting) process of

software development and maintenance

I sphinx

I use reStructuredText
I use sphinx’s autodoc feature to conveniently create

documentation based on python’s docstrings

I doxygen for C++ documentation

I tests for (almost) all packages to ensure that everything is

documented

Frank Meier (Duke University) The Belle II Analysis Software Framework 17.01.2024 15 / 18



Supported environments

I basf2 meant to work on any recent 64bit Linux system but only tested and binaries provided for

I Enterprise Linux 7 or CentOS 7
I Enterprise Linux 8 or CentOS 8
I Enterprise Linux 9 or AlmaLinux 9
I Ubuntu 20.04
I Ubuntu 22.04

I basf2 distributed on cvmfs

I ARM version under development

I central Buildbot instance connected via gitlab webhooks to code changes → triggers builds on various

workers
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Release policy

I major releases

I once a year
I very thorough validation
I contains all software changes that are merged to the main branch

I minor releases

I frequency: one to two per major release
I limited amount of new features, usually for specific purpose

I patch releases

I mostly for bug fixes, especially for data-taking and calibration
I during data-taking synchronized with maintenance days

I light releases

I every two months
I for introduction of new offline data analysis features
I contain only framework, mdst, mva, analysis, skim, geometry, online_book, and b2bii packages
I no unpacking or digitization ⇒ only mdst and udst can be processed
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Conclusion

I Belle II software publicly available (Comput Softw Big Sci 3, 1 (2019) and DOI:10.5281/zenodo.5574115)

I C++ code with python interface

I serial execution of dynamically loaded modules to process collection of events

I Conditions Database stores settings and calibration constants

I basf2 reliable, feature-rich, fast, user-friendly, well-documented

Thanks for your attention!
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