

PID of BESIII and CEPC

Linghui Wu For the BESIII and CEPC PID working groups

Why we need PID?

PID of charged hadrons is essential for flavor physics and jet study

- Suppressing combination background
- Distinguishing between same topology final-states
- Benefit flavor tagging
- ...

Invariant mass distribution of $\phi \rightarrow K^+ K^-$

Distinguish various $B_S^0(B^0) \rightarrow h^+h^-$ in same topology final-states (simulation at CEPC)

Invariant mass of two particles

 $M^2 = m_1^2 + m_2^2 + 2(E_1 E_2 - p_1 p_2 cos\theta)$

PID techniques

Technique	BESIII	CEPC	
lonization	√ (dE/dx with DC)	✓ (dN/dx with DC or TPC)	
TOF	✓ (plastic scintillator + MRPC)	√ (LGAD)	
Cherenkov		Under consideration	

PID of BESIII

BESIII detector

Workflow of PID

• Running stably for more than ten years

PID of charged hadrons

- PID of charged hadrons, especially K/ π identification, is essential for flavor physics study
- Achieved by combining dE/dx and TOF $\chi^2_{PID} = \chi^2_{dE/dx} + \chi^2_{TOF}$
 - dE/dx with MDC: $\left\langle \frac{dE}{dx} \right\rangle \propto \frac{z^2}{\beta^2} \left(\log \frac{\sqrt{2m_e c^2 E_{cut}} \beta \gamma}{I} \frac{\beta^2}{2} \frac{\delta}{2} \right) \quad P = m \cdot \beta \gamma$
 - TOF:

dE/dx measurement with MDC

MDC parameters:

- End-plates :ladder shape
- cos0 from -0.93 to 0.93
- 43 sense layers (19 axial layers + 24 stereo layers)
- 6796 drift cells
- Gas: He+C₃H₈ (60/40)

dE/dx reconstruction

• χ with different particle assumptions, used for PID

dE/dx performance

TOF measurement

• Estimate the velocity of the particle by measuring the flight time t_{mea} over the flight length from the track trajectory L

$$\beta = \frac{L}{c \times t_{\text{mea}}}, \quad m^2 = p^2 \times \frac{1 - \beta^2}{\beta^2},$$

Define χ for particle identification

$$\chi = \frac{\Delta t}{\sigma} = \frac{t_{measure} - t_{predict}^{i}}{\sigma} \qquad i = e, \mu, \pi, K, p$$

TOF detector

- Barrel: double layers of plastic scintillator & PMT
- Endcaps
 - Before upgrade: plastic + PMT
 - After upgrade: MRPC

Endcap after upgrade

TOF performance

Time resolution (ps)					
Barrel	68				
Endcap (before upgrade)	98				
Endcap (after upgrade)	60				

Pion PID efficiency (dE/dx + TOF)

Liu Fang's talk (https://indico.ihep.ac.cn/event/11535/)

PID of CEPC

Guang Zhao, Linghui Wu, Mingyi Dong, Gang Li, Zhefei Tian, Zhenyu Zhang, Xu Gao, Shuaiyi Liu, Shengsen Sun

Physics study at CEPC

- The CEPC aims to start operation in 2030's, as a Higgs (Z) factory in China. The plan is to operate
 - Above **ZH** threshold ($\sqrt{s} \sim 240 \text{ GeV}$) for 7 years.
 - Around and at the Z pole for 2 years.
 - Around and above W⁺W⁻ threshold for 1 year.
 - It is upgradeable to run at the *t* threshold.
- □ Possible *pp* collider (SppC) of $\sqrt{s} \sim 50-100$ TeV in the future.

Par	ticle	E _{c.m.} (GeV)	Years	SR Power (MW)	Lumi. /IP (10 ³⁴ cm ⁻² s ⁻¹)	Integrated Lumi. /yr (ab ⁻¹ , 2 IPs)	Total Integrated L (ab ⁻¹ , 2 IPs)	Total no. of events	
H	l*	240	10	50	8.3	2.2	21.6	$4.3 imes 10^6$	
				30	5	1.3	13	$2.6 imes 10^{6}$	
	Z	01	2	50	192**	50	100	$4.1 imes 10^{12}$	
		91		30	115**	30	60	$\textbf{2.5}\times\textbf{10}^{\text{12}}$	
\	w	160	4.60	4	50	26.7	6.9	6.9	$2.1 imes 10^8$
			1	30	16	4.2	4.2	$1.3 imes 10^8$	
t	tī	360	360 5	50	0.8	0.2	1.0	$0.6 imes 10^6$	
				30	0.5	0.13	0.65	$0.4 imes 10^{6}$	

* Higgs is the top priority. The CEPC will commence its operation with a focus on Higgs.

** Detector solenoid field is 2 Tesla during Z operation, 3Tesla for all other energies. *** Calculated using 3,600 hours per year for data collection.

- The large samples from 2 IPs: 10⁶ Higgs, 10¹² Z,
 10⁸ W bosons, provide a unique opportunity for
 - High precision Higgs, EW measurements,
 - Study of flavor physics (b, c, tau) and QCD,
 - Probe physics beyond the standard model.
 - ...

CEPC 4th concept detector

Preliminary PID requirement: >2 σ K/ π separation for 20 GeV/c tracks

Preliminary DC design

Preliminary parameters

Radius extension	800-1800 mm		
Length of outermost wires $(\cos\theta=0.82)$	5143 mm		
Thickness of inner CF cylinder	200 µm		
Outer CF frame structure	Equivalent CF thickness: 1.63 mm		
Thickness of end Al plate	35 mm		
Cell size	18 mm × 18 mm		
# of cells	24766		
Ratio of field wires to sense wires	3:1		
Gas mixture	He/iC ₄ H ₁₀ =90:10		

Energy loss measurement: dE/dx

- Main mechanism: Ionization of charged tracks
- Traditional method: Total energy loss (dE/dx)
 - Landau distribution due to secondary ionizations
 - Large fluctuation from many sources: energy loss, amplification ...

- dE/dx res. = **5.7** * L^{-0.37} (%)
- Fit in 2021:
 - dE/dx res. = **5.4** * L^{-0.37} (%)
- No significant improvement in the past 40 years

* From Michael Hauschild's talk @ RD51 workshop 19

Integrated charge

Cluster counting measurement: dN/dx

- Alternative method: Counting primary clusters (dN/dx)
 - Poisson distribution → Get rid of the secondary ionizations
 - Small fluctuation **>** Potentially, a factor of 2 better resolution than dE/dx

dN/dx is extremely powerful, proposed in ILC, FCC-ee, CEPC

Require fast electronics and sophisticated counting algorithm

Feasibility studies

Software challenges:

 Efficient algorithm to count clusters in high noise-levels and pile-ups

Reconstruction with ML

- Simulated samples
- Data samples

Prototype Experiment

Test beam Radioactive source

Hardware challenges:

- Large volume detector design
- Fast front-end electronics
- Efficient data preprocessing

Physics Studies

• Delphes fast physics studies

Physics performances:

• Physics benchmarks to evaluate CC technique

Waveform-based full simulation

Reconstruction algorithm (traditional method)

Peak finding: Detect all electron peaks

- Taking 1st and 2nd order derivatives
- Peak detection by threshold passing

Clusterization: Peak merge to form clusters

- Merge peaks within [0, t_{cut})
- The t_{cut} is related to diffusion

- · Pros: Fast and easy to implement
- Cons: Suboptimal efficiency for highly pile-up and noisy waveforms

PID performance

K/π separation power vs P (1m track length, $cos\theta=0$)

K/ π separation power vs cos θ

(P=20GeV/c)

 2σ K/ π separation for 20 GeV/c tracks could be achieved (preliminary)

Reconstruction algorithm with ML

Algorithm with deep learning developed

- Peak finding with LSTM
- Clusterization with DGCNN

Separation power (~10% improvement with ML)

CEPC timing detector: Concept

- Time of flight detector based on LGAD (EIC proposed LGAD-based TOF detector)
 - Area of detector (Barrel : 50 m² , Endcap 20 m²), ~ 10⁶ channels
 - Strip-like sensor (each strip: 4cm imes 0.1 cm)
 - Should be part of SET (silicon wrapper layer outside TPC or drift chamber)
 - Serve as Timing detector and part of the tracker
 - Timing resolution: 30-50 ps
 - Spatial resolution: ~ 10 μm

Preliminary results of PID efficiency (dN/dx + TOF)

Summary

- PID of BESIII
 - dE/dx with MDC + TOF
 - Good performance and running stably for more than ten years
- PID of CEPC
 - dN/dx in gaseous detector + TOF with LGAD
 - Simulation study of the drift chamber shows dN/dx can provide better PID capability than dE/dx method
 - Lots of work ongoing

