

The 2024 International Workshop on Future Tau Charm Facilities January 14-18, 2024

 \mathbb{Z}

GlobalPID Algorithms Based on Machine Learning for STCF

CONTENTS

Introduction $\mathbf O$

Identification For Charged Particles $\overline{\mathbf{O}}$

Identification For Neutral Particles $\mathbf O$

- **GlobalPID Software** $\overline{\mathbf{O}}$
- $\overline{\mathbf{O}}$ **Summary**

2024/1/16 2 Yuncong Zhai

■ The Super Tau Charm Facility (STCF) is an important option for China's future accelerator-based

 201.66

particle physics large-scale scientific facility.

◼ **Particle identification (PID) is one of the most important and commonly used tools for the physics**

analysis in STCF.

◼ **The PID algorithm performance is crutial for exploiting the potential of**

STCF detectors.

- π/K (K/p) 3-4 σ separation up to 2Gev/c
- μ/π up to 2Gev/c, π suppression \sim 3%
- *Good discrimination power for* $\gamma/n/K_L^0$

◼ **Better particle identification usually requires the combination of information**

from multiple sub-detectors.

- Single sub-detector is often sub-optimal
- *4* ⚫ Usually difficult for traditional PID algorithms to combine all sub-detectors

◼ **The data-driven machine learning (ML) has provided a powerful toolbox for PID.**

- ⚫ Advantage: Extracting effective information from large amounts of interrelate data
- Widely applied and opening up new possibilities in high-energy physics experiments.
- ⚫ Achieved outstanding results in the field of PID.
	- LHCb, Bellell, CMS and ALICE
	- Main methods : Boosted Decision Tree (BDT) and Neural Networks (NN)

◼ **Innovated and developed a Global Particle Identification (GlobalPID) software algorithm**

based on the ML techniques.

- ⚫ Targeting at particle identification problem at the STCF experiment
- ⚫ Exploration the physical potential
- ⚫ Achieve optimal PID performance
- ⚫ To boost the progress of physics analysis work

- ldentification of charged particles $(e/\mu/\pi/K/p)$
- Combine all sub-detectors reconstruction information
- Taking BDT (based on XGBoost) as a baseline model
- Other ML algorithms tested as well :
	- MLP, SVM,Transformer …..
- Charged hadrons discrimination
- e.g. DTOF raw information: The hit position and time * of Cherenkov photons on the sensor
- Based on classical convolutional neural network (CNN) * on PID detectors
	- Improve hadron discrimination power
	- As the input for charged particleID

- Neutral particle (γ/K_L⁰/n) identification
- Fully utilize energy deposition, time response * within the ECAL and MUD hit pattern
- A convolutional neural network is developed * for neutral particle identification

Identification For Charged Particles

Ⅰ

Data Sample

- ◼ **The quality of the data samples**
	- High statistics
	- large momentum and angle coverage ∗
- **Data production**
	- Based on OSCAR simulation and reconstruction
	- MC single charged track using ParticleGun
	- 50000 tracks for each type (e \pm , $\mu\pm$, $\pi\pm$, $K\pm$, $p\pm$) ∗
	- $p \in (0.2, 2.4)$ Gev/c, $\theta \in (20^{\circ}, 160^{\circ})$, phi = 0° $*$
- ◼ **Pre-processing**
	- Flatten momentum and θ spectrum to avoid bias due to p/θ distribution
	- Train:Validation:Test = 8:1:1 ∗

Acc

Training and Tuning: Feature Selection

- Selecting a subset of the most informative features from large amount of interrelated sub-detectors information can help stabilize the model training process
- ◼ Tracker/dEdx/RICH/DTOF/ECAL/MUD reconstructed variables have been collected
- 45 features are kept, feature importance distribution of the features is obtained (Full list of variables please see backup slides)

Training and Tuning: Optimal Hyperparameters

- ◼ **Target: automated optimization of BDT hyperparameters**
	- Reduce manual intervention and time costs *
	- Improve model efficiency and reliability *
- ◼ **Optimal hyperparameters are obtained based on GridSearchCV**
	- Discrimination power between charged particles are ∗ used as criteria
	- Search range of max_depth: [200,1200] *
	- Search range of n_estimators: [3,15] $*$
- ◼ **Selected hyperparameters**
	- max_depth: 7
	- n_estimators: 800 *

• Tunningofhyper-parameters

Performance

- ◼ **BDT model(based on XGBoost) is trained and optimized to discriminate (e, μ, π, k, P)**
- Preliminary results have been obtained
	- Good performance for leptons ∗
	- Hadron performance is sub-optimal at the moment. Expecting better performance with updated ∗

PID reconstruction algorithms

Performance

The signal efficiency and background misidentification rate(no more than 1%) for π at different momentum and angles.

 Ω

0.9 0.8 0.7

 -0.6 -0.5

> 0.4 0.3 0.2

> > 0.1

STCF DTOF based on classical convolutional neural network π/k discrimination **Zhipeng Yao**

The DTOF is located on the end cap of the STCF PID system and is based on an total internal reflection Cherenkov time-of-flight detector.

Using the hit position and time of Cherenkov photons on the photomultiplier tube, a twodimensional pixel map is constructed and a convolutional neural network is developed for π/k discrimination, further enhancing the PID performance of the DTOF.

The darker areas in the image indicate a higher probability of Cherenkov photons being detected at the corresponding channel at the given time. The overall image represents the topological structure of Cherenkov photons produced by different particles.

STCF DTOF based on classical convolutional neural network π/k discrimination **Zhipeng Yao**

• model : **EfficientNetV2-S** Accuracy = 99.46%

The signal efficiency and background misidentification

rate for pions/kaons at different momentum and angles.

- Using EfficientNetV2-S as the baseline model and **optimizing**
- Training: Adding momentum and position information **of particle hits in the DTOF outside of the fully connected layers**

The signal efficiency for pions (the background no more than 3%)

Identification For Neutral Particles

Ⅱ

Data Sample

■ Energy deposition pixel map (71*136):

- X-coordinate : Position information
	- Left endcap / Right endcap (0-9/61-70)
	- \cdot Barrel (10-60)
- Y-coordinate: CrystalID
- ⚫ Value:Energy deposition inside the crystal

• Energy deposition pixel map

◼ **Neutral Particle Data Sample**:

- \bullet γ /K_i/n
- Generated by ParticleGun
- 100,000(Each type)
- \bullet P \in (0, 2.0) Gev/c, $\theta = 90^{\circ}$, $\varphi = 0^{\circ}$

 $136 \times 71 \times 1$

■ The initial implementation of a global neutral particle discriminator based on **CNN**

- CNN consists of alternating convolutional and pooling layers, ending with fully connected layers
	- Convolutional Layer: Use convolutional kernels to extract new hidden features ∗
	- Pooling Layer: Reduce data dimensionality, prevent overfitting, and reduce resource usage 木
	- Fully Connected Layer: Add MUD information in the future ∗

Performance

■ Analyzing the energy deposition distribution in ECAL (preliminary)

•*Neutron*:

- Signal efficiency is controlled to be above 80%.
	- •Background misidentification
	- \sim 20%, mainly for KL

•*Gamma*:

- Good photon discrimination performance
- Signal efficiency > 90%

•*K^L* :

- Signal efficiency >70%
- Background misidentification ~20%, mainly for Neutron

The neutron and K^L identification capability still needs improvement

GlobalPID Software

- The BDT model and GlobalPID algorithm have been integrated into OSCAR software and is available **OSCAR for analysis and research.**
	- * For the identification of charged particles
	- Pre-trained model is integrated, and made transparent to users
	- Based on C-API of XGBoost, Provided simple interface and user manual for users

- Development of the ML-based software packages **for hadron and neutron particle identification.**
	- The GlobalPID packages integration : All the **software packages will be transferred into the ONNX framework.**

GlobalPID Applications Generator Reconstruction Simulation Analysis Visulization Core Software **SNiPER EDM** Data I/O Geometry Database VertexFit **External Library/Tools** Podio Geant4 **ROOT** DD4hep GenFit **CERNLIB**

19

Summary

- ◼ **To fully exploit the performance of the STCF detector, a novel GlobalPID algorithm based on machine learning is developing.**
- ◼ **Based on a data-driven method, BDT is used as a baseline to discriminate charged particles at STCF.**
	- Extract features from many correlated variables(integrating all sub-detector information) \ast
	- Provides charged particle identification performance in different PID modes ∗
	- Drive the fast simulation work ∗
- ◼ **Integrate PID system information and use CNN to achieve hadron discrimination.**
- ◼ **A global neutral particle identifier based on CNN is initially implemented.**
- ◼ **Preliminary results for the identification of charged and neutral particles have been obtained, but need to be further checked and validated.**
- ◼ **The GlobalPID software package has been completed for charged particles identification and is available for analysis and research.**

➢ **More study is needed to do:**

- Add time response and MUD information to neutral particle identification
- Further study the variables used for PID
- * Try other machine learning techniques
- Upgradation and result verification for GlobalPID software package

⚫ *Features*

⚫ *Efficiency distribution*

⚫ *The signal efficiency of Proton*

⚫ *DE/dx Sepa.*

- ❖ Based on the selected features, various models are studied and tested:
	- ⚫ Boosted decision tree based on XGBoost and LightGBM
	- ⚫ Deep neural network
	- Support vector machine
- ❖ Model optimization is based on a combination of grid search and bayasian optimization

BDT (XGBoost) is chosen given its performance and tranparency max depth: 7 n estimators: 400

