FTCF2024 _

USTC Hefei

The 2024 Internatio‘nal-.Worksho‘lI5

on Future Tauw-Charm Facilities
'January 14-18, 2024

Core Software of STCF

Teng LI on behalf of the STCF core software development team
Shandong University
The 2024 International Workshop on Future Tau Charm Facilities
2024-1-17, Hefe1

Introduction

<+ The task of the STCF core software

e To provide the common software platform for the entire offline data processing

e To support detector simulation, calibration, reconstruction and data analysis

<+ The scope of the STCF core software

. . Tracker PID, ECAL, MUD
Detector Simulation .]
Reconstruction Reconstruction
" : Analysis Toolkit RDataFrame-based
Generator Fast Simulation ¥ e)
(PID, Fitting, etc.) Analysis Framework
"""" [j,{d“é;ﬁ,}r',gw” C T T T T U Database + STCF Core Software
! DataModel | | i i
..... Framework | . . __Interface | | EventDisplay
""""" Geometry | | EventData || Software | [~ ii--o---ooo--
i L ML Interface
. ___Management | .| Management = | | | Validation System | --------------------
Parallel & Heterogenous
Computing Technology
CPU GPU FPGA Many-core CPU

Introduction

<« The task of the STCF core software
e To provide the common software platform for the entire offline data processing

e To support detector simulation, calibration, reconstruction and data analysis

<« The scope of the STCF core software
e The underlying framework
e Event data model and event data management
e Detector data management (geometry, material, field, alignment, etc.)
e Database management
e Detector and event display
e Support of ML, parallel computing, and heterogeneous computing
e Software and physics validation system

e Software build, installation and distribution

Introduction

<« Main R&D innovations and challenges for the core software compared to BESIII

e The huge data volume (~100 times of BESIII) requires much more advanced performance

= Relying on pure CPU resource to process exabytes of data is A
hardly realistic, after the end of Moore’s law

= Heterogeneous resources, like many-core CPUs, GPUs, even
FPGAs need to be supported to overcome the challenge

= The core software needs to provide ready-to-use development
and run time environment for heterogeneous processers

= Good support of ML inference is also nesessary

e Adoption of common software developed for future colliders

0S Kernel and Libraries

m OSCAR is developed partially based on Key4hep, including | (Non-HEP specific)

EDM based on podio, geometry based on DD4hep etc.
Key4hep

m rs are involved in Key4h velopment Thomas Madlener,
Core developers are involved ey4hep developme Epiphany Conference 2021 ,

Underlying Framework: SNIiPER

< The underlying framework builds the skeleton of OSCAR

e Such as Gaudi, Marlin etc. Provide basic functionalities of event loop control, user interface, job
configuration, logging etc.

«+ OSCAR adopts SNIPER as the underlying framework
e Lightweighted, supporting both non-collider and collider HEP experiments

e Adopted by JUNO (neutrino), LHAASO (cosmic ray), nEXO (neutrinoless double beta decay) and HERD
(dark matter)

<+ Advantages of SNIPER

e Lightweighted, efficient, highly extendable. Flexible event loop control. Flexible to be integrated with
other software, e. g. podio, DD4hep, Geant, ...

e C++/Python hybrid programing, highly configurable. Efficient multithreading.

Event Loop Currentevent Otherevents [] Eventbuffer
. Task
xecuted on
: demmand : Exe Num EvtNum: 0 1 2 3 4 5 6 7
Argorithm1 |

o | |

Argorithm4

: I I _
Argorithm3 Argorithm5 l l l
¥ — 5 5 r
4' 4' ‘ n Task Task
Algorithms J Services

Task Sub-Task

aWwWN -

Parallelism in MT-SNIPER

<+ SNIPER provides simple interfaces for building multithreaded applications

e SNIPER Muster (Multiple SNIPER Task Scheduler) works as a thread pool/scheduler
based on TBB

e Data I/0O is bound to dedicated I/O thread for flexibility
e A GlobalStore is developed to support parallel event data management
e Application code is mostly consistent for serially and parallelly execution

e Track-level and Algorithm-level parallelism are under R&D

ol Global 4 GIobaIStore\ | /Muster Threads - —}
'y Input Stream / Event 1 /4 Special /O Svc S Worker Task L _:
Input Sve — / E— /é Special /O Svc . Worker Task ~ -E
ﬁ files / Event 3 /4 Special /O Svc _ Worker Tack _ -E
files Rt S / —— /4 Special /0 Svc , Mora oo 1
gt Task] b\ rwom e

Event Data Model Based on Podio

<+ Event Data Model (EDM) lies at the heart of OSCAR
e Define event data in memory and in data files (transient and persistent event store)
e |Implement relationship between data objects (hit-track-MC particle)

e Handle schema evolution

<+ EDM is defined based on podio (Key4hep, adopted by FCC

F. Gaede, etc. , CHEP2019

CEPC, ILC, ..)

e Generate C++ code based on YAML definition HiCollecion| Layer
e Both C++ and Python are supported L* L.)

e Multithreading support (itopject | Oblect Layer
e Powerful and flexible relationshop between data objects 1‘1

_ HitData \ POD Layer

e Multiple storage backends (data file formats)

https://github.com/AIDASoft/podio 7

https://github.com/AIDASoft/podio

Event Data Model Based on Podio

<+ Due to the specific requirements of STCF, EDM4hep is partially adopted

« Design EDM classes based on podio and reuse some EDM4hep classes

TrackerHit ~_
/T rackerPoint

» Use MCParticle and ReconstructedParticle
in EDM4hep as the core index PIDHit =
/PIDPoint |
» EDM classes specificly for STCF simulation
and reconstruction

» MCParticle and ReconstructedParticle are .. _
correlated based on track matching algorithm, 2ol

U /ECALPoint ™
bridging MC and reconstructed data

MUCHit
/MUCPoint =~

Event Data Management

<+ Event data management system manages event data in memory, provides
interfaces for user applications and handles data 1/0

o
+ Extend SNIPER DM system based on Podio Event laop —
e PodioDataSvc: transient event store (TES) BeginEvtHdl > PodiolnputSvc
e PodiolnputSvc: data input l
e PodioOutputSvc: data output Agarhn
. PodioData
e DataHandle: interface Svc
Algorithm2

<+ Event data and user application are decoupled

EndEvtHdI

PodioOutputSvc

4

W.H. Huang et al 2023 JINST 18 P03004

o ﬁ
Task

9

https://iopscience.iop.org/article/10.1088/1748-0221/18/03/P03004/pdf

D)

Parallelized Event Data Management

To enable parallelized data processing, a GlobalStore is developed based on podio
e Re-implement podio::EventStore to cache multiple events (each within one data slot)
e Use several condition lock to enable safety exchanging data between threads

e |/O services are binded to dedicated I/0O threads, to ensure performance and flexible
poSt- or pre-processing

Based on parallelized DM
system, detector simulation Kol
and reconstruction are developed

Users could switch serial/
parallel by just changing
job configuration

Condition Lock
------------ > rely

— > notify

Parallelized Detector Simulation

<+ Based on the MT-SNIPER and parallelized DM system, parallelized detector
simulation applications are developed

e Basic performance tests show promising scalability

Detector
Construction

PhysicsList

Initialization

[

MTPrimary
Generator
Action

[
|
[
[
I
I
|
L
I
| MTAction
|
I
I
|
I
I

Global Task
GeometrySvc
SimFactory MasterRunMgrSvc
'
G4MTRunManager «-----
_______________________ = |
________ L______W
STCFRunAction | ! DetSimMTAIg
|
| '
STCFTrackingActi I
kil ! SlaveRunMgrSvc «-----
STCFSteppingAction i v
| G4WorkerRunManager
SensitiveDetector :
e | |
L Worker Task

12 4

speedup

speedup versus number of threads

_____ y=x
speedup

8 1‘2 16
thread

500 *

400

300

200

Resident Memory per Core (Mb)

[
=}
o

. Resident Memory per Core (Mb)

a 7 10 13 16 19
Number of Cores

11

Geometry Management System

+ Detector description in OSCAR is based on DD4hep

+ Single source of detector information for detector description, simulation
reconstruction and event display

e DDG4 for delivering detector geometry to Geant4

e DDRec for delivering detector geometry to reconstruction algorithms
e DDXMLSvc: the unified interface to DD4hep, including DDG4 and DDRec

Flexible combinations of different
versions of detector design, and
combinations of sub-systems

H. Li et al 2021 JINST 16 T04004

STCF.xml
. DDXMLSvc
ECAL —»| DDG4
I — h
1 e e
v02.xml v02.xml —_ Geometry —» DDRec
v01.xml vol.xml Information

f —» DDEve

Materials.xml Elements.xml

https://iopscience.iop.org/article/10.1088/1748-0221/16/04/T04004

Detector Geometry Description

« The Full STCF Detector is described with DD4hep
+ Each sub-detector is implemented with a single compact file
<+ The version number is used for different design options

+ Optimizing the detector geometry according to changes of the detector design

13

Detector and Event Display

<+ A common geometry and event display system is being developed

Based on Web3D technology and the open-source JSRoot framework
3D engine and graphic libbrary based on Three.JS
Using the Vue.js HTMLS5 development framework to implement the Web interface

Reducing 3D motion lag by the multi-threading capabilities of Web Worker framework

Geometry information from detector description from DD4hep (XML), and event data read
from podio

Machine Learning Model Integration

<« ONNX Runtime has been integrated with OSCAR to support runtime inference

—

e Lot’s of applications in OSCAR are based on ML models, such foiout, Oorthevicelocator, @, OrifenTypeberaute);

Ort::Value: :CreateTensor(info,

as fast simulation, reconstruction, PID etc. e inputs.data),

inputs.size(),
dims.data(),
dims.size());

e As an easy and unified way to integrate different models in
OSCAR and run inference eas”y At GUERUL FEnsors & SLsssion SHun{OR:: RURGEESORST nullpte 1o

m_input_node_names.data(),
input_tensors.data(),
input_tensors .size(),

e Convert from other models to ONNX, such as Tensorflow, m_output_node_nanes .dsta(),

m_output_node_names.size());
PyTorCh etC- or (int 1 = @; i nsors.size(); ++i) {

< m_output_node_names[i]

e Potentially to accelerate inference of larger model on different e ot

auto& output_tensor = ut_tensor

hardware platform (CPU/G PU) St Faaen G il S T bt

for (int j = @; j < 18; ++j) {
LogInfo << "[" <<€ 1 €< "]" << "[" <<€ J <<« "] "
<< v_output[j]
<< std::endl;

——

bool OrtInferenceflg::initialize() {

\ m env = std::make shared<Ort::Env>(ORT_LOGGING LEVEL WARNING, "ENV");
m_seesion_options = std::make shared<Ort::SessionOptions>();
m_seesion_options-»SetIntraOpNumThreads{m intra op_ nthreads);
m_seesion options->SetInterOpNumThreads{m inter op nthreads};

m_session = std::make shared<Ort::Session>(*m_env, m model file.c str(), *m seesion_options);
_ S - — :__ _ __ = o ——

15

Automated Software Validation

<+ Software validation system is developed, to support building software validation on
different levels

e Unit test, integrated test, software performance profiling and physics result validation
<+ Integrated with Gitlab Action system for automated validation

e Trigger validation jobs on different levels on schedule/commits

e Same system is being adopted by CEPC and Key4hep as well

“ READY

i
. |
= | | Pull Build
& i T A T g : : TODO
i ghon Request Giflab installation S
=| E\l”\ll ‘ H] i A
it] s |
| S 5o scior oeae. uns..] m'_“ l‘%\ll Ly Per'for‘mance
I | ———— moobziz, (M1 Il)|
"pihy" 11| e v, GBI B | Commit Gitlab Docker Tesﬁng
-] Code Cenfr\al
SimTest 10 Operations Wo r'kf I ow
M Database
bt
-3 I
o Build Test I | Kubernetes DIRAC
? Total running time: 504.5s PO P Tal e e o o o o e e (- (- — —
16

Summary

<+ We introduced the basic design and functionalities of STCF core software
e Developed partially based on Key4hep

e Many components are extended specificlly for STCF, but are also re-usable by other
experiments

<+ Based on the core components, many STCF applications are (being) developed

e Detector simulation, reconstruction algorithms, event display, analysis toolkit including
particle ID, Vertex/KineticFit, RDataframe based analysis framework etc.

e Physics analysis studies with MC data can be performed in OSCAR now
<+ We have been continuously improving the core software
e Software and physics performance has been continuously improved

e Many applications are being developed based on concurrent/heterogeneous
computing and machine learning

17

