

Electromagnetic Calorimeter Software for Super Tau-Charm Facility

Bo Wang University of Science and Technology of China State Key Laboratory of Particle Detection and Electronics (On behalf of the STCF ECAL working group) FTCF2024 Jan 17, 2024, Hefei

Super Tau-Charm Facility

■ Electron-positron collider experiment

- High luminosity: beyond 0.5×10^{35} cm⁻² · s⁻¹ @ 4GeV
- \Box Wide energy region: center-of-mass energy range of 2~7 GeV

Requirement for ECAL 3

Requirements for ECAL

Fast response

- \triangleright Challenge of high Luminosity
	- High count rate
	- **Extremely high background**

\Box High precision

- \triangleright Energy resolution
	- Better than 2.5% @1GeV
- ➢ Position resolution
	- Better than 5mm @1GeV
- ➢ Time resolution
	- Better than 300ps @1GeV

Energy distribution for photons

ECAL Design

□ Total absorption calorimeter

- \triangleright Barrel: 51 \times 132 = 6732
- \triangleright Endcap: $3 \times (85 + 102 + 136) \times 2 = 1938$
- ➢ Crystal Size:
	- $5 \times 5 \times 28(15X_0)$ cm³

O Sensitive Unit

- \triangleright Pure CsI (pCsI) crystal
	- Fast decay time (~30ns)
	- Good radiation hardness
	- Low light yield
- ➢ Avalanche photodiode (APD)
	- Short wavelength type
	- Large area (10 \times 10 mm² \times 4)

ECAL Setup

\Box "Dead Material"

- ≥ 150 -µm Teflon reflective film
- ≥ 75 -µm polyethylene insulating film
- ≥ 75 -µm Al electrostatic shielding film
- \triangleright No supporting material
- □ Light Yield: 100 p.e./MeV
- **□** Light Collection Non-uniformity
	- \ge collection efficiency: $\epsilon(l) = 95\% + l/L \times 5\%$
- $\Box \sigma_{noise} = 1.0 \text{ MeV}$
- \Box $E_{hit \; thres} = 5.0 \; MeV$
- Secondary Particles Hit APD

320cm

ECAL Electronics

- Charge sensitive amplifier and pole-zero cancellation with shaping time 100 ns
- High and Low Gain (300 MeV/3000MeV)
- \Box 16-bit ADC (~16000 channels) with 80 MHz sampling rate

Based on OSCAR

□ OSCAR: Offline Software of Super Tau-Charm Facility

Simulation Algorithm

■ Based on Geant4 Simulation

➢ Process the information for each Geant4 step

\Box Data Model (layer as a unit)

- ➢ Thickness 2cm as a layer unit
- \triangleright Each unit with a energy-time distribution: points with (E,T)
- \triangleright Bin width 500ps for energy-time distribution
- ✓ Save storage space
- ✓ Minimal loss of information

Simulation Algorithm

Data Model

■ Sizes of thickness and time bin width have been optimized

- \triangleright No large difference of time distribution for different thickness
	- Consider the non-uniformity may vary in the future : 2cm
- \triangleright Different time bin width with different time resolution and central value
	- Difference in central value approximately equivalent to a shift of the template
	- Consider the resolution and the similarity to the template: 500ps

Digitization Algorithm

Waveform shaping

Digitization Algorithm

Waveform fitting

 \Box Template fitting to extract Amplitude and Time

 \triangleright Template shape function: $f(t) = A \times f(t - \tau) + p$

$$
\geq \chi^2 = \sum_{i,j} (y_i - A \cdot f(t_i - \tau) - p) \cdot S_{ij}^{-1} \cdot (y_j - A \cdot f(t_j - \tau) - p)
$$

\n
$$
\geq \text{Apply } \frac{\partial \chi^2}{\partial A} = 0, \frac{\partial \chi^2}{\partial \tau} = 0
$$

Where y_i and t_i are from readout waveform; the electronics foundation p in digitization is $p = 0$; A and τ are the amplitude and time from fitting result; S_{ij} is the noise covariance matrix.

 \Box Multi-template fitting to study the capability for pile-up recovery

Reconstruction Algorithm

A complete reconstruction algorithm of ECAL is developed

 10^3

Reconstruction 12

Reconstruction Performance

Energy Reconstruction

Reconstruction Performance

Time Reconstruction

Reconstruction Performance

Position Reconstruction

■ Splitting algorithms (used by BESIII and Panda)

$$
\triangleright a_{ik} = \frac{E_k \times \exp(c \times \frac{r_{ik}}{R_M})}{\sum_{j=1}^m E_j \times \exp(c \times \frac{r_{ij}}{R_M})}
$$

■ Barycenter method

$$
\triangleright X_c = \sum_j^N W_j(E_j) \cdot X_j / \sum_j^N W_j(E_j)
$$

Where $W_j(E_j) = \max\{0, a - \sqrt{-\ln\left(E_j / \sum_j^N E_j\right)}\}$

 \checkmark $\sigma_{pos} = 3.9$ mm @ 1 GeV \checkmark Meet the requirement

Challenges of high background

□ Luminosity-related Background

- ➢ Radiative BhaBha Scattering (RBB)
- ➢ Two Photon Process

Variation of the background counting rate with polar angle **Counting rate reaches the order of MHz**

□ Single-beam related Background

- ➢ Thouschek Effect
- ➢ Coulomb Scattering
- ➢ Bremsstrahlung

Momentum distribution of background particles

Most background particles concentrate in the low momentum region

Multi -template 17

Pile -up Recovery

Multi -template fit

 \Box Fit all the potential waveforms with template \Box Isolate signals by time \Box The fit minimizes the χ^2 defined as:

$$
\chi^2 = \left(\sum_{j=1}^N A_j \overrightarrow{p_j} - \overrightarrow{S}\right)^T C^{-1} \left(\sum_{j=1}^N A_j \overrightarrow{p_j} - \overrightarrow{S}\right)
$$

Where:

N is the number of templates; vector \vec{S} comprise the readout samples; vector $\overrightarrow{p_j}$ is the waveform template; A_j are the amplitudes, which are obtained by the fit; C is the noise covariance matrix.

- \Box Background waveform is superimposed on the signal waveform
- \Box The impact of the background is devastating
- Energy Resolution is greatly recovered

- The software of ECAL has been established based on OSCAR
- □ The simulated performance of ECAL meets requirements.
	- \checkmark Energy measurement with 2.26% @ 1 GeV
	- \checkmark Position measurement with 140 ps @ 1 GeV
	- \checkmark Time measurement with 3.9 mm @ 1 GeV
	- \checkmark A general algorithm shows good performance on pile-up recovery
- \Box The difference between simulation and the real electronics response, and signal processing method to be updated
- \Box The online pile-up recovery method to be updated

Thanks for your listening!

Back up

ECAL Design —— Sensitive Unit

\Box Pure CsI crystal + APD photo-device

- ➢ Pure CsI (pCsI) crystal
	- \checkmark Fast decay time
	- Good radiation hardness
	- \checkmark Low light yield
- ➢ Crystal Size:
	- \checkmark Total radiation length
		- $15 X_0$ (28 cm)
	- \checkmark End face size front end: $\sim 5 \times 5$ cm² back end: $\sim 6.5 \times 6.5$ cm²

➢ Avalanche photodiode (APD)

- \checkmark Short wavelength type
- Large area $(10 \times 10 \text{ mm}^2 \times 4)$

 \sf{APD}

ECAL pCsI crystal unit

pCsI

Simulation Algorithm

Data Model

\Box Energy distribution and comparison with template

π^0 Reconstruction

Reconstruction of Energy and Position

Template Fitting

 ∂A

• Template shape function: $f(t) = A \times f(t - \tau) + p$

 $\partial \tau$

\n- \n
$$
\chi^2 = \sum_{i,j} (y_i - A \cdot f(t_i - \tau) - p) \cdot S_{ij}^{-1} \cdot (y_j - A \cdot f(t_j - \tau) - p)
$$
\n
\n- \n
$$
\text{Apply } \frac{\partial \chi^2}{\partial t} = 0, \frac{\partial \chi^2}{\partial \tau} = 0, \frac{\partial \chi^2}{\partial \tau} = 0:
$$
\n
\n

$$
\oint_{\partial p} \sum_{i,j} f_{ki} \cdot S_{ij}^{-1} \cdot (y_j - Af_{kj} - Bf'_{kj} - p) = 0
$$

$$
\sum_{i,j} f'_{ki} \cdot S_{ij}^{-1} \cdot (y_j - Af_{kj} - Bf'_{kj} - p) = 0
$$

$$
\sum_{i,j} 1 \cdot S_{ij}^{-1} \cdot (y_j - Af_{kj} - Bf'_{kj} - p) = 0
$$

$$
\begin{pmatrix}\nF_k \cdot S^{-1} \cdot F_k^T & F_k \cdot S^{-1} \cdot F_k^T & F_k \cdot S^{-1} \cdot I \\
F'_k \cdot S^{-1} \cdot F_k^T & F'_k \cdot S^{-1} \cdot F_k^T & F'_k \cdot S^{-1} \cdot I\n\end{pmatrix} \cdot \begin{pmatrix}\nA \\
B \\
P\n\end{pmatrix} = \begin{pmatrix}\nF_k \cdot S^{-1} \cdot Y \\
F'_k \cdot S^{-1} \cdot Y \\
I \cdot S^{-1} \cdot F_k^T & I \cdot S^{-1} \cdot F_k^T \\
I \cdot S^{-1} \cdot F_k^T & I \cdot S^{-1} \cdot I\n\end{pmatrix}^{-1} \cdot \begin{pmatrix}\nF_k \cdot S^{-1} \cdot Y \\
I \cdot S^{-1} \cdot Y\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\nA \\
B \\
P\n\end{pmatrix} = \begin{pmatrix}\nF_k \cdot S^{-1} \cdot F_k^T & F_k \cdot S^{-1} \cdot F_k^T & F_k \cdot S^{-1} \cdot I \\
F'_k \cdot S^{-1} \cdot F_k^T & F'_k \cdot S^{-1} \cdot I \\
I \cdot S^{-1} \cdot F_k^T & I \cdot S^{-1} \cdot F_k^T & I \cdot S^{-1} \cdot I\n\end{pmatrix}^{-1} \cdot \begin{pmatrix}\nF_k \cdot S^{-1} \cdot Y \\
F'_k \cdot S^{-1} \cdot Y \\
I \cdot S^{-1} \cdot Y\n\end{pmatrix}
$$

Nonnegative Least Square (NNLS)

Algorithm ${\it funl}s$:

Input: $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$ **Output:** $x^* \ge 0$ such that $x^* = \arg \min ||Ax - b||^2$. Initialization: $P = \emptyset$, $R = \{1, 2, \dots, n\}$, $\mathbf{x} = \mathbf{0}$, $\mathbf{w} = \mathbf{A}^T \mathbf{b} - (\mathbf{A}^T \mathbf{A}) \mathbf{x}$ repeat

1. Proceed if $R \neq \emptyset \wedge [\max_{i \in R}(w_i) > tolerance]$ 2. $j = \arg \max_{i \in R}(w_i)$ 3. Include the index j in P and remove it from R 4. $S^P = [({\bf A}^T {\bf A})^P]^{-1} ({\bf A}^T {\bf b})^P$ 4.1. Proceed if $\min(\mathbf{s}^P) \leq 0$ 4.2. $\alpha = -\min_{i \in P} [x_i/(x_i - s_i)]$ 4.3. $\mathbf{x} := \mathbf{x} + \alpha(\mathbf{s} - \mathbf{x})$ 4.4. Update R and P 4.5. $\mathbf{s}^{\tilde{P}} = [(\mathbf{A}^T \mathbf{A})^P]^{-1} (\mathbf{A}^T \mathbf{b})^P$ 4.6. $s^R = 0$ 5. $x = s$ 6. $\mathbf{w} = \mathbf{A}^T(\mathbf{b} - \mathbf{A}\mathbf{x})$

Convention:

- b: A real pulse with m points
- x: fitted amplitudes for n pulses
- A: the ith column of A represents the template for the ith pulse and of course each template has m points.
- P: passive set currently not fixed amps
- R: active set currently fixed amplitudes

 \Box The performance is affected by the interaction of photons with materials in front of the ECAL.

 \Box The dominant interaction process for photons in the energy range of interest is gamma conversion.

 γ conversion probability in front of ECAL

Impact of materials in front of ECAL

 A full STCF detector simulation study was carried out, and the simulation results are compared with ECAL only simulation results.

- Little effect on the energy resolution
- Great effect on reconstruction efficiency.

Impact 28