

The 2024 International Workshop on Future Tau Charm Facilities

January 14-18, 2024

Status of STCF Offline Software

Xingtao Huang¹, Xiaocong Ai²

¹ Shandong University, ² Zhengzhou University

On behalf of the STCF Software group

The Super Tau Charm Facility

The future Super Tau Charm Facility

- Peak luminosity >0.5×10³⁵ cm⁻²s⁻¹ at 4 GeV
- Energy range E_{cm} = 2-7 GeV
- Potential to increase luminosity & realize beam polarization
- Total cost: 4.5B RMB

- 1 ab⁻¹ data expected per year
- Rich physics program, unique for physics with c quark and τ leptons
- Important playground for study of QCD, exotic hadrons, flavor and search for new physics.

Physics requirements

- ✤ To achieve physics goals: higher event rate (400k Hz) and background
 - Good efficiency and resolution for tracks (photon)
 - Powerful PID between charged (neutral) particles

Process	Physics Interest	Optimized	Requirements	
		Subdetector		
$ au o K_s \pi v_{ au},$	CPV in the τ sector,		acceptance: 93% of 4π ; trk. effi.:	
$J/\psi ightarrow \Lambda ar{\Lambda},$	CPV in the hyperon sector,	ITK+MDC	$>99\%$ at $p_T>0.3~{\rm GeV/c};>90\%$ at $p_T=0.1~{\rm GeV/c}$	
$D_{(s)}$ tag	Charm physics		σ_p/p = 0.5%, $\sigma_{\gamma\phi}$ = 130 μ m at 1 GeV/c	
$e^+e^- \rightarrow KK + X,$	Fragmentation function,	BID	π/K and K/π misidentification rate < 2%	
$D_{(s)}$ decays	CKM matrix, LQCD etc.	PID	PID efficiency of hadrons > 97% at $p < 2 \text{ GeV/c}$	
$\tau \to \mu \mu \mu, \tau \to \gamma \mu,$	cLFV decay of τ ,		μ/π suppression power over 30 at $p < 2$ GeV/c,	
$D_s ightarrow \mu u$	CKM matrix, LQCD etc.	PID+MOD	μ efficiency over 95% at $p = 1$ GeV/c	
$\tau \rightarrow \gamma \mu$,	cLFV decay of τ ,	EMC	$\sigma_E/E \approx 2.5\%$ at $E = 1 \text{ GeV}$	
$\psi(3686)\to\gamma\eta(2S)$	Charmonium transition	EMC	$\sigma_{\rm pos} \approx 5 \text{ mm}$ at $E = 1 \text{ GeV}$	
$e^+e^- \rightarrow n\bar{n},$	Nucleon structure	EMC MUD	$\sigma_T = \frac{300}{\sqrt{p^3 (\text{GeV}^3)}} \text{ ps}$	
$D_0 \rightarrow K_L \pi^+ \pi^-$	Unity of CKM triangle	EMC+MUD		

Particles to detect at STCF

- Charged particles
 - e, μ , K, π , proton (p up to 3.5 GeV, most with p < 2 GeV, lots of particles with p < 400 MeV)
- Neutral particles
 - γ (energy coverage from 25 MeV to 3.5 GeV)
 - KL, neutron (up to 1.6 GeV)

STCF detector system

Performance requirements

- ► ITK:
- Material < $0.01X_0$, $\sigma_{xy} < 100 \ \mu m$
- ➤ MDC:
- Material < $0.05 X_0$
- $\circ \sigma_{xy}$ < 130 µm, $\sigma(p)/p$ < 0.5% at 1 GeV/c
- $\circ dE/dx$ resolution < 6%
- ► PID:
- \circ 3 σ π/K separation, PID efficiency > 97% up to 2 GeV
- ➤ EMC:
- $\circ~\sigma_{\scriptscriptstyle E}$ < 2.5%, $\sigma_{\scriptscriptstyle pos}$ ~ 4 mm, σ_t ~ 300 ps at 1 GeV
- > MUD:
- \circ µ efficiency > 95% above 0.7 GeV with π → µ misidentification rate <3%

The Offline Software of STCF (OSCAR)

STCF Offline Software System

- The Offline Software of Super Tau-Charm Facility (OSCAR) is designed for detector design, MC data production and physics analysis at STCF:
 - Applications: STCF specific application software
 - Core software: common platform for the offline software
 - External libraries and tools
- Core software are developed for common functionalities
 - Event loop control (sequentially and concurrently)
 - Detector data and event data management
 - Common tools for data analysis
 - To support efficient parallel and heterogeneous computing
- Some applications are ported from BESIII

W.H. Huang et al 2023 JINST 18 P03004

Status of STCF Offline Software

- Dedicated Core Software System including the underlying framework, DM system, GMS etc. are developed
- Full chain of detector simulation and physics object reconstruction has been built
- Physics analysis with full detector simulation and reconstructed objects is supported
- Parallelized simulation and reconstruction based on MT-SNiPER under developing

Core Software

Teng Li, Core Software of STCF, Software & Computing Session, Jan. 17

Underlying framework: **SNiPER**

- Developed since 2012, very lightweight and flexible, supporting both non-collider experiments and collider experiments
- Providing basic functions of event loop control, application interface, job configuration, logging etc.
- Providing simple interfaces for building multi-threaded applications, thus supporting both serial and parallel event processing with extension of SNiPER, Muster
- Adopted by JUNO (neutrino), LHAASO (cosmic ray), nEXO (neutrinoless double beta decay) and HERD (dark matter)

Event Data Model (EDM) and Serial Event Data Management

- Very crucial and taking significant effect on performance of the event processing
- Developed STCF EDM based on podio, which is also adopted by EDM4hep
 - Define event data and relationship between data object in YAML file
 - Re-use MCParticle and ReconstructedParticle from EDM4hep as the core index
 - Good support for multithreading
- Extended SNiPER data management system based on podio

Parallelized Event Data Management

- Developed parallelized Event Data Management for parallelized event processing
 - GlobalStore to cache multiple events (each within one data slot)
 - Two dedicated threads for input and output respectively
 - SNiPER Muster (Multiple SNiPER Task Scheduler) works as a thread scheduler
- Parallelized detector simulation and reconstruction are developed
- Track-level and algorithm-level parallelism are under R&D

Detector and Event Display

- A common geometry and event display system is being developed
 - Based on Web3D technology and the open-source JSROOT
 - 3D engine and graphic library based on Three.JS
 - Using the Vue.js HTML5 development framework to implement the Web interface
 - Reducing 3D motion lag by the multi-threading capabilities of Web Worker framework

Detector Simultion

Detector Description

- The full STCF Detector is described with DD4hep
- Each sub-detector is implemented with a single compact file
- Very convenient to optimize detector geometry according to detector experts

Geometry Management System

- Developed geometry management system for all applications
 - detector simulation, reconstruction and event display
 - The version number is used for different design options
- Ensure consistent detector information between different applications with a single source of detector description
 - DDG4 for delivering detector geometry to Geant4
 - DDRec for delivering detector geometry to reconstruction algorithms
 - DDXMLSvc: the unified interface to DD4hep, including DDG4 and DDRec

Detector Simulation Chain

- Full chain of detector simulation from generator to simulated information is built
- Providing flexible configuration for different purposes of detector simulation
 - Generator for different physics topics i.e. Babayaga, KKMC, Phokhara, DIAG36, BBBrem ...
 - Geometry for different detector design options
 - User actions for recording MC truth information

Background generation and event mixing

Yupeng Pei, STCF beam background sim. and impl., Software & Computing Session, Jan. 16

moving to 'realistic' simulation

Background Production

- Maximum event rate at STCF: 400kHz
 - Maximum time window in sub-detectors : 1000 ns
 - Probability of events overlapping in1000 ns: 32.9%
 - Multiple physics events can exist in one event, i.e. pileup
- Main Backgrounds: Touschek, beam-gas, luminosity-related
- Time window (ns)
 Setup background simulation software and produced background data samples

Event Mixing Algorithm

- Developed mixing algorithm based on multi-stream functions provided OSCAR
- Providing flexible configuration for event mixing
 - Signal, e.g. $e^+e^-
 ightarrow \pi^+\pi^- J/\psi(
 ightarrow \mu^+\mu^-/e^+e^-)$
 - Backgrounds: Touschek, beam-gas, luminosity-related, reading from background database
 - Underlying physics background: $e^+e^- \rightarrow anything$ at 4.26 GeV
- Mixed data used for trigger simulation and optimizing of reconstruction algorithms

Digitization

- Developed a unified digitization framework for all sub-detectors on OSCAR
- Each sub-detector implemented its digi. algorithms and produced the digi. information
- The reconstruction algorithms are under tuning with the digi. information as their inputs

Tracking at STCF

STCF tracking system

- The baseline tracking system includes uRWELL-based Inner Tracker (ITK) and Main Drift Chamber (MDC)
 - ITK: 3 layers, $\sigma_{r-\phi} \ge \sigma_z \ge 100$ um ≥ 400 um
 - MDC: 48 layers, $\sigma_{drift dist} \approx 120^{\sim}130 \text{ um}$

Figures from STCF CDR (arXiv: 2303.15790)

STCF tracking landscape

Tracking based on Hough Transform

• The trajectory is straight in the s-z space \rightarrow similar to the 2-D tarck finding

Tracking performance of Hough Transform

Hang Zhou, Tracking Software for STCF, Software & Computing Session, Jan. 16

28

Tracking based on ACTS

Xiaocong Ai, ACTS app. for gaseous tracking detector, Software & Computing Session, Jan. 16

Application strategies of ACTS for STCF

Figures from ACTS <u>readthedocs</u>

Tracking finding performance with ACTS

- ✤ Above 99% efficiency for p_T > 400 MeV
- ◆ 95% efficiency for pion with p_T in [50, 100] MeV
- <0.5% duplicate tracks for p_T < 130 MeV due to duplicate seeds for looping tracks</p>
- Negligible fake tracks (<0.01%)</p>

Photon reconstruction

Reconstruction method

Peformance of ECAL reconstruction

Bo Wang, ECAL Software for STCF, Software & Computing Session, Jan. 17

✤ Good energy linearity between 25 MeV – 3.5 GeV

Position resolution is 4.9 mm at 1 GeV

Time resolution is 200 ps based on waveform fitting

33

PID at STCF

$\rightarrow \pi/K$ separation based on PID detectors \rightarrow PID based on global information!

PID methodology

Ultimately based on the difference of velocity between particles!

PID detectors at STCF

RICH PID performance with likelihood method

assumptions is required

Binlong Wang, RICH Software for STCF, Software & Computing Session, Jan. 17

The photon collected in each anode pads follows the **Poisson distribution**

- Performance *
 - K/ π 3.3 σ separation up to 2.0 GeV/c
 - K/P 4.4 σ separation up to 2.0 GeV/c
- PDF generation based on Geant4 is very time-consuming. Cherenkov map based on analytic method has been developed

DTOF PID performance with timing method

bkg

 $\mathcal{L}_h = \prod_{i=0}^{N_{p.e.}} f_h(TOF_i)$

where $TOF_{hypo} = \frac{LOF}{c\beta_{hypo}}$

signal

 $f_h(t) = Gaus(TOF_{rec} | TOF_{hypo}, \sigma) + 0.05$

Yutong, DTOF Software for STCF, Software & Computing Session, Jan. 17

- $\sigma_t \sim 95 \, ps$ by single photon-electron
- $\sigma_t \sim 50 \ ps$ by multi-photon-electrons
- $3.95\sigma \pi/K$ separation at p = 2.0 GeV/c

DTOF PID performance with imaging method

$$\begin{aligned} \mathcal{L}_{h} &= p_{h}(N_{p.e.}) \prod_{i=0}^{N_{p.e.}} f_{h}(x_{i}, t_{i}) \\ p_{h}(N_{p.e.}) &= \sum_{\substack{n=0 \\ N = -1}}^{N_{p.e.}} Poisson_{h}(n, N_{e}) \times F_{bkg}(N_{p.e.} - n) \\ f_{h}(x, t) &= S_{h}(x, t) + const_{bkg} \end{aligned}$$

Improve π/K separation $\sim 4.7\sigma$, at p = 2.0 GeV/c

DTOF PID performance with CNN method

- A CNN (based on EfficientNetV2S) which utilizes both timing and spatial information of the DTOF hits is developed
- Test set accuracy : 99.46%

X-label: the hit position of Cherenkov photon by PMT Y-label: the arrival time of Cherenkov photon by PMT Value: the number of photons within this bin

Stage	Operator	Stride	#Channels	#Layers
0	Conv3x3	2	24	1
1	Fused-MBConv1, k3x3	1	24	2
2	Fused-MBConv4, k3x3	2	48	4
3	Fused-MBConv4, k3x3	2	64	4
4	MBConv4, k3x3, SE0.25	2	128	6
5	MBConv6, k3x3, SE0.25	1	160	9
6	MBConv6, k3x3, SE0.25	2	256	15
7	Conv1x1 & Pooling & FC	-	1280	1

PID at STCF

→ π/K separation based on PID detectors → PID based on global information!

Global PID method

42

- A global PID algorithm is developed based on ML and selected 45 features from all subdetector
 - Tracker/dEdx/RICH/DTOF/ECAL/MUD
- Trained the ML model based on XGBoost for better separation power in different modes: e/μ/π/K/P; π/K/p; e/π/K; π/K; μ/π
- The model and algorithm are provided for physics analysis within OSCAR

Analysis tools at STCF

Vertex fitting

- The Vertex fitting and Kinematic fitting tools are developed based on the ones of BESIII after some modifications according to STCF
 - Two methods are used :Lagrange multiplier and Kalman filter
- Both are validated with STCF M.C. data and provided for physics analysis

ΔΔ

44

Vertex fitting

- The Vertex fitting and Kinematic fitting tools are developed based on the ones of BESIII after some modifications according to STCF
 - Two methods are used :Lagrange multiplier and Kalman filter
- Both are validated with STCF M.C. data and provided for physics analysis

45

Summary

- **\diamond** STCF is an important and unique platform for probing physics at τ -charm sector
- The STCF offline software system (OSCAR) is being developed based on SNiPER since 2018, and now partially based on Key4hep (podio, dd4hep, edm4hep)
 - The core software is extended to meet requirements of STCF i.e. high luminosity
 - The full chain of the event simulation + background mixing + digitization + reconstruction + analysis is built
 - Ready to start physics analysis within OSCAR
- ✤ Future plan
 - Optimization of recon. algorithms, especially with digitization information after event mixing
 - Focusing on improving OSCAR's computing performance to meet high luminosity requirements

Thanks for your attention !