

The 2024 International Workshop on Future Tau Charm Facilities January 14-18, 2024

ats for gaseous tracking detectors

Mainly about drift chambers

See Andreas Salzburger's talk for an overview of the project status

Xiaocong Ai¹, Zhiliang Chen², Xingtao Huang³, Hao Li¹, Teng Li³, Weidong Li⁴, Tao Lin⁴, Yi Liu¹, Zuyin Qin¹, Andreas Salzburger⁵, Linghui Wu⁴, Lailin Xu²

1. ZZU 2. USTC 3. SDU 4. IHEP, 5. CERN

FTCF 2024, Jan 17, 2024, USTC, Hefei

As a **Common** Tracking Software

- ACTS works well for solid state silicon trackers. Lots of users in the past three years:
 - ATLAS silicon and ITk, sPHENIX silicon, ALICE silicon, FASER, LDMX, ePIC ...
 - These are mostly about track parameters/measurements represented on a planar surface

Figures from CSBS (2022) **6**, 8

sPHENIX silicon

FASER tracker

ACTS modules are already used for real data processing for ATLAS, sPHENIX, FASER!

As a **Common** Tracking Software

- ACTS is designed with the capability of working for gaseous tracking detectors
 - Time Projection Chamber
 (TPC) is represented with fake
 Planar detectors, e.g.
 - sPHNEIX TPC
 - CEPC v1 layout TPC (see Jin Zhang's <u>slides</u> in 2020)

How about drift wires/tubes?

sPHENIX TPC represented with fake planar surfaces (figure from Joseph Osborn)

Examples of drift chambers

Figure from <u>here</u>. More about Belle-II CDC in Shoji Uno's talk Figure from here.

Figure from J. Liu's <u>slides</u> at CEPC workshop 2023

Example of Transition Radiation Tracker

ATLAS Inner Detector: Pixels + SCT + TRT

The "common" geometry description

The ACTS tracking geometry

Figures from CSBS (2022) 68

- Tracking geometry is simplified from detailed full simulation geometry for fast navigation (i.e. association of a position within detector), but with material effects well taken into account
- Navigation via hierarchical arrangement of the detector elements:
 - Legacy model: surfaces -> layers -> volumes
 - Layerless model: surfaces -> volumes (with grid indexed search)

The building blocks of ACTS tracking geometry

- Different concrete surfaces types for various tracking detectors
 - A surface has shape, bounds, rotation+translation, local coordinates and its unique identifier...

One Line/Straw surface

Figure from NIMA 620 (2010) 518

Figure from ATL-SOFT-PUB-2006-004

When there are many Line/Straw surfaces

- Currently, layer-based geometry model is used, i.e. wires/straws are associated to concentric Acts::Layer

ATLAS TRT Barrel geometry with N-layers approach (figure from Zhiliang Chen)

Three layers

ACTS application strategies

Application for CEPC and STCF

The CEPC tracking system

Tracker	Number of layers	Radius/ z (mm)	σ _x (μm)	σ _y (μm)	Technology	
VXD	3 double layers	16-58	2.8/6/4/4/4/4	2.8/6/4/4/4/4		
SIT	4 layers	230-770	7.2	86	Ciliana	
SET	1 layer	1815	7.2	86	(pixel/strip)	
FTD	5/7 layers at each endcap	467-2991	(2.8)/(2.8)/7.2/ 7.2/7.2/7.2/7.2	(7.2)/(7.2)/7.2/7. 2/7.2/7.2/7.2		
DC	100 layers	805-1795	110		Drift Chamber	

Silicon (VXD, SIT, SET, FTD) + Drift chamber

The STCF tracking system

uRWell/MAPs-based Inner Tracker (ITK) + Drift chamber

ITK: 3 layers, $\sigma_{r-\phi} \times \sigma_z \approx 100 \text{ um } \times 400 \text{ um}$ MDC: 48 layers, σ drift dist $\approx 120 \sim 130 \text{ um}$

CEPC tracker geometry in ACTS format

STCF tracker geometry in ACTS format

CEPC tracking requirements

- Mostly >20 tracks per event (up to 100 tracks per event)
 - \circ >99% tracking efficiency for p_{T} > 1 GeV
 - Impact track parameter resolution at ~ 5 um
 - Momentum resolution reaches per mille level in the range [10, 100] GeV

From CEPC CDR Physics&Detector (arXiv: 1811.10545)

STCF tracking requirements

- Low track multiplicity, but high background noise and most tracks have p_T < 500 MeV
 - \circ $\sigma(p)/p = 0.5\%$ with p = 1 GeV
 - \circ Tracking eff. > 50/90/99 % with p_ > **50**/100/300 MeV

From STCF CDR (arXiv:2303.15790v2)

CEPC tracking performance (very preliminary)

- ACTS with CEPC full simulation is not working yet. Currently using ACTS Fatras simulation.
- >=95% tracking efficiency for p_T > 1 GeV in benchmark physics processes
 - 1-2% fake tracks and 10% duplicate tracks
- At $p_T = 10$ GeV, central region ($|\cos\theta| < 0.8$):
 - $\sigma(do) = 3 \,\mu m$, $\sigma(zo) = 3.5 \,\mu m$, $\sigma(p_{\tau})/p_{\tau} = 0.16\%$

20

STCF tracking performance

- 94% tracking efficiency with p_{T} in [50, 100] MeV
- Negligible fake rate (<0.01%)
- <0.5% duplicate tracks for p_T < 130 MeV due to duplicate seeds for looping tracks
- $\sigma(p_T)/p_T < 0.5\%$ with $p_T = 1$ GeV, $\theta = 90^\circ$ is achieved

More in <u>talk at CHEP2023</u> and JINST **18** P07026

More about STCF tracking in Hang Zhou's talk

Application for BESIII

BESIII tracking system

- BESIII drift chamber is suffering from aging after operation for > 15 years
- Proposals for preserving and enhancing the tracking performance:
 - New inner drift chamber
 - Replacement of inner DC with cylindrical gas electron multiplier (CGEM)
 - Or a very thin (50 um) **stitched CMOS sensor** between beam pipe and drift chamber to **minimize the material budget** (the key impacting factor for performance of low pT tracks)?

Simulation studies with ACTS

• Obvious tracking resolution/efficiency improvement with one more layer of stiched pixel studied using ACTS compared to current drift chamber

More about BESIII tracking in Jin Zhang's talk

Towards an Open Drift Chamber

Open Data Detector in ACTS

- A full silicon tracker with realistic material description
 - Very useful for tracking algorithms development&validation
- Configurable replacement of Strip with Drift Chamber?

https://gitlab.cern.ch/acts/OpenDataDetector More details <u>here</u>

A very naive drift chamber

e.g. a brainstorm BelleII-like drift chamber with 10 Super Layers, 62 layers in total

#Super Layer	Туре	nLayers	rMin [mm]	rMax [mm]	Cell size	halfZ [mm]
0	А	8	~209	~290	~10	~3000
1	υ	6	~290	~375	~14	~3000
2	А	6	~375	~460	~14	~3000
3	V	6	~460	~545	~14	~3000
4	А	6	~545	~641	~16	~3000
5	U	6	~641	~737	~16	~3000
6	А	6	~737	~833	~16	~3000
7	V	6	~833	~930	~16	~3000
8	А	6	~930	~1032	~17	~3000
9	А	6	~1032	~1135	~17	~3000

Figure from Tao Lin. More in his slides <u>here</u>

The status

- A simple geometry of drift chamber has been implemented
 - Superlayers and layers are configurable in the compact files. Only axial wires are implemented for the moment
 - Also needs dedicated simulation+digitization for drift chambers

Figure from Tao Lin. More in his slides here

Summary

- ACTS has been working very well for silicon tracker
- For TPC, a planar representation turns out to be working well
- Recently has been successfully **implemented for tracking with drift** chambers, e.g. STCF, CEPC and BESIII
 - Very promising performance
 - Optimization, in particular geometry navigation, yet remains to be done
- For more independent development and validation, we have started the efforts on **implementing an Open Drift Chamber in ACTS**

- Join us if you are interested
 - ACTS Developers Meeting recently started a CERN Morning Slot (once per month, Tuesday 4 pm Beijing time)
 - China zone bi-weekly discussion about ACTS for tracking (Friday 11 am Beijing time)

Backup

Circular Electron Positron Collider (CEPC) physics program

Operation mode			ZH	Z	W+W-	tī
\sqrt{s} [GeV]			240	91	160	360
Run time [years]			7	2	1	-
CDR (30 MW)		L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
		∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	5.6	16	2.6	-
		Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×107	-
Run Time [years]			10	2	1	5
TDR (Latest)	30 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
		∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	13	60	4.2	0.65
		Event yields [2 IPs]	2.6×10 ⁶	2.5×10 ¹²	1.3×10 ⁸	4×10 ⁵
	50 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	26.7	0.8
		∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	21.6	100	6.9	1.0
		Event yields [2 IPs]	4.3×10 ⁶	4.1×10 ¹²	2.1×10 ⁸	6×10 ⁵

- Precision measurements of Higgs boson properties
- SM measurements: electroweak physics, QCD, flavor physics...
- Search for exotic decays of H, Z, B and T, and BSM

Far more than a Higgs factory !

From J. Liu's <u>slides</u> at CEPC workshop 2023, Oxford

CEPC tracking

STCF tracking

CEPC Detector Conceptual Designs

CEPC CDR Baseline Design (Particle Flow Approach)

CEPC Detector Conceptual Designs

Alternative designs

