

中國科學院為能物記納完所 Institute of High Energy Physics Chinese Academy of Sciences

Development of CEPC Drift Chamber Software

Mengyao Liu, Xiangtao Huang, Yao Zhang, Weidong Li on behalf of the CEPC software working group

FTCF 2024, Hefei

16th-Jan-2024

Contents

Introduction

- Detector Design
- CEPCSW Software
- Event Data Model
- Detector Description
- Software implementations
 - Data processing flow
 - Detector simulation
 - Track reconstruction

Summary

Detector Design

- The CEPC is a 100 km circular electron-positron collider aiming to
 - precisely measure the property of the Higgs boson
 - study electroweak physics at at Z-boson peak
- Detailed performance requirements * can be found in the CEPC CDR and tracking part includes
 - High track efficiency (~100%) and momentum resolution (<0.1%)

- The 4th conceptual detector was proposed on the basis of the CEPC CDR **
 - is characterized by a combination of silicon detectors and drift chamber (DC) designed to provide both tracking and PID for charged particles
- Software development of the DC simulation and track reconstruction is critically important
 - Both detector design and physics potential studies need strong support from simulation and reconstruction 3

Drift Chamber

- The drift chamber covers
 - radial range from 800 mm to 1,800 mm
 - Z range from -2,980 mm to 2,980 mm
- A small cell design is chosen to obtair enough number of track hits at the outer radius
 - purely made of stereo wires
 - the sense wire is made of gold-plated tungsten with a diameter of 20 μ m
 - the field wire is made of silver-plated aluminium with a diameter of 40 μ m
 - organized into 55 co-axial layers
- The working gas is
 - a mixture of helium and C₄H₁₀ with a mixing ratio of 90:10
- Both inner and outer cylinders are made of carbon fibre

Geometry Parameters	Value
Half length	2980 mm
Inner and outer radius	800 mm ~ 1800 mm
The number of layers	55
Cell size	18 mm × 18 mm
Gas	90%He+10%C ₄ H ₁₀
Single wire resolution	110 րա
Sense to field wire ratio	1:8
Total number of sense wire	25,357
Stereo angle	0.028 rad~0.062 rad
Sense wire	Gold plated Tungsten $\phi = 20 \mu m$
Field wire	Silver plated Aluminum $\phi = 40 \mu m$
Wall	Carbon fiber 0.2 mm(inner) and 2.8 mm(outer)

 $r - \phi$ projection of a proportion of the first 10 layers of wires

Sense wires of each layer forms a rotating hyperboloid surface

History of CEPC Software

- The development of CEPC software first started with the iLCSoft
- New CEPC software (CEPCSW) prototype was proposed at the Oxford workshop in April 2019

- The consensus among CEPC, CLIC, FCC, ILC and other future experiments was reached at the Bologna workshop in June, 2019
 - Develop a Common Turnkey Software Stack (Key4hep) for future collider experiments
 - Maximize the sharing of software components among different experiments
- Non-goal: develop and maintain project specific software and workflows
 (T.Madlener | Key4hep & EDM4hep, CEPC workshop, Edinburgh)

CEPCSW Software Structure

- CEPCSW software structure
 - Applications: simulation, reconstruction and analysis
 - Core software
 - External libraries
- Core software
 - Gaudi/Gaudi Hive: defines interfaces to all software components and controls their execution
 - EDM4hep: generic event data model
 - k4FWCore: manages the event data
 - DD4hep: geometry description
 - CEPC-specific components : GeomSvc, detector simulation, beam background mixing, fast simulation, machine learning interface, etc.

https://github.com/cepc/CEPCSW

Packages in CEPCSW

- Detector concepts
 - CDR (baseline design)
 - The 4th concept
- MC Generators
 - Multiple formats supported: HepMC, HepEvt, StdHep, LCIO
 - GuineaPig++ for MDI
 - Particle Gun
- Simulation
 - G4 simulation framework
 - Fast simulation algoritrhms e.g.ML-based dE/dx simulation
 - Digitization algorithms for silicon, CALO, drift chamber

Reconstruction

- Marlin based tracking algorithms for silicon detector
- Tracking algorithm for drift chamber
- Pandora-based PFA
- Arbor-based PFA
- Analysis tools
 - RDataFrame-based analysis framework
- Examples and docs
 - Usage of EDM4hep, Identifier, etc.

More than 50 packages in total

Event Data Model (1)

 EDM4hep is the common event data model (EDM) being developed for the future experiments like CEPC, CLIC, FCC, ILC, etc.

- EDM4hep describes event objects created at different data processing stages and also reflects the relationship between them.
- For the drift chamber, MCParticle, SimTrackerHit, TrackHit, Track have been used since the begin of the software project.

Event Data Model (2)

- As the development progressed, the previous versions of EDM appeared not able to fit all the requirements brought by newly added detector like the CEPC' s drift chamber.
- Due to the strong flexibility of EDM4hep, TPCHit was extended to accommodate the new needs:
 - Discussions inside EDM4hep group and also with the IDEA-CEPC drift chamber working group
 - By using the upstream mechanism of PODIO, a common EDM was implemented for both TPC and drift chamber

Detector Description

- DD4hep was adopted to provide a full detector description, which was generated from a single source (XML files)
- The control of geometry version can be easily achieved just by versioning the changes to the set of XML files
- Different detector design options are managed in the Git repository and a simulation job can be easily configured in runtime
- The non-uniform magnetic field was also implemented in CEPCSW

Data Processing Flow

Event generation

- produces a list of particles each of which is generated from a single interaction with a vertex located at the geometric origin
- Detector simulation
 - generated events are passed into the simulation where each particle is propagated through the detector using Geant4.
- Digitization
 - the response of the elementary detector modules is modelled
 - Besides Monte Carlo (MC) hits from signal event, the digitization also takes hits from background events as its input
- Reconstruction
 - reads in charge or/and time information and generates tracks and showers for tracking detector and calorimeter, respectively

DC Simulation (1)

- The simulation framework was developed and the simulation chain is complete for sub-detectors such as:
 - silicon detectors, time projection chamber, drift chamber and calorimeters
- The region-based fast simulation interface was also developed to integrate different of fast simulation modules into the detector simulation
- An event mixing tool was also provided to mix different types of backgrounds with physics signals at hit level.

DC Simulation (2)

- In CEPCSW, the Geant4 run manager is wrapped by a Gaudi service
 - enabling the Gaudi to control the event loop of the simulation
 - initializing geometry, physics lists and user actions
 - providing standard user interfaces for interacting with Geant4
- Owing to the simulation service, what needs to be implemented for the drift chamber is
 - only its detector geometry and detector response
- Simplified digitization method was implemented to support the development of tracking algorithm
 - When the particle enters a drift cell, the distance between every Geant4 step and the sense wire of the cell is recorded
 - The smallest distance is regarded as Doca, the closest approach of the particle trajectory to the sense wire
 - The Doca is smeared using a Gaussian function with a width equivalent to the wire resolution and converted to drift time based on X-T relation

DC Simulation (3)

- TrackHeedSimTool (Gaudi tool) was implemented by combining Geant4 and Garfield++ to simulate the complete response of the gaseous detector
 - Input: G4Step information (particle type, initial position, momenta, and step length)
 - Using TrackHeed(from Garfield++) to create the ionization electron-ion pairs (for both primary and secondary ionizations), the deposited energy will be used to update the energy of the G4Particle
 - Using NN to simulate the time and amplitude of each pulse for each ionized electron (for fast waveform simulation)

DC Simulation (4)

Good agreement between the NN and Garfield++ simulation

Track Reconstruction (1)

- Tracking with Combinatorial Kalman Filter (CKF) method
 - Combining track recognition and track fitting
- Implementation of track finding with CKF was based on the code of Belle II experiment
 - Track segments reconstructed in the silicon detector, called seeds, are extrapolated to the DC and all the DC hits belonging to the track are collected
- Tack fitting with the tool of Genfit
 - An experiment-independent framework for track reconstruction
 - Contains a Kalman Filter, a Deterministic Annealing Filter, and a General Broken Lines fitter
 - Developed in the PANDA and has also been used by the Belle II, Fopi, and GEM-TPC experiments.

Track Reconstruction (2)

Integration with CEPCSW

- Conversion of event data between different representations
- Access to detector geometry and magnetic field
- Track extrapolation
 - Extrapolation starts from a seed, consisting of a least 3 space points, found in the silicon detector
 - Iteratively searching for hits and collecting hits in the outer neighbouring layer
- Salvaging hits
 - Hits are examined again to determine its association with the current track according to track length and Doca
- Track parameters
 - Helix parameters at the point of closest approach (POCA) to the interaction point (IP)

Track Reconstruction (3)

Event generation

- Particle gun : 10 GeV μ particles
 Polar angle: cosθ < 0.776
 Azimuthal angle: φ [-π, π]
- Spatial resolution
 - Spatial resolution: 106 um
 - Consistent with the value set in the simulation which is 110 um
- Momentum resolution
 - A resolution of 14 MeV which satisfies the requirement in CEPC CDR (per mille level)

Track Reconstruction (4)

- Events with two muons :
 - $e^+e^- \rightarrow ZH$, $H \rightarrow \mu^+\mu^+$
- Tracking efficiency
 - Good track: χ^2 < 400 and No of DC hits > 6
 - Tracking efficiency as the function of measured *pT* for different types of particles
 - Tracking efficiency vs pT for single μ -with/without adding 20% noise

Summary

- As a component of the CEPC' s 4th conceptual detector, the drift chamber (DC) has been added to the simulation chain
 - Detector geometry and simulation of detector response
- The DC Tracking algorithm was implemented by reusing the code of Belle II and its performance meets expectations
- Further development will be based on
 - More realistic simulation of detector response in drift chamber

