Status of the SCT detector software

Andrey Sukharev

Budker Institute of Nuclear Physics, Novosibirsk, Russia

16 January 2024

A HEP software framework

A typical HEP experiment requires complete stack of relevant offline software:

- event generators,
- fast and full detector simulation,
- event reconstruction algorithms,
- event data model (EDM),
- I/O interface to conditions data base,
- I/O interface to data storage,
- offline data analysis algorithms,
- build system and release management software...

Also requires a well-defined computing environment.

Detector construction

SCT Detector overview

Requirements:

- Occupancy 350 kHz
- Good energy and momentum resolution
- High detection efficiency of soft tracks
- Best possible π/K and π/μ separations
- Minimal CP detection asymmetry

	subsystem	options		subsystem	options	
1	Beam pipe	beryllium	2	Inner tracker	TPC, cGEM, S	Si-strip
3	Main tracker	drift chamber	4	PID system	FARICH, ASH	IPH?, DI
5	Calorimeter	Csl, LYSO, LXe?	6	Magnet	thin coil?	
7	Muon system	Scintillators, RPC?,				
Andrey Sukharev (BINP) FTCF2024: SCT De				or Software	16.01.2024	3 / 20

Detector construction

General consderations of its implications on the software

- The SCT Detector construction is not finalized
- The detector structure is more or less typcal for its size
- Similar experiments of less scale are planned (VEPP-6)
- Similar detector KEDR operates in BINP

We are considering to develop the software in a generalized way

- Universal approach
- Tests on real data

The Aurora framework

- Generally inspired by ATLAS Athena
- Based on Gaudi
- Conventional and recently emerged HEP software tools:
 - ► ROOT, Geant4
 - DD4Hep (Key4HEP), ...
 - misc. event generators
- Other experiments software
 - Belle II, ILC, FCCSW...
- Build & configuration system adopted from ATLAS
- lcgcmake-derived system to build external packages

Framework elements and data flows

A conventional set of event generating tools available

- Exclusive decays of hadrons and tau lepton
 - EvtGen, Tauola, PHOTOS, Pythia
- Inclusive generators for $e^+e^-
 ightarrow$ hadrons
 - preliminary solution based on Pythia
- Generators for luminosity measurements and calibrations
 - MCGPJ, BabaYaga, BBBREM, KKMC...

Important issues:

- correctly account for the beam(s) polarization
- need physics analysis people contribution

SCT Detector fast simulation

- Implemented as a set of Aurora packages
 - relies on Aurora MC generators and data flow
 - parameters controlled via Aurora mechanisms
 - about 150 times faster than full simulation
- Subsystems:
 - DC
 - * based on standalone simulations & BaBar experience
 - ★ expanded to cover the inner tracker region
 - * \vec{p} , L(h; p, dE/dx), L(h; p, dN_{cl}/dx).
 - FARICH
 - ★ based on standalone simulations & test beams
 - * $N_{\text{ph.e.}}$ and/or β , L(h; p, $N_{\text{ph.e.}}$), L(h; p, β)
 - calorimeter
 - ★ based on standalone simulations & test beams
 - ★ energies of charged and neutral clusters
 - muon system
 - ★ based on full simulation in Aurora
 - ★ I and L(I; p, θ) for μ and π

SCT Detector fast simulation

Fast simulation scheme

SCT Detector fast simulation Some results

Invariant masses of two photons in decays of J/ψ

For the details please refer to the "Fast Simulation for the Super Charm-Tau Factory Detector" article (DOI: 10.1007/s41781-023-00108-7)

Andrey Sukharev (BINP)

FTCF2024: SCT Detector Software

Reconstruction of $D^0 \rightarrow K^- \pi^+$ from inclusive decay

- ROOT-based
- PODIO to generate C++ classes using yaml file
- Not stable while active development is going on
 - \rightarrow Rebase to EDM4hep?

- Subsystems implemented at the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)
- Simplified magnetic field inside the solenoid and yoke iron

- Subsystems implemented at the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)
- Simplified magnetic field inside the solenoid and yoke iron

- Subsystems implemented at the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)
- Simplified magnetic field inside the solenoid and yoke iron

- Subsystems implemented at the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)
- Simplified magnetic field inside the solenoid and yoke iron

- Subsystems implemented at the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)
- Simplified magnetic field inside the solenoid and yoke iron

- Subsystems implemented at the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)
- Simplified magnetic field inside the solenoid and yoke iron

- Subsystems implemented at the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)
- Simplified magnetic field inside the solenoid and yoke iron

- Subsystems implemented at the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)
- Simplified magnetic field inside the solenoid and yoke iron

- Subsystems implemented at the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)
- Simplified magnetic field inside the solenoid and yoke iron

Aurora Full simulation

- Set initial parameters via job options file:
 - generate primary particles / read pre-generated events
 - choose active subsystems and select variants
 - tools to save output collections
 - ► ...
- Geant4 is used for the particle propagation and hit generation
 - Optical photons activated for FARICH
 - ▶ G4Hit information about hit, time, energy deposit, track ID and etc.
 - Special Gaudi tools to save G4Hit for each sensitive detector subsystem

most subsystems miss separate Digitization stage yet

- integrated into reconstruction
- based on standalone studies
- modules prepared for Silicon Strip and Muon system
- 1st stage Reconstruction: individual subsystem level
 - in preparation by subsystem expert (need more activity)
 - MU is the most advanced at the moment
- 2st stage Reconstruction: combining subsystems, PID...
 - waiting for Rec. level 1 ready, need extra people

Aurora Data Analysis

- Adopting Belle II recipes and solutions for analysis
- Base set of analysis algorithms ready:

Aurora: detector & event visualization Standard DD4hep tools

- Geometry Display tool is ready
- Event Display (DDEve-based) available, lots of things to improve

Aurora: detector & event visualization Web-based Detector/Event Display

- based on the Phoenix project
- supports VR
- still lots to be done...

Aurora: detector & event visualization Web-based Detector/Event Display

- based on the Phoenix project
- supports VR
- still lots to be done...

User's options to access the software are:

- Be registered at BINP/GCF cluster and use the "master" installation
- Download VirtualBox and QEMU/KVM VM images and run the VM locally
 - a Linux system image (currently SL7)
 - a specific Aurora release image (e.g. rel_2.1.0.qcow2)
 - an empty expandable /home image (optional)

This variant completely emulates the BINP/GCF Aurora environment for a given release

• (Hopefully in the nearest future) worldwide directly via CVMFS Instructions in the SCT Detector wiki

Aurora The software distribution

User's options to access th

- Be registered at BINF
- Download VirtualBox locally
 - a Linux system im
 - a specific Aurora r
 - an empty expanda

This variant complete for a given release

• (Hopefully in the near

Instructions in the SCT De

Andrey Sukharev (BINP)

FTCF2024: SCT Detector Software

16.01.2024

18 / 20

User's options to access the software are:

- Be registered at BINP/GCF cluster and use the "master" installation
- Download VirtualBox and QEMU/KVM VM images and run the VM locally
 - a Linux system image (currently SL7)
 - a specific Aurora release image (e.g. rel_2.1.0.qcow2)
 - an empty expandable /home image (optional)

This variant completely emulates the BINP/GCF Aurora environment for a given release

• (Hopefully in the nearest future) worldwide directly via CVMFS Instructions in the SCT Detector wiki

Conclusions

Aurora 2.1.0 released last year, featuring

- a basic set of primary MC event generators,
- ready-to-use fast simulation,
- common detector geometry description (with at least basic description for all detector elements, and several options for some subsystems),
- full Geant4-based simulation,
- digitization modules for some subsystems,
- reconstruction modules (from basic to really advanced, depending on subsystem),
- analysis and job configuration tools,
- test and service tools, including brand-new web-based detector display utility.

We thank all the people whose software is incorporated into or used by Aurora

Conclusions

Aurora 2.1.0 is available at BINP/GCF, via VM images, and (soon) via CVMFS.

Further development:

- framework "generalization",
- digitization & reconstruction modules (need experts participation),
- generators & analysis tools (need physics people participation),
- visualization improvements,
- computing environment & software stack upgrade,
- ... and lots more.

Thank you for attention