

## CP violation in neutrino oscillations (lepton sector of SM)

### Yury Kudenko INR, Moscow

International Workshop on Future Tau Charm Facilities Hefei, China 14-18 January 2024



#### Neutrino oscillations and mixing

Standard Model: neutrinos are *massless* particles





#### Neutrino: open questions

Absolute scale of neutrino mass

Neutrino nature: Dirac or Majorana

Neutrino mass ordering

#### **CP violation**

 $\rightarrow \beta$  decay,  $0\nu 2\beta$  decay, astrophysics and cosmology

 $\rightarrow 0\nu 2\beta$  decay

- → astrophysics and cosmology, atmospheric and reactor neutrinos, accelerator (LBL experiments) neutrinos
  - → accelerator neutrinos (LBL experiments)

 $\rightarrow$  solar, atmospheric, reactor, accelerator (LBL experiments)

Precise measurement of oscillation parameters ( $\theta_{23} = 45^{\circ}$ ?)

Sterile neutrinos

 $\rightarrow \beta$  decay,  $0\nu 2\beta$  decay, astrophysics and cosmology, atmospheric and reactor neutrinos, accelerator neutrinos

Neutrino interactions

 $\rightarrow$  atmospheric and reactor neutrinos, accelerator neutrinos



### Neutrino: CPV and MO

#### - CP violation in lepton sector

Magnitude of CP violation in neutrino oscillations

 $J_{CP} = Im(U_{e1}U_{\mu2}U_{e2}^{*}U_{\mu1}^{*}) = Im(U_{e2}U_{\mu3}U_{e3}^{*}U_{\mu2}^{*})$  $= \frac{1}{8}\cos\theta_{13}\sin2\theta_{12}\sin2\theta_{13}\sin2\theta_{23}\sin\delta_{CP}$ 

all mixing angles  $\neq 0 \rightarrow J_{CP} \neq 0$  if  $\delta_{CP} \neq 0$ 



Quark sector:  $J_{CP} \approx 3 \times 10^{-5}$ Lepton sector:  $J_{CP} \simeq (0.03-0.04) \times sin\delta_{CP}$ 



#### - Neutrino mass ordering (MO)





### CPV in PMNS $\iff$ CPV in Leptogenesis ?

Type I See-saw model

SM + 3 heavy (RH) Majorana neutrinos N<sub>1</sub>, N<sub>2</sub>, N<sub>3</sub> with masses M<sub>1</sub> << M<sub>2</sub> < M<sub>3</sub> Leptogenesis takes place at temperatures  $10^9 GeV < T < M_1$ 



S.Petcov et al. Nucl.Phys. B774,2007, 1 S.Petcov et al. Phys.Rev. D75, 2007, 083511

$$\begin{split} \boldsymbol{Y_B} &\simeq 3 \times 10^{-13} |\sin \delta_{CP}| \left(\frac{\sin \theta_{13}}{0.2}\right) \left(\frac{M_1}{10^9 GeV}\right) \\ & \mathsf{M}_1 = (3\text{-}5) \times 10^{11} \, \mathrm{GeV} \end{split}$$

BAU can be reproduced, if

 $|\sin \theta_{13} \sin \delta_{CP}| > 0.11$ 

Daya Bay:  $\sin\theta_{13} = 0.15 \rightarrow \sin\delta_{CP} > 0.75$ 





#### CPV in PMNS $\iff$ CPV in Leptogenesis ?

Type II See-saw model

SM + SU(2)<sub>L</sub> triplet scalars  $\Delta$ :  $\Delta^+$ ,  $\Delta^{++}$ ,  $\Delta^0$  B.Karmakar, A. Sil arXiv:1509.0790

 $\delta_{CP} = 0, 2\pi$  excluded, close to  $\frac{3}{2}\pi - favoured$ , but exact value of  $\frac{3}{2}\pi - excluded$ 



T.Rink et al., arXiv:2006.03021



# How to search for CP violation?

### Golden channel for CP search: $v_{\mu} \rightarrow v_{e}$



### Search/measurement of CP violation

Long baseline accelerator experiments

Direct search: compare oscillation probabilities muon neutrino → electron neutrino and muon antineutrino → electron antineutrino



 $A_{CP} \neq 0 \rightarrow \delta_{CP} \neq 0 \rightarrow CP$  violation

Sensitivity to CPV **increases** using the value of  $\theta_{13}$  obtained in reactor experiments

### Current experiments T2K and NOvA





e e<sup>n</sup> e <sup>o</sup>

#### Long-Baseline Neutrino Oscillation Experiment





### Experiment T2K

T2K collects data since 2010

Far neutrino detector SuperKamiokande





### Search for CP violation in T2K

Measurements of oscillations  $v_{\mu} \rightarrow v_{e}$  and  $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ 







Number of protons on target (POT)



 $\nu$ -mode: 2.17 × 10<sup>21</sup> (56.8%)  $\bar{\nu}$ -mode: 1.65 × 10<sup>21</sup> (43.2%)

Three samples with electron-like Cherenkov rings

- Two (1  $\nu$ -mode and 1  $\overline{\nu}$ -mode) with e-ring only targeting 0 $\pi$  events
- One in  $\nu$ -mode with e-ring and e from  $\pi$  decay targeting  $1\pi$  events

#### Accumulated number of electron neutrinos and antineutrinos





T2K Run 1-10 Preliminary

### Hint of CP violation

L.Kormos, Nufact2022



Normal mass ordering is preferred at 80% CL



### CP violation: J<sub>CP</sub>

#### **PMNS** parametrization independent metric for CPV

T2K



CP-conservation (J<sub>CP</sub>=0) excluded at:

- $2\sigma$  for a flat prior in  $\delta_{CP}$
- 90% for a flat prior in  $\sin \delta_{\rm CP}$

#### T.Holney, talk at Neutrino Telescopes2023

#### T2K + SuperK joint analysis





#### CPV: T2K+SuperK

#### T2K + SuperK joint analysis



A.Blanchet, talk at Neutrino Telescopes2023

- Improved  $\delta_{CP}$  constraints - CP conservation is excluded at around  $2\sigma$ with  $\theta_{13}$  from rector experiments applied



#### **Experiment NOvA**



Near Detector



#### Far Detector





Taking data since Summer 2014 Study of  $\nu_{\mu} \rightarrow \nu_{\mu}$  and  $\nu_{\mu} \rightarrow \nu_{e}$  oscillations

Neutrino beam from FNAL to Ash River Baseline 810 km Neutrino beam 14 mrad off-axis Far detector : 14 kt fine-grained calorimeter 65% active mass Near Detector: 0.3 kt fine-grained calorimeter





### $v_e$ and $\bar{v}_e$ appearance





### NOvA: search for CP violation



M.Frank, EPS-HEP 2023 Normal ordering Disfavor  $\delta = 3\pi/2$  at  $\sim 2\sigma$ **NO: NOvA best fit:**  $\delta_{CP} = 0.82\pi$ **Inverted ordering** 

Exclude  $\delta = \pi/2$ 

- Weak preference for normal ordering
- No significant CP asymmetry was observed

 $\frac{3\pi}{2}$ 

2π

at >  $3\sigma$ 

#### CP: T2K and NOvA



### Future projects DUNE and Hyper-Kamiokande



### LBNF/DUNE

#### >1400 collaborators from 200 institutions



Phase I: 2x17kt modules in late 2020s, ND, proton beam 1.2 MW by 2031 **Phase II:** 4x17 kt (>40 kt fiducial) modules, ND, proton beam  $1.2 \rightarrow 2.4$  MW

16 January 2024

### LBNF/DUNE





 $=\sqrt{\Delta\chi^2}$ 

ь

### **DUNE: CP sensitivity**

#### **Staging approach** 3.5 years, staged exposure $\overline{\nu}$ = 50% : 50% Sensitivity to $\delta_{CP}$ $\nu$ : Expected Events Sample $\delta_{\rm CP} = -\frac{\pi}{2}$ - 7 years data taking $\delta_{\rm CP} = 0$ NH IHNH IH- 10 years data taking $\nu$ mode Oscillated $\nu_e$ 11555261395707 True Normal Ordering True Inverted Ordering $\bar{\nu}$ mode Oscillated $\nu_e$ 39 955381 **DUNE Sensitivity DUNE Sensitivity** 7 years (staged) 7 years (staged) Oscillated $\bar{\nu}_e$ 23649216439612 All Systematics 12 All Systematics years (staged 0 years (staged Normal Ordering **Inverted Ordering** dian of Throws dian of Throws $sin^2 2\theta_{13} = 0.088 \pm 0.003$ : Variations of $\sin^2 2\theta_{13} = 0.088 \pm 0.003$ 1σ: Variations of A.Booth, ICHEP2022 statistics, systematics statistics, systematics $10 - 0.4 < \sin^2 \theta_{23} < 0.6$ $10 - 0.4 < \sin^2 \theta_{23} < 0.6$ and oscillation parameters and oscillation parameters **DUNE CPV Sensitivity** Phase II by 6 years **All Systematics** Phase I 6 -Normal Ordering Start at 1.2 MW 50% of $\delta_{CP}$ values $\sigma = \sqrt{\Delta \chi^2}$ — — · 4 year ramp to 1.2 MW $=\sqrt{\Delta\chi^2}$ Upgrade to 2.4 ٥L MW, FD 4 & -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -1 ND-GAr $\delta_{CP}/\pi$ $\delta_{CP}/\pi$

0

2

6

8

12

Years

10

DUNE Collaboration, 2006.16043



#### Hyper-Kamiokande

Japan. Project approved in 2020, construction begun in 2021, operation should start in 2027 > 500 collaborators, 20 countries





#### Near Detectors

J-RARC beam measure and control neutrino beam before oscillations -**30 GeV** neutrino cross sections **1.3 MW** systematics -*Existing (T2K+upgrade) ND* at 280 m from target *New ND* ~1 km from target **IWCD: Movable water** ND280 upgraded **IWCD** INGRID **Cherenkov detector** Magnetized off-axis detector Buffer tank ND280 v2.0 Control room TOP HA TPC Pit 2.5° Guide rail HATP 3D detector SuperFGD: Water tank (detector) 2x10<sup>6</sup> scintillator cubes Pit water each of 1cm<sup>3</sup> with WLS readout Neutrino on/off axis **SuperFGD** IWCD beam monitor Neutrino ~1 kt water Cherenkov detector spectra Photocesors: muli-PMT modules

Scintillator cube

WLS fibers



#### Sensitivity to CP violation

#### Projected HyperK sensitivity to CP violation



#### Measurement of $\delta_{\rm CP}$



arXiv:1805.04163

- 10 years of data taking,
- 1.3 MW beam power  $\rightarrow$  2.7x10<sup>22</sup> POT

Expected number of events at HyperK for  $v_e: \bar{v}_e = 1:3$  and  $\sin \delta_{CP} = 0$  $2300 v_e$   $1300 \bar{v}_e$ 

Exclusion of CP conservation





#### Conclusion

- Search for CP violation in lepton (neutrino) sector of SM is one of main goals of neutrino physics
- **CP asymmetries** in **neutrino mixing** at low energy and in **leptogenesis** at high energy **are linked** in some scenarios
- T2K excludes CP conservation at about  $2\sigma$  and favors near-maximal CP violation
- **NOvA:** no strong CP asymmetry observed
- **DUNE** and **Hyper-Kamiokande** aimed at the discovery of CP violation and  $\delta_{CP}$  measurement

Thank you very much for your attention