η/η' meson physics at STCF

Sergi Gonzàlez-Solís (sergig@icc.ub.edu)

USTC, Hefei (China), Jan 16, 2024

η/η' mesons

- The η and η' are special:
 - The η is a pNGB, with $m_{\eta} = 547.862$ MeV and $\Gamma_{\eta} = 1.31$ keV
 - The η' : not a pNGB due to $U(1)_A$ anomaly, $m_{\eta} = 957.78(6)$ MeV, $\Gamma_{\eta'} = 196$ keV
 - Eigenstates of the C, P, CP and G operators: $I^G J^{PC} = 0^+ 0^{-+}$
 - Flavor conserving decays \Rightarrow laboratory for symmetry tests
 - All their EM and strong decays are **suppressed** at LO $\sim \mathcal{O}(\alpha_{\rm em}^2)$ or $\mathcal{O}((m_u m_d)^2)$
 - Window to **BSM** physics \Rightarrow Dark sector physics:
 - Decays to new light dark particles are 2/-or 3-body decays that mimic 3-,4-, or 5-body final states (often very rare)
- Perfect laboratory to stress-test the SM in search for BSM physics

A decade of successful η/η' decays research at BESIII

	Decay Channel	Physics	Publication
	$\eta^\prime \to \pi^+\pi^-\pi^+\pi^-/\pi^+\pi^-\pi^0\pi^0$	First Observation - BR	PRL112, 251801 (2014)
	$\eta' \rightarrow \gamma e^+ e^-$	First Observation - BR - TFF	PRD92, 012001 (2015)
	$\eta \rightarrow \pi^+\pi^-\pi^0 \ \& \ \eta/\eta' \rightarrow \pi^0\pi^0\pi^0$	Matrix Elements	PRD92, 012014 (2015)
	$\eta' \rightarrow \omega e^+ e^-$	First Observation - BR	PRD92, 051101 (2015)
	$\eta' \rightarrow K\pi$	UL	PRD93, 072008 (2016)
	$\eta' \rightarrow \rho \pi$	First Observation - BR	PRL118, 012001 (2017)
	$\eta' \rightarrow \gamma \gamma \pi^0$	BR	PRD96, 012005 (2017)
1	$\eta' \rightarrow \gamma \pi^+ \pi^-$	BR - Box Anomaly	PRL120, 242003 (2018)
	$\eta' \rightarrow \pi^+\pi^-\eta/\pi^0\pi^0\eta$	Matrix Elements - Cusp Effect	PRD97, 012003 (2018)
	$P \rightarrow \gamma \gamma$	BRs	PRD97, 072014 (2018)
	$\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$	Dalitz Plot Analysis	PRD98, 112007 (2018)
	Absolut BR of η' decays	BRs	PRL122, 142002 (2019)
	$\eta' \rightarrow \gamma \gamma \eta$	UL	PRD100, 052015 (2019)
	$\eta' \rightarrow \pi^0 \pi^0 \pi^0 \pi^0$	UL	PRD101, 032001 (2020)

η/η' events: BESIII vs STCF

• $e^+e^- \rightarrow J/\psi$ $\sqrt{s} \sim 2-4.95$ GeV (BESIII), 2-7 GeV (STCF)

Decay mode η/η' events (BESIII) η/η' events (STCF)

- $10^{10} J/\psi \text{ (BESIII)}$
 - $3.4 \times 10^{12} \ J/\psi/\text{year (STCF)}$

 $J/\psi \to \gamma \eta'$ 5.2 × 10⁷ $J/\psi \to \gamma \eta$ 1.1 × 10⁷

• High production of η/η' in J/ψ decays

$J/\psi o \phi \eta^{\gamma}$	$2.5 \times 10^{\circ}$	2.5
$J/\psi \to \phi \eta$	4×10^{6}	1.6
VI OF, Total	of 2 v 108 m or	ad 5 × 105 m

 1.8×10^{10} 3.7×10^{9} 2.5×10^{9} 1.6×10^{9} STCF: M. Achasov, et. al. Front. Phys. 19(1), 14701 (2024)

Absolute BR of n decays

- KLOE: Total of $3 \times 10^8 \ \eta$ and $5 \times 10^5 \ \eta'$
- Future experiments:
 - JEF at JLab Hall D (approved): $6.5 \times 10^7 \eta$ and $4.9 \times 10^7 \eta'$ per 100 days
 - JEF at JLab Hall D (approved): $0.5 \times 10^{\circ} \eta$ and $4.9 \times 10^{\circ} \eta$ per 100 days — REDTOP (proposed, 2203.07651 [hep-exp]): $10^{13} \eta$ and $10^{11} \eta'$ per year

PRD104, 092004 (2021)

Rich physics program at η,η' factories

Standard Model highlights

- Theory input for light-by-light scattering for (g-2),
- Extraction of light quark masses
- QCD scalar dynamics

Fundamental symmetry tests

- P.CP violation
- C.CP violation

[Kobzarev & Okun (1964), Prentki & Veltman (1965), Lee (1965), Lee & Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors (MeV—GeV)

- Vector bosons (dark photon, B boson, X boson)
- Scalars
- Pseudoscalars (ALPs)

(Plus other channels that have not been searched for to date)

Channel	Expt. branching ratio	Discussion
$\eta \rightarrow 2\gamma$	39.41(20)%	chiral anomaly, η-η' mixing
$\eta \rightarrow 3\pi^0$	32.68(23)%	$m_u - m_d$
$\eta \to \pi^0 \gamma \gamma$	$2.56(22) \times 10^{-4}$	χ PT at $O(p^6)$, leptophobic B boson, light Higgs scalars
$\eta \rightarrow \pi^0 \pi^0 \gamma \gamma$	$< 1.2 \times 10^{-3}$	χPT, axion-like particles (ALPs)
$\eta \rightarrow 4\gamma$	$< 2.8 \times 10^{-4}$	< 10 ⁻¹¹ [52]
$\eta \to \pi^+\pi^-\pi^0$	22.92(28)%	$m_u - m_d$, C/CP violation, light Higgs scalars
$\eta \to \pi^+\pi^-\gamma$	4.22(8)%	chiral anomaly, theory input for singly-virtual TFF and $(g - 2)_{\mu}$, P/CP violation
$\eta \rightarrow \pi^{+}\pi^{-}\gamma\gamma$	$< 2.1 \times 10^{-3}$	χPT, ALPs
$\eta \to e^+ e^- \gamma$	$6.9(4) \times 10^{-3}$	theory input for $(g-2)_{\mu}$, dark photon, protophobic <i>X</i> boson
$\eta \rightarrow \mu^{+}\mu^{-}\gamma$	$3.1(4) \times 10^{-4}$	theory input for $(g-2)_{\mu}$, dark photon
$\eta \rightarrow e^+e^-$	$< 7 \times 10^{-7}$	theory input for $(g-2)_{ij}$, BSM weak decays
$\eta \to \mu^+ \mu^-$	$5.8(8) \times 10^{-6}$	theory input for $(g-2)_{\mu}$, BSM weak decays, P/CP violation
$\eta \rightarrow \pi^0 \pi^0 \ell^+ \ell^-$		C/CP violation, ALPs
$\eta \to \pi^+\pi^-e^+e^-$	$2.68(11)\times 10^{-4}$	theory input for doubly-virtual TFF and $(g-2)_{\mu}$, P/CP violation, ALPs
$\eta \to \pi^+\pi^-\mu^+\mu^-$	$< 3.6 \times 10^{-4}$	theory input for doubly-virtual TFF and $(g-2)_{\mu}$, P/CP violation, ALPs
$\eta \rightarrow e^+e^-e^+e^-$	$2.40(22) \times 10^{-5}$	theory input for $(g-2)_{\mu}$
$\eta \rightarrow e^+e^-\mu^+\mu^-$	$< 1.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$
$\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$
$\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}\gamma$	$< 5 \times 10^{-4}$	direct emission only
$\eta \to \pi^{\pm} e^{\mp} \nu_e$	$< 1.7 \times 10^{-4}$	second-class current
$\eta \rightarrow \pi^+\pi^-$	$< 4.4 \times 10^{-6}$ [53]	P/CP violation
$\eta \rightarrow 2\pi^0$	$< 3.5 \times 10^{-4}$	P/CP violation Gan, Kubis, Passemar, S7
$\eta \to 4\pi^0$	$< 6.9 \times 10^{-7}$	P/CP violation (2020)

Rich physics program at η, η' factories

Standard Model highlights

- Theory input for light-by-light scattering for (g-2) $_{\mu}$
- Extraction of light quark masses
- QCD scalar dynamics

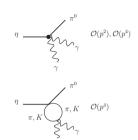
Fundamental symmetry tests

- P,CP violation
- C,CP violation

[Kobzarev & Okun (1964), Prentki & Veltman (1965), Lee (1965), Lee & Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors (MeV—GeV)

- Vector bosons (dark photon, B boson, X boson)
- Scalars
- Pseudoscalars (ALPs)


(Plus other channels that have not been searched for to date)

	Channel	Expt. branching ratio	Discussion	
	$\eta \rightarrow 2\gamma$	39.41(20)%	chiral anomaly, η-η' mixing	
	$\eta \rightarrow 3\pi^0$	32.68(23)%	$m_u - m_d$	
I	$\eta \to \pi^0 \gamma \gamma$	$2.56(22) \times 10^{-4}$	χ PT at $O(p^6)$, leptophobic B boson, light Higgs scalars	
Γ	$\eta \rightarrow \pi^0 \pi^0 \gamma \gamma$	$< 1.2 \times 10^{-3}$	χ PT, axion-like parti	icles (ALPs)
-	$\eta \rightarrow 4\gamma$	$< 2.8 \times 10^{-4}$	< 10 ⁻¹¹ [52]	
	$\eta \to \pi^+\pi^-\pi^0$	22.92(28)%	$m_u - m_d$, C/CP violation, light Higgs scalars	
ı	$\eta \to \pi^+\pi^-\gamma$	4.22(8)%	chiral anomaly, theory input for singly-virtual TF and $(g-2)_{ij}$, P/CP violation	
Г	$\eta \rightarrow \pi^+\pi^-\gamma\gamma$	$< 2.1 \times 10^{-3}$	χPT, ALPs	
Ī	$\eta \to e^+ e^- \gamma$	$6.9(4) \times 10^{-3}$	theory input for (g –	$(2)_{\mu}$, votophobic X boson
	$\eta \rightarrow \mu^{+}\mu^{-}\gamma$	$3.1(4) \times 10^{-4}$	theory input for (g -	
	$\eta \rightarrow e^+e^-$	$< 7 \times 10^{-7}$	theory input for $(g-2)_{\mu}$, BSM weak decays	
	$\eta \to \mu^+ \mu^-$	$5.8(8) \times 10^{-6}$	theory input for $(g-2)_{\mu}$, BSM weak decays, P/CP violation	
Г	$\eta \rightarrow \pi^0 \pi^0 \ell^+ \ell^-$		C/CP violation, ALPs	
١	$\eta \to \pi^+\pi^-e^+e^-$	$2.68(11) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g-2)_{\mu}$, P/CP violation, ALPs	
ı	$\eta \to \pi^+\pi^-\mu^+\mu^-$	$< 3.6 \times 10^{-4}$	theory input for doubly-virtual TFF and $(g-2)_{\mu}$, P/CP violation, ALPs	
ı	$\eta \rightarrow e^+e^-e^+e^-$	$2.40(22) \times 10^{-5}$	theory input for $(g-2)_{ij}$	
	$\eta \rightarrow e^+e^-\mu^+\mu^-$	$< 1.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$	
	$\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$	
	$\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}\gamma$	$< 5 \times 10^{-4}$	direct emission only	
	$\eta \to \pi^{\pm} e^{\mp} \nu_e$	$< 1.7 \times 10^{-4}$	second-class current	
	$\eta \rightarrow \pi^+\pi^-$	$< 4.4 \times 10^{-6}$ [53]	P/CP violation	
	$\eta \rightarrow 2\pi^0$	$< 3.5 \times 10^{-4}$	P/CP violation	Gan, Kubis, Passemar, ST
	$\eta \to 4\pi^0$	$< 6.9 \times 10^{-7}$	P/CP violation	(2020)

$\eta \to \pi^0 \gamma \gamma$ decays: Theoretical motivation

• SM motivation:

Reference	$\Gamma(\eta \to \pi^0 \gamma \gamma) \text{ [eV]}$
$\mathcal{O}(p^2), \mathcal{O}(p^4)$ tree-level χPT	0
$\pi + K$ loops at $\mathcal{O}(p^4)$	1.87×10^{-3}
Experimental value (pdg)	0.34(3)
Experimental value (pdg)	0.34(3)

- 1^{st} sizable contribution comes at $\mathcal{O}(p^6)$, but LEC's are not well known
- To test ChPT and a wide range of chiral models, e. g. VMD and $L\sigma M$

• BSM motivation: search for a B boson via $\eta \to B\gamma \to \pi^0 \gamma \gamma$

Vector meson exchange contributions

• Six diagrams corresponding to the exchange of $V = \rho^0, \omega, \phi$

$$\eta(P) = \sum_{\substack{q \in \mathcal{V} \\ gV_{\eta\gamma} \ g_{V\pi^0\gamma}}} \gamma(\epsilon_1, q_1) \gamma(\epsilon_2, q_2) \\ \mathcal{A}_{\eta \to \pi^0 \gamma\gamma}^{\text{VMD}} = \sum_{V = \rho^0, \omega, \phi} g_{V\eta\gamma} g_{V\pi^0\gamma} \left[\frac{(P \cdot q_2 - m_{\eta}^2)\{a\} - \{b\}}{D_V(t)} + \left\{ \begin{array}{c} q_2 \leftrightarrow q_1 \\ t \leftrightarrow u \end{array} \right\} \right] ,$$

• Mandelstam variables and Lorentz structures given by:

$$t, u = (P - q_{2,1})^2 = m_{\eta}^2 - 2P \cdot q_{2,1} ,$$

$$\{a\} = (\epsilon_1 \cdot \epsilon_2)(q_1 \cdot q_2) - (\epsilon_1 \cdot q_2)(\epsilon_2 \cdot q_1) ,$$

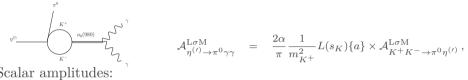
$$\{b\} = (\epsilon_1 \cdot q_2)(\epsilon_2 \cdot P)(P \cdot q_1) + (\epsilon_2 \cdot q_1)(\epsilon_1 \cdot P)(P \cdot q_2)$$

$$- (\epsilon_1 \cdot \epsilon_2)(P \cdot q_1)(P \cdot q_2) - (\epsilon_1 \cdot P)(\epsilon_2 \cdot P)(q_1 \cdot q_2)$$

• The decays $\eta' \to \{\pi^0, \eta\} \gamma \gamma$ are formally identical: $g_{V\eta\gamma}g_{V\pi^0\gamma} \to g_{V\eta'\gamma}g_{V\{\pi^0,\eta\}\gamma}$

$\eta \to \pi^0 \gamma \gamma$ decays: VMD calculation

• Six diagrams corresponding to the exchange of $V = \rho^0, \omega, \phi$


$$\eta(P) = \sum_{\substack{Q \in \mathcal{V} \\ Q \in \mathcal{V} \\ Q \in \mathcal{V}}} \gamma(\epsilon_1, q_1) \gamma(\epsilon_2, q_2) \\ \mathcal{A}_{\eta \to \pi^0 \gamma \gamma}^{\text{VMD}} = \sum_{V = \rho^0, \omega, \phi} g_{V \eta \gamma} g_{V \pi^0 \gamma} \left[\frac{(P \cdot q_2 - m_{\eta}^2) \{a\} - \{b\}}{D_V(t)} + \left\{ \begin{array}{c} q_2 \leftrightarrow q_1 \\ t \leftrightarrow u \end{array} \right\} \right] ,$$

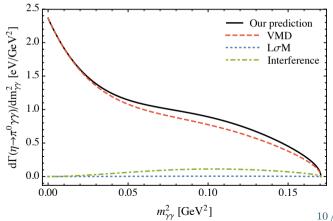
• $g_{V p \gamma}$ couplings: $\Gamma_{V \to P \gamma}^{\exp} = \frac{1}{3} \frac{g_{V P \gamma}^2}{32\pi} \left(\frac{m_V^2 - m_P^2}{m_V} \right)^3$, $\Gamma_{P \to V \gamma}^{\exp} = \frac{g_{V P \gamma}^2}{32\pi} \left(\frac{m_P^2 - m_V^2}{m_P} \right)^3$,

Decay	Branching ratio (pdg)	$ g_{VP\gamma} \text{ GeV}^{-1}$
$ ho^0 o \pi^0 \gamma$	$(4.7 \pm 0.6) \times 10^{-4}$	0.22(1)
$\rho^0 \to \eta \gamma$	$(3.00 \pm 0.21) \times 10^{-4}$	0.48(2)
$\eta' o ho^0 \gamma$	$(28.9 \pm 0.5)\%$	0.40(1)
$\omega o \pi^0 \gamma$	$(8.40 \pm 0.22)\%$	0.70(1)
$\omega \to \eta \gamma$	$(4.5 \pm 0.4) \times 10^{-4}$	0.135(6)
$\eta' \to \omega \gamma$	$(2.62 \pm 0.13)\%$	0.127(4)
$\phi o \pi^0 \gamma$	$(1.30 \pm 0.05) \times 10^{-3}$	0.041(1)
$\phi \to \eta \gamma$	$(1.303 \pm 0.025)\%$	0.2093(20)
$\phi \to \eta' \gamma$	$(6.22 \pm 0.21) \times 10^{-5}$	0.216(4)

$L\sigma M$ for the scalar resonance contributions

• χ PT loops complemented by the exchange of scalar resonances, $a_0(980), \kappa, \sigma, f_0(980), \text{ e.g.}$:

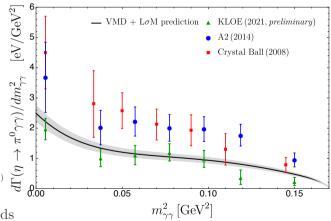
• Scalar amplitudes:


$$\mathcal{A}_{K^{+}K^{-} \to \pi^{0} \eta^{(\prime)}}^{\text{L}\sigma\text{M}} = \frac{1}{2f_{\pi}f_{K}} \left\{ (s - m_{\eta^{(\prime)}}^{2}) \frac{m_{K}^{2} - m_{a_{0}}^{2}}{D_{a_{0}}(s)} \cos \varphi_{P} + \frac{1}{6} \left[(5m_{\eta^{(\prime)}}^{2} + m_{\pi}^{2} - 3s) \cos \varphi_{P} - \sqrt{2}(m_{\eta^{(\prime)}}^{2} + 4m_{K}^{2} + m_{\pi}^{2} - 3s) \sin \varphi_{P} \right] \right\},$$

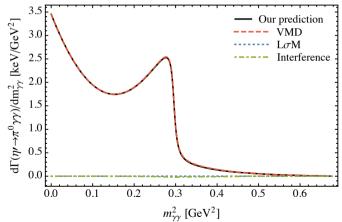
Complete one-loop propagator for the scalar resonances:

$$D_R(s) = s - m_R^2 + \text{Re}\Pi(s) - \text{Re}\Pi(m_R^2) + i\text{Im}\Pi(s) ,$$

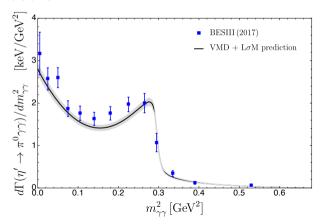
$\eta \to \pi^0 \gamma \gamma$ predictions


- Our theoretical prediction $BR = 1.35(8) \times 10^{-4}$ (Escribano, SGS, Jora, Royo, Phys.Rev.D 102, 034026 (2020))
 - VMD dominates:
 - ρ : 27% of the signal
 - ω : 21% of the signal
 - ϕ : 0% of the signal
 - interference between ρ - ω - ϕ : 52%
 - interference between scalar and vector mesons: 7%

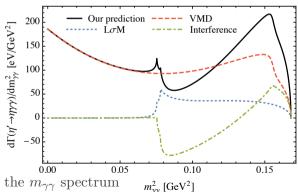
$\eta \to \pi^0 \gamma \gamma$ predictions


- Our theoretical prediction $BR = 1.35(8) \times 10^{-4}$ (Escribano, SGS, Jora, Royo, Phys.Rev.D 102, 034026 (2020))
- $BR_{\text{exp}} = 2.55(22) \times 10^{-4} \text{ (pdg)}$
- Comparison with data
 - Shape of the A2 and Crystal Ball spectra is captured well (normalization offset)
 - Good agreement with (preliminary) KLOE data
 - KLOE data (B. Cao, Pos EPS-HEP2021 (2022) 409)

• The experimental situation needs to be clarified (A2, BESIII, JEF, REDTOP, SCTF)


$\eta' \to \pi^0 \gamma \gamma$ predictions

- Our theoretical prediction $BR=2.91(21)\times 10^{-3}$ (Escribano, SGS, Jora, Royo, Phys.Rev.D 102, 034026 (2020))
 - VMD completely dominates:
 - ω : 78% of the signal
 - ρ : 5% of the signal
 - ϕ : 0% of the signal
 - interference: 17%


$\eta' \to \pi^0 \gamma \gamma$ predictions

- Our theoretical prediction $BR = 2.91(21) \times 10^{-3}$ (Phys.Rev.D 102, 034026 (2020))
- First time $m_{\gamma\gamma}$ invariant mass distribution by BESIII; $BR = 3.20(7)(23) \times 10^{-3}$ (Ablikim et. al. Phys.Rev.D 96, 012005 (2017))

$\eta' \to \eta \gamma \gamma$ predictions

- 1^{st} BR measurement by BESIII, $BR = 8.25(3.41)(0.72) \times 10^{-5}$ or $BR < 1.33 \times 10^{-4}$ at 90% C.L. (Ablikim *et. al.* Phys.Rev.D 100, 052015 (2019))
- Our theoretical predictions $BR = 1.17(8) \times 10^{-4}$ (R. Escribano, S. G-S, R. Jora, E. Royo, Phys.Rev.D 102, 034026 (2020))
 - VMD predominates (91% of the signal)
 - Substantial scalar meson effects (16%)
 - Interference between scalar and vector mesons (7%)

• We look forward to the release of the $m_{\gamma\gamma}$ spectrum

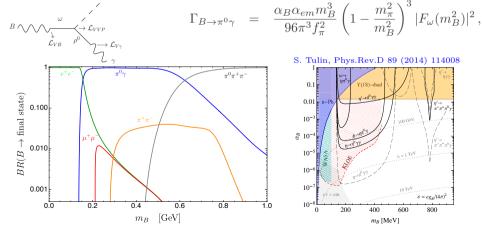
14/30

Leptophobic B boson model

• New boson arising from a new $U(1)_B$ gauge symmetry

$$\mathcal{L}_{\rm int} = \left(\frac{1}{3}g_B + \varepsilon Q_q e\right) \bar{q}\gamma^{\mu}qB_{\mu} - \varepsilon e\bar{\ell}\gamma^{\mu}\ell B_{\mu},$$

- Couples (predominantly) to quarks
- g_B new gauge (universal?) coupling, $\alpha_B = g_B^2/4\pi$
- Preserves QCD symmetries (C, P, T)
- B is a singlet under isospin:


$$I^G(J^{PC}) = 0^-(1^{--}) \Rightarrow B \text{ is } \omega \text{ meson like}$$

- $-\varepsilon = eg_B/(4\pi)^2$: (subleading) γ -like coupling to fermions
- Searches depend on the mass m_B and decay channels
- Searches on meson decays are gaining attention
 - $\phi\to\eta B\to\eta\pi^0\gamma$ (KLOE-II), $\eta\to\pi^0\gamma\gamma$ (JEF), $\eta\to\pi^+\pi^-\gamma$ (Belle-II)

Calculation of hadronic processes and limits

• Following the conventional VMD picture, $\mathcal{L}_{V\gamma} \to \mathcal{L}_{VB}$

$$-A^{\mu} \to B^{\mu}$$
, $e \to g_B$ and $Q = 1/3$, $\mathcal{L}_{VB} = -2\frac{1}{2}g_B g f_{\pi}^2 B^{\mu} \text{tr} [V^{\mu}]$,

m_R [MeV]

800

200

$\eta \to \pi^0 \gamma \gamma$ decays: B boson calculation

• Two diagrams corresponding to the exchange of a B boson

$$\mathcal{A}^{B \text{ boson}}_{\eta \to \pi^0 \gamma \gamma} = g_{B \eta \gamma}(t) g_{B \pi^0 \gamma}(t) \left[\frac{(P \cdot q_2 - m_{\eta}^2) \{a\} - \{b\}}{m_B^2 - t - i \sqrt{t} \Gamma_B(t)} + \left\{ \begin{array}{c} q_2 \leftrightarrow q_1 \\ t \leftrightarrow u \end{array} \right\} \right] ,$$

• $g_{BP\gamma}$ couplings:

$$g_{B\pi^0\gamma}(t) = \frac{\sqrt{2}eg_B}{4\pi^2f_-}F_\omega(t)\,, \quad g_{B\eta\gamma}(t) = \frac{eg_B}{12\pi^2f_-}\frac{1}{\sqrt{3}}\left[(c_\theta-\sqrt{2}s_\theta)F_\omega(t) + (2c_\theta+\sqrt{2}s_\theta)F_\phi(t)\right],$$

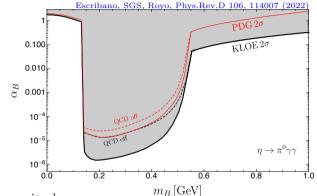
• Energy-dependent width

$$\Gamma_{B}(q^{2}) = \frac{\gamma_{B \to \ell + \ell -}(q^{2})}{\gamma_{B \to \ell + \ell -}(m_{B}^{2})} \Gamma_{B \to \ell + \ell -}\theta(q^{2} - 4m_{\ell}^{2})
+ \frac{\gamma_{B \to \pi^{0}\gamma}(q^{2})}{\gamma_{B \to \pi^{0}\gamma}(m_{B}^{2})} \Gamma_{B \to \pi^{0}\gamma}\theta(q^{2} - m_{\pi^{0}}^{2})
+ \frac{\gamma_{B \to \pi\pi}(q^{2})}{\gamma_{B \to \pi\pi}(m_{B}^{2})} \Gamma_{B \to \pi\pi}\theta(q^{2} - 4m_{\pi}^{2})
+ \frac{\gamma_{B \to 3\pi}(q^{2})}{\gamma_{B \to 3\pi}(m_{B}^{2})} \Gamma_{B \to 3\pi}\theta(q^{2} - 9m_{\pi}^{2})$$

$$\frac{\sum_{B \to \pi^{0}} 001}{\sum_{B \to \pi^{0}} 10^{4}} \frac{10^{4}}{10^{4}} \frac{10^{4}}{10^{4$$

 m_B [GeV]

17/30

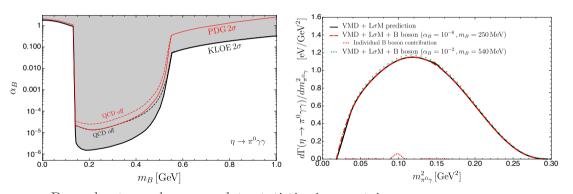

New limits on α_B and m_B

- Not assuming the NWA
- QCD contribution on
- $BR_{\text{VMD+Bboson}} < BR_{\text{exp}}$ at 2σ

$$-BR(\eta \to \pi^0 \gamma \gamma)_{\rm exp}^{\rm pdg} = 2.56(22) \times 10^{-4}$$

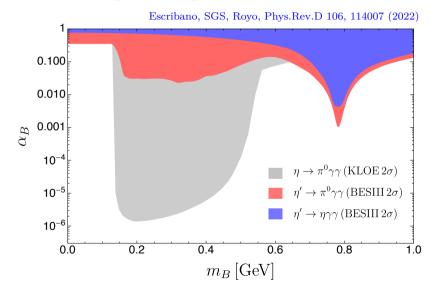
-
$$BR(\eta \to \pi^0 \gamma \gamma)_{\text{exp}}^{\text{KLOE}} = 1.23(14) \times 10^{-4}$$

B. Cao [KLOE], PoS EPS-HEP2021 (2022) 409

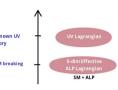


• Limits **strengthened** by one order of magnitude

$\pi^0 \gamma$ mass distribution


• These constraints would make a B boson signature suppressed

$$\Gamma(\eta \to \pi^0 \gamma \gamma) \propto \int \frac{\alpha_B^2 dt}{|\mathcal{D}_B(t)|^2} \to \frac{\alpha_B^2 \pi}{m_B \Gamma_B(m_B^2)}$$
.


- Bump-hunt search: accumulate statistics in a certain energy range
- Experimental $\pi^0 \gamma$ distribution will be very welcome (JEF?)

New limits on α_B and m_B

Axion-Like Particles (ALPs)

- Pseudo-Goldstone bosons from global symmetry breaking
- Example: QCD axion (Peccei-Quinn) \rightarrow solution of the CP problem, potential dark matter candidate. QCD axion mass: $m_a^2 \propto \frac{1}{f_a^2}$.

• "Yukawa basis" (at GeV scale): ALP with gluon and mass couplings

$$\mathcal{L}_{\mathrm{ALP}} = \mathcal{L}_{\mathrm{QCD}} + \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{1}{2} \underline{M_{a}^{2}} a^{2} - Q_{G} \frac{\alpha_{s}}{8\pi} \frac{a}{f_{a}} G_{\mu\nu} \tilde{G}^{\mu\nu} + \sum_{q=u,d,s} m_{q} \bar{q} \left(e^{iQ_{q} \frac{a}{f_{a}} \gamma_{5}} \right) q ,$$

 M_a^2 : PQ contribution to the mass, f_a : axion decay constant, $Q_{q,G}$: PQ charges

- Equivalent to the "usual" derivative basis (related via chiral rotations of the quarks) if weak interactions are neglected
- The heavy-flavor c, b, t quarks contributions are absorbed in $Q_G \to Q_G + Q_{t,b,c}$

Lagrangian for ALPs coupled to mesons

• Step 1: map \mathcal{L}_{ALP} into γPT at leading order

$$\mathcal{L}_{\text{ALP}}^{\text{XPT@LO}} = \frac{f_{\pi}^2}{4} \text{Tr} \left[\partial_{\mu} U^{\dagger} \partial^{\mu} U \right] + \frac{f_{\pi}^2}{4} \left[2B_0 (M_q(a)U + M_q(a)^{\dagger} U^{\dagger}) \right] - \frac{1}{2} m_0^2 \left(\eta_0 - \frac{Q_G}{\sqrt{6}} \frac{f_{\pi}}{f_a} a \right)^2 + \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} \frac{M_a^2}{a^2} a^2 \right)$$

$$M_a(a) = \operatorname{diag}(m_u e^{iQ_u a/f_a}, m_d e^{iQ_d a/f_a}, m_s e^{iQ_s a/f_a}),$$

$$U = \exp\left(\frac{i\sqrt{2}\Phi}{f}\right), \quad \Phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi_3 + \frac{1}{\sqrt{6}}\eta_8 + \frac{1}{\sqrt{3}}\eta_0 & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}}\pi_3 + \frac{1}{\sqrt{6}}\eta_8 + \frac{1}{\sqrt{3}}\eta_0 & K^0 \\ K^- & K^0 & -\frac{2}{\sqrt{6}}\eta_8 + \frac{1}{\sqrt{6}}\eta_0 \end{pmatrix}.$$

• Step 2: diagonalization of the mass matrix \Rightarrow mixing angles $\theta_{\pi_3 a}$, $\theta_{\eta_8 a}$, $\theta_{\eta_9 a}$

$$\widetilde{M}^2 = \begin{pmatrix} m_{\pi_3}^2 & m_{\pi_3\eta_8}^2 & m_{\pi\eta_0}^2 & m_{\pi_3a}^2 \\ & m_{\eta_8}^2 & m_{\eta_8\eta_0}^2 & m_{\eta_8a}^2 \\ & & m_{\eta_0}^2 & m_{\eta_0a}^2 \end{pmatrix} ,$$

$\eta/\eta' \to \pi\pi a$ decay amplitudes at LO

• Step 3: re-express $\mathcal{L}_{ALP}^{\chi PT@LO}$ in terms of the physical states

$$\pi_3 \to \pi_3 + \theta_{\pi_3 a} a^{\text{phys}}, \quad \eta_8 \to \cos \theta \eta + \sin \theta \eta' + \theta_{\eta_8 a} a^{\text{phys}}, \quad \eta_0 \to -\sin \theta \eta + \cos \theta \eta' + \theta_{\eta_0 a} a^{\text{phys}},$$

• Physical ALP mass: $m_{a_{\text{phys}}}^2 = \frac{(Q_u + Q_d + Q_s + Q_G)^2 B_0 m_u m_d m_s}{\left(m_u m_d + m_u m_s + m_d m_s + \frac{6 B_0 m_u m_d m_s}{m_0^2}\right)} \frac{f_a^2}{f_a^2} + M_a^2$,

$$\mathcal{A}(\eta \to 2\pi^{0}a)|_{\text{LO}} = 2! \frac{m_{\pi}^{2}}{f_{\pi}^{2}} \left(\cos\theta - \sqrt{2}\sin\theta\right) \left[\frac{f_{\pi}}{2\sqrt{3}f_{a}} \frac{Q_{u}m_{u} + Q_{d}m_{d}}{m_{u} + m_{d}} - \frac{1}{2\sqrt{3}} \frac{m_{d} - m_{u}}{m_{u} + m_{d}} \theta_{\pi_{3}a} + \frac{1}{6} \theta_{\eta_{8}a} + \frac{\sqrt{2}}{6} \theta_{\eta_{0}a} \right],$$

$$\mathcal{A}(\eta \to \pi^+ \pi^- a)|_{\text{LO}} = \frac{m_\pi^2}{f_\pi^2} \left(\cos \theta - \sqrt{2} \sin \theta \right) \left[\frac{f_\pi}{\sqrt{3} f_a} \frac{Q_u m_u + Q_d m_d}{m_u + m_d} - \frac{1}{3\sqrt{3}} \frac{m_d - m_u}{m_u + m_d} \theta_{\pi_3 a} + \frac{1}{3} \theta_{\eta_8 a} + \frac{\sqrt{2}}{3} \theta_{\eta_0 a} \right],$$

$$f_{\pi}^{2} \left(\sqrt{3}f_{a} - m_{u} + m_{d} - 3\sqrt{3}m_{u} + m_{d}^{-1} 3\sqrt{3}m_{u} + m_{d}^{-1} 3\sqrt{3}m_{u}^{-1} + m_{d}^{-1} 3\sqrt{3}m_{u}^{-$$

$$\mathcal{A}(\eta' \to \pi^{+}\pi^{-}a)|_{\text{LO}} = \frac{m_{\pi}^{2}}{f_{\pi}^{2}} \left(\sqrt{2}\cos\theta + \sin\theta\right) \left[\frac{f_{\pi}}{\sqrt{3}f_{a}} \frac{Q_{u}m_{u} + Q_{d}m_{d}}{m_{u} + m_{d}} - \frac{1}{3\sqrt{3}} \frac{m_{d} - m_{u}}{m_{u} + m_{d}} \langle \pi^{0}a \rangle + \frac{1}{3} \frac{\theta_{\eta_{8}a}}{\eta_{8}a} + \frac{\sqrt{2}}{3} \frac{\theta_{\eta_{0}a}}{23/30} \right],$$

Effects of pion-pion final-state interactions (FSI)

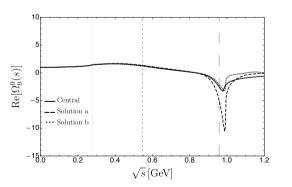
• Unitarity:

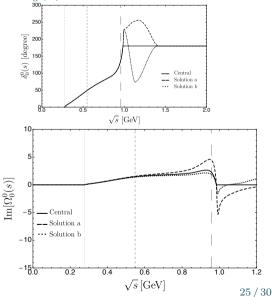
$$\operatorname{disc} \left[\eta^{(\prime)} \right] = \eta^{(\prime)}$$

$$\operatorname{disc} \mathcal{A}(s) = 2i\mathcal{A}(s)\sigma_{\pi}(s)T_0^{0*}(s) = 2i\mathcal{A}(s)\sin \delta_0^0(s)e^{-i\delta_0^0(s)},$$

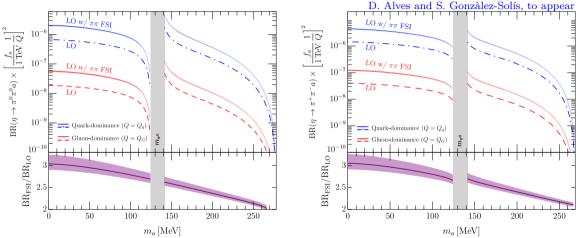
$$\mathcal{A}(s) = \frac{1}{2i\pi} \int_{4M^2}^{\infty} ds' \frac{\operatorname{disc}\mathcal{A}(s')}{s' - s - i\varepsilon},$$

• Analytic solution:

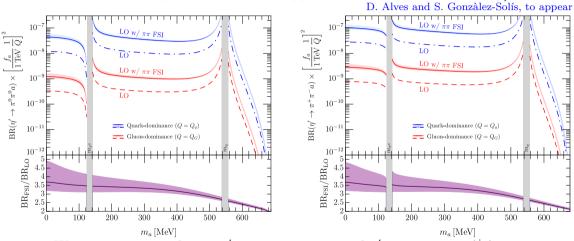

$$\mathcal{A}(s) = \mathcal{A}(\eta \to 2\pi a)|_{\text{LO}} \times \Omega_0^0(s) , \quad \Omega_0^0(s) = \exp\left\{\frac{s}{\pi} \int_{4M_\pi^2}^{\infty} ds' \frac{\delta_0^0(s')}{s'(s'-s-i\varepsilon)}\right\},$$


• Diagrammatic interpretation:

Solution of the Omnès function $\Omega_0^0(s)$


$$\Omega_0^0(s) = \exp\left\{\frac{s}{\pi} \int_{4M_\pi^2}^{\infty} ds' \frac{\delta_0^0(s')}{s'(s'-s-i\varepsilon)}\right\},\,$$

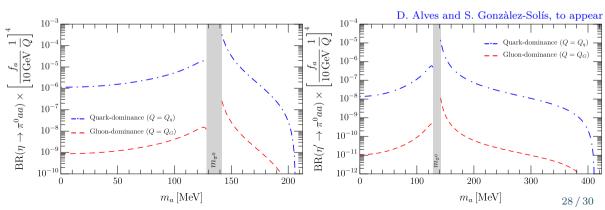
Branching ratio predictions for $\eta \to \pi\pi a$


• Two scenarios: Quark-dominance $Q_G = 0$ or Gluon-dominance $Q_q = 0$

• We encourage searches in $\eta \to \pi\pi a \to \pi\pi\gamma\gamma$ and $\eta \to \pi\pi a \to \pi\pi\ell^+\ell^-$ (BESIII, KLOE, CMS, JEF, REDTOP)

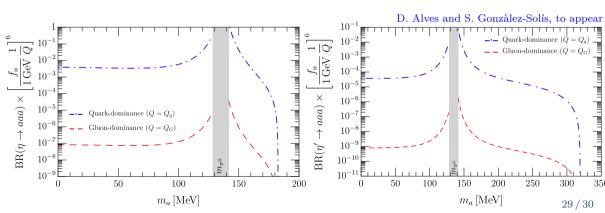
Branching ratio predictions for $\eta' \to \pi \pi a$

• Two scenarios: Quark-dominance $Q_G = 0$ or Gluon-dominance $Q_q = 0$

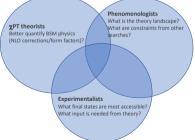


• We encourage searches in $\eta' \to \pi\pi a \to \pi\pi\gamma\gamma$ and $\eta' \to \pi\pi a \to \pi\pi\ell^+\ell^-$ (BESIII, KLOE, CMS, JEF, REDTOP)

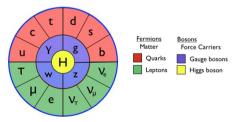
27/30


Double production of ALPs in η/η' decays

- $\eta/\eta' \to \pi^0 aa$ decays
- One extra power of $1/f_a$ suppression, BR $\sim \mathcal{O}(1/f_a^4)$
- $f_a \sim \mathcal{O}(1-10)$ GeV to be sensitive probes of ALPs

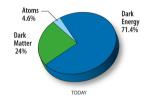

Triple production of ALPs in η/η' decays

- $\eta/\eta' \to aaa$ decays
- BR $\sim \mathcal{O}(1/f_a^6)$
- $f_a \sim \mathcal{O}(1)$ GeV to be sensitive probes of ALPs


Conclusions

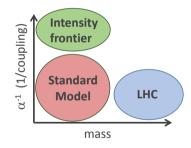
- Exploring dark sectors is an important and growing element of BSM physics
- A wealth of exciting ongoing/future **experiments** to search for dark sector particle signatures exist/planned
- η/η' mesons are an interesting place to look for dark particles because probe coupling to light quarks and gluons
- BSM searches in parallel with SM η/η' decay studies
- Progress on this front requires collaboration!

The Standard Model


- Matter particles (quarks and leptons) in three families and mediator particles (bosons) of three interactions: electromagnetic, strong and weak
- Provides a consistent **description** of Nature's fundamental constituents and their interactions
- Predictions tested and confirmed by numerous experiments
- Experimental completion in 2012 (Higgs discovery)

Particles of the Standard Model

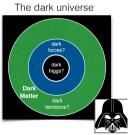
Beyond the Standard Model


- However, the SM **fails** to explain several observed phenomena in particle physics, astrophysics and cosmology:
 - **Dark matter**: what is the most prevalent kind of matter in our Universe?
 - **Dark Energy**: what drives the accelerated expansion of the Universe?

- Neutrino masses and oscillations: why do neutrinos have mass? what makes neutrinos disappear and then re-appear in a different form?
- **Baryon asymmetry** of the Universe: what mechanism created the tiny matter-antimatter imbalance in the early Universe?
- Several anomalies in data: $(g-2)_{\mu}$, B-physics anomalies, KOTO anomaly $(K_L \to \pi^0 \nu \bar{\nu})$, ⁸Be excited decay, ...

Energy and Intensity Frontier Research

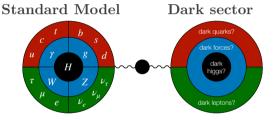

- New Physics would be needed to explain observed phenomena
- Why have **not** new particles yet been observed?
 - Hypothetical new particles are heavy and require even higher collision energy to be observed ⇒ Energy Frontier research (LHC@CERN, Tevatron@FermiLab)
 - Another possibility is that our inability to observe new particles lies not in their heavy mass, but rather in their extremely feeble interactions ⇒ Intensity Frontier research



• We don't know in which **direction** BSM physics might be

Dark sector physics

- Why a dark sector?
 - Many open problem in particle physics, e.g. dark matter, neutrino mass generation or anomalies in data, let us think about dark particles
- What is a dark sector particle?
 - Any particle that does not interact through the SM forces (not charged under the SM symmetries)



• We live in the SM world, how can we access (and test) the dark sector?

Dark sector portals to the Standard Model

We live in the Standard Model world, how can we access/test the dark sector?

 \Rightarrow Portal interactions with the SM, only a few are allowed by the SM symmetries

Mediators	Portal interactions
Dark photon	$\epsilon B^{\mu\nu} A'_{\mu\nu}$
Dark scalar	$\kappa H ^2 S ^2$
Sterile Neutrino	yHLN
Axion	$\frac{a}{f_a}\tilde{G}_{\mu\nu}G^{\mu\nu}$
	Dark photon Dark scalar Sterile Neutrino

A broad program of searches of dark particles

• Vigorous effort of the community proposing **new** experiments & measurements

Energy frontier

LHC

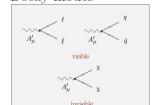
Novel search strategies are needed!

Flavor-factories

High-luminosity e^+e^- colliders

Unique access to dark sectors!

Other ongoing/future experiments



• Plenty of dark particles can be produced from **meson decays!!**

Production modes

Decay modes

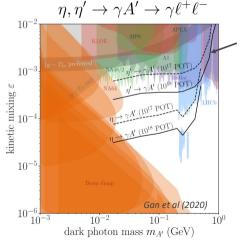
Large η/η' samples at future facilities

• Previous experiments:

Experiment	Total η	Total η'
CB at AGS	10 ⁷	-
CB MAMI-B	2x10 ⁷	-
CB MAMI-C	6x10 ⁷	10 ⁶
WASA-COSY	~3x10 ⁷ (p+d), ~5x10 ⁸ (p+p)	-
KLOE-II	3x10 ⁸	5x10 ⁵
BESIII	~10 ⁷	~5x10 ⁷

- Upcoming experiments:
 - Jefferson Lab Eta Factory Experiment (JEF) at JLab Hall D (approved)
 - $\circ~6.5\times10^7~\eta$ and $4.9\times10^7~\eta^\prime$ per 100 days
 - Rare Eta Decays with at TPC for Optical Photons (REDTOP) possibly at Fermilab/GSI (proposed)
 - \circ 10¹³ η and 10¹¹ η' per year

Selected η/η' decays


BSM particle	Decay mode	Signal channel	Search strategy
Dark photon (A')	$\eta/\eta' \to \gamma^{(*)}A'$	$A' \to \ell^+ \ell^-$	Bump-hunt in $d\Gamma/dm_{\ell\ell}$
		$A' \to \pi^+\pi^-$	Bump-hunt in $d\Gamma/dm_{\pi\pi}$
Leptophobic boson (B)	$\eta \to \gamma B$	$B o \gamma \pi^0$	Enhancement in $m_{\pi^0\gamma}$
		$B \to \pi^+\pi^-$	Isospin suppressed
	$\eta' \to \gamma B$	$B \to \gamma \pi^0, \pi^+ \pi^-, \pi^+ \pi^- \pi^0, \gamma \eta$	Enhancement in $m_{\pi^0\gamma}$
ALPs (a)	$\eta \to \pi\pi a$	$a \to \gamma \gamma, \ell^+ \ell^- \ (\ell = e, \mu)$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma}$
	$\eta' \to \pi \pi a$	$a \to \gamma \gamma, \ell^+ \ell^-, \pi^+ \pi^- \gamma, 3\pi$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma}$
	$\eta^{(\prime)} \to \ell^+ \ell^-$		$\eta^{(\prime)}$ -a mixing
Scalar boson (S)	$\eta/\eta' \to \pi^0 S$	$S \to \gamma \gamma, \ell^+ \ell^-, \pi \pi$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma}$
	$\eta' \to \eta S$	$S \to \gamma \gamma, \ell^+ \ell^-, \pi \pi$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma}$

Other meson decays

BSM particle	Decay mode	Signal channel	Search strategy
ALPs (a)	$K^{\pm} \to \pi^{\pm} a$	$a \to \gamma \gamma, \ell^+ \ell^- \ (\ell = e, \mu)$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma,\ell\ell}$
	$K^{\pm} \to \pi^{\pm} \pi^0 a$	$a \to \gamma \gamma, \ell^+ \ell^- \ (\ell = e, \mu)$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma,\ell,\ell}$
	$K_L \to \pi^0 a$	$a \to \gamma \gamma, \ell^+ \ell^- \ (\ell = e, \mu)$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma,\ell\ell}$
	$K_L \to \pi^0 \pi^0 a$	$a \to \gamma \gamma, \ell^+ \ell^- \ (\ell = e, \mu)$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma,\ell\ell}$
	$K_L \to \pi^+\pi^- a$	$a \to \gamma \gamma, \ell^+ \ell^- \ (\ell = e, \mu)$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma,\ell\ell}$
	$B^{\pm} \to \pi^{\pm} a$	$a \to \ell^+\ell^-, 3\pi, \eta\pi\pi, KK\pi$	Higher ALP masses
	$B^{\pm} \to K^{\pm} a$	$a \to \ell^+ \ell^-, 3\pi, \eta \pi \pi, KK\pi$	Higher ALP masses
	$B \to K^* a$	$a \to \ell^+\ell^-, 3\pi, \eta\pi\pi, KK\pi$	Higher ALP masses
	$\omega/\phi/J/\psi \to \pi^0\pi^0a$	$a \to \gamma \gamma, \ell^+ \ell^- \ (\ell = e, \mu)$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma,\ell\ell}$
	$\omega/\phi/J/\psi \to \pi^0\pi^0a$	$a \to \pi^+\pi^-\gamma, 3\pi$	
Dark photon (A')	$\pi^0 \to \gamma A'$	$A' \rightarrow e^+e^-$	e^+e^- resonance
	$\pi^0 o \gamma^* A'$	$\gamma^* \rightarrow e^+e^-, A' \rightarrow e^+e^-$	e^+e^- resonance
	$\omega/\phi/J/\psi \to \pi^0 A'$	$A' \to \ell^+ \ell^- \ (\ell = e, \mu)$	$\ell^+\ell^-$ resonance
	$\omega/\phi/J/\psi o \pi^0 A'$	$A' o \pi^+\pi^-$	$\pi^+\pi^-$ resonance
Leptophobic boson (B)	$\omega/\phi \to \eta B$	$B \to \gamma \pi^0$	Enhancement in $m_{\pi^0\gamma}$

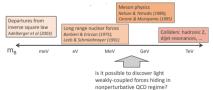
Dark photon searches

- Broad worldwide effort to search for dark photons (A')
- Most searches are for A' coupling to leptons, i.e. in $A' \to \ell^+\ell^-$ ($\ell = e, \mu$)

REDTOP sensitivities projected for FNAL/BNL (10¹⁸) or CERN (10¹⁷) POT Gatto (2019)

Many other experiments targeting same dark photon parameter space

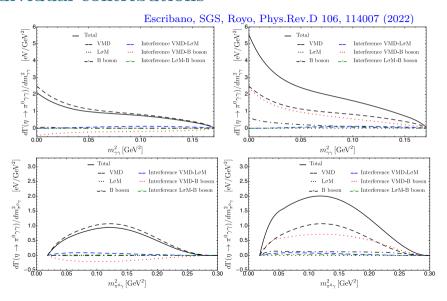
Worthwhile to also consider

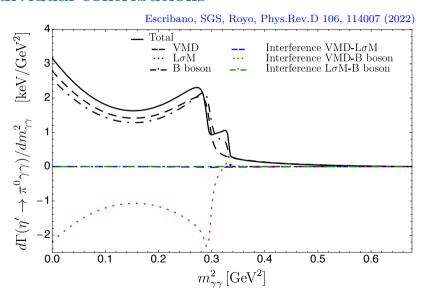

$$\eta' \to \pi^+\pi^-A' \to \pi^+\pi^-\ell^+\ell^-$$
 since $\mathcal{B}(\eta' \to \pi^+\pi^-\gamma) \approx 10 \times \mathcal{B}(\eta' \to \gamma\gamma)$

Searches of a leptophobic dark photon in rare $\eta^{(\prime)}$ decays

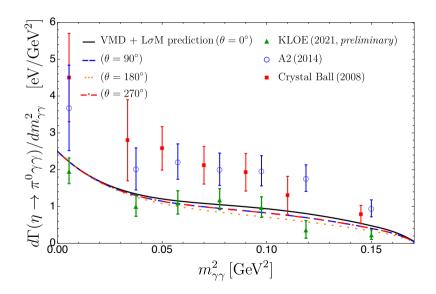
- What if a **new force** couples mainly to quarks?
- Simplest model: gauge boson (B) coupled to baryon number

$$\mathcal{L}_{\rm int} = \frac{1}{3} g_B \bar{q} \gamma^\mu q B_\mu \,,$$

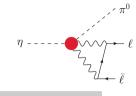

- g_B : flavor-universal coupling to all quarks, preserves QCD symmetries (C, P, T)
- Also known as: B boson, leptophobic Z' or baryonic photon γ_B
- Discovery signals depend on the mass m_B and decay channels


• Searches in meson factories are gaining attention

$$-\eta \to \gamma B \to \gamma \gamma \pi^0$$
 (JEF), $\phi \to \eta B \to \eta \pi^0 \gamma$ (KLOE-II), $\eta \to B \gamma \to \pi^+ \pi^- \gamma$ (Belle-II)


Individual contributions

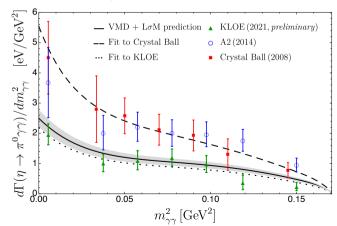
Individual contributions



Interference phase between VMD and $L\sigma M$


$$\eta^{(\prime)} \to \{\pi^0, \eta\} \ell^+ \ell^- \text{ decays } (\ell = e, \mu)$$

- In the SM:
 - $-\eta \to \pi^0 \gamma^* \to \pi^0 \ell^+ \ell^-$ forbidden by C and CP
 - $\eta \to \pi^0 \ell^+ \ell^-$ proceed via C-conserving two-photon intermediate state


Decay channel	$BR_{ m th}$ (Escribano&Royo 2007.12467)	$BR_{ m exp}$ (pdg)
$\eta \to \pi^0 e^+ e^-$	$2.1(1)(2) \times 10^{-9}$	$< 7.5 \times 10^{-6} \text{ (CL=90\%)}$
$\eta \to \pi^0 \mu^+ \mu^-$	$1.2(1)(1) \times 10^{-9}$	$< 5 \times 10^{-6} \text{ (CL=90\%)}$
$\eta' \to \pi^0 e^+ e^-$	$4.6(3)(7) \times 10^{-9}$	$< 1.4 \times 10^{-3} \text{ (CL=90\%)}$
$\eta' \to \pi^0 \mu^+ \mu^-$	$1.8(1)(2) \times 10^{-9}$	$< 6.0 \times 10^{-5} \text{ (CL=90\%)}$
$\eta' \to \eta e^+ e^-$	$3.9(3)(4) \times 10^{-10}$	$< 2.4 \times 10^{-3} \text{ (CL=90\%)}$
$\eta' \to \eta \mu^+ \mu^-$	$1.6(1)(2) \times 10^{-10}$	$< 1.5 \times 10^{-5} \text{ (CL=90\%)}$

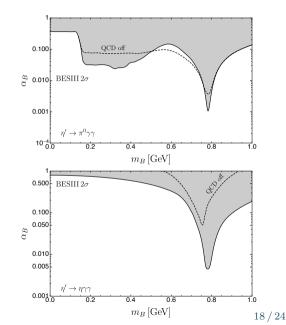
- Background for BSM searches, e.g. C-violating virtual photon exchange or new scalar mediators
- REDTOP can improve the experimental state

Fits to the $\eta \to \pi^0 \gamma \gamma$ decays

- Crystal Ball: $\alpha_B = 0.40^{+0.07}_{-0.08}$, $m_B = 583^{+32}_{-20}$ MeV, $\chi^2_{\text{dof}} = 0.4/5 = 0.1$
- KLOE: $\alpha_B = 0.049^{+40}_{-27}$, $m_B = 135^{+1}_{-135}$ MeV, $\chi^2_{\text{dof}} = 4.5/5 = 0.9$
- signatures outside $m_{\pi^0} \lesssim m_B \lesssim m_\eta$ may be visible

Conclusions

- Exploring dark sectors is an important and growing element of BSM physics
- A wealth of exciting ongoing **experiments** exist
- Meson decays offer a unique opportunity to look for New Physics
- Within the VMD and L σ M frameworks we have described


$$\begin{array}{lll} - & \eta \to \pi^0 \gamma \gamma; \text{ the situation is } \mathbf{not \ conclusive} \\ BR = 1.35(8) \times 10^{-4} \left\{ \begin{array}{lll} \sim 1/2 \ \text{of} \ BR = 2.54(27) \times 10^{-4} & \text{(A2, 2014)} \\ \sim 1.6 \sigma \ \text{from} \ BR = 2.21(24)(47) \times 10^{-4} & \text{(CB, 2008)} \\ \text{agrees with} \ BR = 1.23(14) \times 10^{-4} & \text{(KLOE prel., 2022)} \end{array} \right.$$

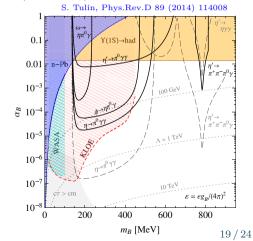
- $\eta' \to \pi^0(\eta) \gamma \gamma$: in line with BESIII data
- Constraints on α_B, m_B have been strengthened by one order of magnitude from $\eta \to \pi^0 \gamma \gamma$
- We have tested ALPs with $\eta/\eta' \to \pi\pi a$ decays
 - We encourage searches in $\eta/\eta' \to \pi\pi a \to \pi\pi\gamma\gamma, \pi\pi\ell^+\ell^-$ (BESIII, KLOE,CMS, REDTOP)

17/24

New limits on α_B and m_B

- Not assuming the NWA
- QCD contribution on
- $BR < BR_{\rm exp}$ at 2σ
- $BR(\eta' \to \pi^0 \gamma \gamma)_{\rm exp} = 3.20(7)(23) \times 10^{-3}$ M. Ablikim *et.al* [BESIII], Phys.Rev. D 96 (2017) 012005
- $BR(\eta' \to \eta \gamma \gamma)_{\rm exp} = 8.25(3.41)(72) \times 10^{-5}$ M. Ablikim *et.al* [BESIII], Phys.Rev. D 100 (2019) 052015
- Sharp dip when $m_B \sim m_\omega$
- Bounds 4 orders of magnitude weaker than $\eta \to \pi^0 \gamma \gamma$

Previous limits on α_B and m_B

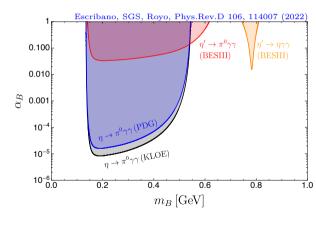

• Assuming the Narrow-Width Approximation (NWA)

$$BR(\eta \to \pi^0 \gamma \gamma) = BR(\eta \to B\gamma) \times BR(B \to \pi^0 \gamma)$$
,

- QCD contribution off
- $BR(\eta \to \pi^0 \gamma \gamma) < BR_{\rm exp}$ at 2σ

$$-BR(\eta \to \pi^0 \gamma \gamma)_{\text{exp}} = 2.21(53) \times 10^{-4}$$

- $-BR(\eta' \to \pi^0 \gamma \gamma)_{\text{exp}} < 8 \times 10^{-4} (90\% C.L.)$
- $-BR(\eta' \to \eta \gamma \gamma)_{\rm exp}$ no data



Present limits on α_B and m_B

• Assuming the Narrow-Width Approximation (NWA)

$$BR(\eta \to \pi^0 \gamma \gamma) = BR(\eta \to B\gamma) \times BR(B \to \pi^0 \gamma)$$
,

- QCD contribution off
- $BR(\eta \to \pi^0 \gamma \gamma) < BR_{\rm exp}$ at 2σ
- $-BR(n \to \pi^0 \gamma \gamma)_{\text{exp}}^{\text{pdg}} = 2.56(22) \times 10^{-4}$
- $-BR(\eta \to \pi^0 \gamma \gamma)_{\text{exp.}}^{\text{KLOE}} = 1.23(14) \times 10^{-4}$
 - B. Cao [KLOE], PoS EPS-HEP2021 (2022) 409
- $BR(\eta' \to \pi^0 \gamma \gamma)_{\text{exp}} = 3.20(7)(23) \times 10^{-3}$ M. Ablikim *et.al* [BESHI], Phys.Rev. D 96 (2017) 012005
- $BR(\eta' \to \eta \gamma \gamma)_{\text{exp}} = 8.25(3.41)(72) \times 10^{-5}$ M. Ablikim *et.al* [BESIII], Phys.Rev. D 100 (2019) 052015

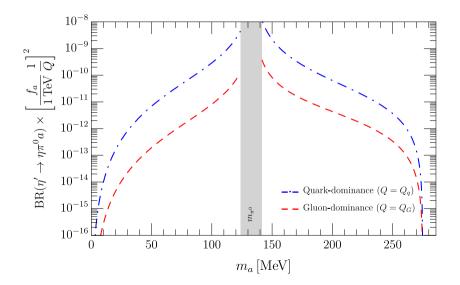
Lagrangian for ALPs coupled to QCD

"Derivative basis": ALPs with gluon and derivative couplings

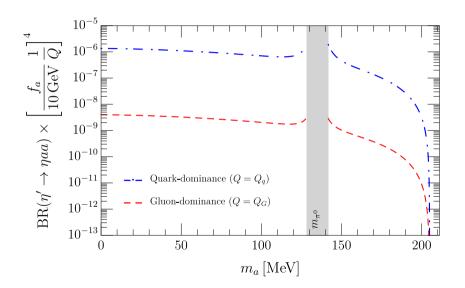
$$\mathcal{L}_{\text{ALP}} = \mathcal{L}_{\text{QCD}} + \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{1}{2} \underline{M_{a}^{2}} a^{2}$$

$$- \left(Q_{G} + \sum_{q=\nu,d,s} Q_{q} \right) \frac{\alpha_{s}}{8\pi} \frac{a}{f_{a}} G_{\mu\nu} \tilde{G}^{\mu\nu} + \frac{\partial_{\mu} a}{f_{a}} \sum_{q=\nu,d,s} \frac{Q_{q}}{2} \bar{q} \gamma^{\mu} \gamma^{5} q ,$$

 M_a^2 : PQ contribution to the mass, f_a : axion decay constant, $Q_{q,G}$: PQ charges


• "Yukawa basis" (this work, at GeV scale): ALP with gluon and mass couplings
$$\mathcal{L}_{\text{ALP}} = \mathcal{L}_{\text{QCD}} + \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{1}{2} \underline{M_{a}^{2}} a^{2} - Q_{G} \frac{\alpha_{s}}{8\pi} \frac{a}{f_{a}} G_{\mu\nu} \tilde{G}^{\mu\nu} + \sum_{q=u,d,s} m_{q} \bar{q} \left(e^{iQ_{q} \frac{a}{f_{a}} \gamma_{5}} \right) q,$$

- Equivalent bases (related via chiral rotations of the quarks) if weak interactions are neglected
- The heavy-flavor c, b, t quarks contributions are absorbed in $Q_G \to Q_G + Q_{t,b,c}$


Solution of the Omnès function $\Omega_0^0(s)$

$$\Omega_0^0(s) = \exp\left\{\frac{s}{\pi} \int_{4M_\pi^2}^{\infty} ds' \frac{\delta_0^0(s')}{s'(s'-s-i\varepsilon)}\right\}, \qquad \begin{array}{c} \frac{s}{s_0} \\ \frac{s}{s_0} \\ \frac{s}{s_0} \\ \frac{s}{s_0} \end{array}$$

$\eta' \to \eta \pi^0 a$

Multi production of ALPs

