CP Violation in hadronic two-body charm-meson decays

Luiz VALE SILVA

In collaboration with Antonio Pich and Eleftheria Solomonidi (IFIC, UV – CSIC) based on 2305.11951 (PRD 108 (2023) 3, 036026), and upcoming work

Future Tau Charm Facilities, 16/01/2024 – Hefei, China

Charm-flavour physics

- Flavour physics of the up-type: <u>complementary</u>, but less well known than down-type strange and bottom sectors
 - QCD @ intermediate regime $M_{\kappa} \ll m_{c} \ll m_{b}$ [consolidated theoretical tools for the two extrema, χPT_{3} and HQET; slower behaviour of the 1/m_c perturbative series]
 - EW sector largely uncharted; more effective GIM mechanism: potential to identify BSM

Measurement of direct CP

Major discovery by LHCb in 2019:

$$\Delta A_{\rm CP} = A_{\rm CP}(K^-K^+) - A_{\rm CP}(\pi^-\pi^+) \neq 0$$

D° to K⁻K⁺ asym. D° to $\pi^{-}\pi^{+}$ asym.

[I will neglect indirect CPV throughout this talk]

- Bounds in many other cases: $\pi^+\pi^-$ and K⁺K⁻ (individually), $\pi^0\pi^0$, $\pi^+\pi^0$, K_sK_s, K⁺K_s, etc. [LHCb '22] [LHCb, BABAR, Belle, ...]
- Much progress is expected in this decade: LHCb Upgrade I and Belle II; about 3-fold better sensitivity to CPV in ΔA_{CP}

Luiz VALE SILVA – Direct CPV in charm

Direct CPV from "penguin topologies"

Present exp. sensitivity to penguins

LHCb UI

LHCb UI

Future exp. sensitivity to penguins

SM description of direct CPN

Theory has to match experimental progress

- We need both strong-phase (= δ) and weak-phase (= ϕ) differences
- Strong-phases enhance A_{CP}, but also make its description more challenging
- **HERE**: discussion of **non-perturbative QCD effects**, their extraction from data, and physical impact on direct CPV in the charm sector

[see also: Brod, Grossman, Kagan, Zupan '12; Li, Lu, Yu '12; Franco, Mishima, Silvestrini '12; Cheng, Chiang '12; Khodjamirian, Petrov '17; Soni '19; Schacht, Soni '21; Lenz, Piscopo, Rusov '23; etc., etc.]

Rescattering in weak decays

 Rescattering among stable on-shell particles produces a CP-even (strong) phase; elastic limit: Watson theorem

phase of the π FF = (phase-shift $\pi\pi \to \pi\pi$) mod 180°, @ elastic region above $\pi\pi$ threshold

- Separate strong and weak dynamics; final-state rescattering in transition amplitude encoded in process-independent Ω
- Relate dispersive and absorptive parts based on **analyticity** of the amplitudes (Mandelstam variables)

(dispersive)

$$\operatorname{Re}[\Omega(s)] = \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{\operatorname{Im}[\Omega(s')]}{s' - s} ds'$$

Dispersion Relation (DR) for Ω entering the transition amplitude

Omnes factor

• Elastic limit, explicit solution of the integral equation:

- IR: phase-shift and Omnes factor embody the effects of rescattering in the amplitudes of weak decays
- UV: polynomial ambiguity (analytical properties of Ω unchanged), requires some physical input [e.g., in K to $\pi\pi$, employ χPT_3]

[Pallante, Pich '99 '00; Pallante, Pich, Scimemi '01; Gisbert, Pich '17]

Luiz VALE SILVA – Direct CPV in charm

Two-channel analysis of rescattering

 Inelastic case: set of integral equations (DRs) related by unitarity; no explicit solution known; DRs have to be solved numerically

[Moussallam '00; Descotes-Genon '03]

- Neglect the effect of further channels
- Experimental input for (ππ, KK) phaseshifts and inelasticity (ππ ↔ KK) in isospin=0 available [Garcia-Martin, Kaminski, Pelaez

Luiz VALE SILVA – Direct CPV in charm

[Garcia-Martin, Kaminski, Pelaez, Ruiz de Elvira, Yndurain '11; Pelaez, Rodas, Ruiz De Elvira '19; Pelaez, Rodas '20][Buettiker, Descotes-Genon, Moussallam '04]

$$R(s) = R(s_0) + \frac{s - s_0}{\pi} \int_{4M_\pi^2}^{\infty} ds' \frac{1}{s' - s} \frac{X(s')R(s')}{s' - s_0}$$

R: real part of amplitudes X: <u>2-by-2 rescattering matrix</u> [X = $tan(\delta)$ in the elastic limit]

Further physical inputs

- Subtraction constant of DRs taken from large-N_c; improvement given by rescattering (sub-leading in large-N_c)
- Decay constants and form factors (independent sub-leading large-N_c effects)
- Large perturbative QCD effects $\alpha_s(\mu)*log(\mu/M_w)$ are included in Wilson Coefficients (RGE improvement)

[Buras, Gerard, Rueckl '85; Bauer, Stech, Wirbel '86; Buras, Silvestrini '00; Mueller, Nierste, Schacht '15]

Isospin analysis: information from D⁺ to π⁺π⁰, K⁺K_s branching ratios into D⁰ decays; phase-shifts of final states with isospin=1 and =2 undetermined
 Luiz VALE SILVA – Direct CPV in charm

CP-even amplitudes and BRs

$$\begin{split} & \mathcal{W}\mathrm{Cs} \ , \ \mathrm{D}\mathrm{Cs} \ , \ \mathrm{FFs} \ , \ \mathrm{rescattering \ factors} \ , \ \mathrm{and} \ \mathrm{D}^+ \ \mathrm{BRs} \\ & \mathrm{isospin \ decomposition:} \ \ A^\pi_0 \ , \ A^\pi_2 \ , \ \ A^K_0 \ , \ A^K_{11} \ , \ A^K_{13} \\ & \mathcal{B}(D^0 \to \pi^+ \pi^-, \pi^0 \pi^0)_{theo} & \mathcal{B}(D^0 \to K^+ K^-, K_S K_S)_{theo} \end{split}$$

- **BR**_{theo}~**BR**_{exp} can be found; however, <u>large uncertainties are present</u>
- Inelasticity is the main source of uncertainties
- Use BRs to control uncs. of dispersive inputs: better prediction for ACP

- Phase-shifts of final states with isospin=2 and =1 adjusted
- Isospin=0: source of breaking of symmetry between pions and kaons, of size similar to f_{κ}/f_{π} & F^{DK}/F^{D\pi}
- Other sources of breaking: I=2 (from D⁺ to $\pi^+\pi^0$), I=1 (from D⁺ to K⁺K_S)
- Luiz VALE SILVA Direct CPV in charm

Mechanisms of CPV

Isospin=0:

rescattering factors

$$\begin{pmatrix} A_0^{\pi} + i B_0^{\pi} \\ A_0^{K} + i B_0^{K} \end{pmatrix} = \Omega(M_D^2) \underbrace{\begin{pmatrix} \lambda_d T_{\pi\pi}^{CC} - \lambda_b T_{\pi\pi}^{P} \\ \lambda_s T_{KK}^{CC} - \lambda_b T_{KK}^{P} \end{pmatrix}}_{\text{CKM factors, WCs, DCs, FFs}}$$

similar expressions for I=2 (pions) and I=1 (kaons), which are treated elastically

- CPV from different interference terms between amplitudes
- I=0/I=0: possible due to rescattering; correlation in pions and kaons: CPV[ππ]+CPV[KK]=0
- I=0 interference with exotic states: I=2 (pions), I=1 (kaons)
- scalar+/-pseudoscalar structure: small WC, but enhanced

 $\frac{2 M_{\pi}^2}{(m_u + m_d) m_c}, \frac{2 M_K^2}{m_s m_c} \sim 5$ @ $\mu \sim 2 \text{ GeV}$ [cf. Li, Lu, Yu '12; Cheng, Chiang '12; Soni '19]

Luiz VALE SILVA – Direct CPV in charm

- Weak-phase: rephasing-invariant Jarlskog/ $|\lambda_d|^2$ from bottom & strange
- Small CPV: rescattering effects not large enough
- It seems difficult to explain the measured CPV based on this approach

Luiz VALE SILVA – Direct CPV in charm

Summary & Conclusions

• Data-driven approach: isospin=0 rescattering effects through DRs; isospin=2 & isospin=1 rescattering effects from D⁺ to $\pi^+\pi^0$, K⁺K_s BRs

subtraction constants given by large- N_c

- Exp. values of $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -},\,\pi^{\scriptscriptstyle 0}\pi^{\scriptscriptstyle 0}$ and K^+K^-, K_sK_s BRs used to control uncertainties
- Predicted CP asymmetries are too small

Outlook

- Constrain ΔA_{CP} based on unitarity, CPT and DRs [Pich, Solomonidi, LVS, in progress]
- Test use of DRs in Cabibbo allowed and doubly Cabibbo suppressed modes [Camarasa Domene, LVS, in progress]
- Complementary signs of CPV: look into decay modes with higher multiplicity \rightarrow LHCb, Belle II, BESIII, STCF
- Apply DRs in the description of rare charm-meson decay modes [see Fajfer, Solomonidi, LVS, 2312.07501]

Many thanks!, *XièXie!*

Fit of isospin amplitudes [not including LHCb '22]

isospin decomposition: $A_0^{\pi}, B_0^{\pi}, A_2^{\pi}, A_0^{K}, B_0^{K}, A_{11}^{K}, B_{11}^{K}, A_{13}^{K}$ [Franco, Mishima, Silvestrini '12]

- Incorporate unitarity @ m_p only
- Amplitudes satisfy relations involving phaseshifts and inelasticity, that can be implemented in the isospin fit

0.003

0.002

0.001

-0.001

-0.002

-0.003

-0.004 -0.003 -0.002 -0.00

Global fit combination of D to $\pi\pi$

and D to KK branching ratios &

CP asymmetries

Fit includes also BRs and CP asyms.

Results for the CP asymmetries in charged modes עׂ ג⁺ ₀.000

[for inclusion of phaseshifts and inelasticity @ m_{p} see also: Bediaga, Frederico, Magalhaes '22]

Operator basis and CPV

- One effect of CPV comes from non-unitarity of the 2-by-2 CKM sub-matrix; CPodd contribution comes from loop topologies with insertions of current-current operators (light flavours in the loop, i.e., long-distance effect)
- WCs of penguin operators are tiny (aka GIM mechanism), but their contribution may be enhanced
- The quantity Q_{udcs} is rephasing-invariant and has an imaginary part, namely, the Jarlskog

μ	C_1	C_2	C_3	C_4	C_5	C_6
m_c	1.22	-0.40	0.021	-0.055	0.0088	-0.060
2 GeV	1.18	-0.32	0.011	-0.031	0.0068	-0.032

[Buchalla, Buras, Lautenbacher '95]

$$\lambda_d \lambda_s^* = V_{ud} V_{cs} V_{us}^* V_{cd}^* = Q_{udcs}$$

Slide from Antonio Pich, "Kaon decays & CP Violation", FPCP 2020 (virtual)

Large δ_0

A. Pich

Implications of a Large Phase Shift

 $\mathcal{A}_{I} \equiv \mathcal{A}_{I} e^{i\delta_{I}} = \text{Dis}(\mathcal{A}_{I}) + i \text{Abs}(\mathcal{A}_{I})$

Important
difference with
charm physics:
analogous kaon
process is elastic;
moreover, in
charm, e.g.:

$$\arg(A_2^{\pi/A_0^{\pi}}) \sim \pm 90^{\circ}$$

1 Unitarity: $\delta_0(M_K) = (39.2 \pm 1.5)^{\circ} \rightarrow A_0 \approx 1.3 \times \text{Dis}(\mathcal{A}_0)$
 $tan \delta_l = \frac{\text{Abs}(\mathcal{A}_l)}{\text{Dis}(\mathcal{A}_l)}$
 $A_l = \text{Dis}(\mathcal{A}_l) \sqrt{1 + \tan^2 \delta_l}$
2 Analyticity: $\Delta \text{Dis}(\mathcal{A}_l)[s] = \frac{1}{\pi} \int dt \frac{\text{Abs}(\mathcal{A}_l)[t]}{t-s-i\epsilon} + \text{subtractions}$

 \rightarrow Large Abs (\mathcal{A}_0) \rightarrow Large correction to Dis (\mathcal{A}_0)