

The 2024 International Workshop on Future Tau Charm Facilities

January 14-18, 2024

Prospects for ditauonium discovery at colliders

Hua-Sheng Shao

W/ David d'Enterria (arXiv:2202.02316, arXiv:2302.07365)
 + Redamy Perez-Ramos (arXiv:2204.07269)

16 January 2024

FTCF 2024

erc

Leptonium: QED atoms

- Opposite-charge leptons can form onium bound states
 - Analogous to the hydrogen atom (a proton and an electron)
 - Pure QED interaction (unlike hydrogen atom)

simplest atoms allow high-precision theory control

- Out of 6 possible combinations, only positronium (e^+e^-) and muonium ($\mu^\pm e^\mp$) have been observed experimentally
- Ditauonium ($\tau^+\tau^-$) is the heaviest and most compact leptononium, which can undergo annihilation decays

Why ditauonium ?

- The properties of the tau lepton
 - Precise tau mass determination (will show you later, promising)
 - Precise tau width determination (14-20% via tau decays, not competitive)
 - Anomalous magnetic dipole moment (from hfs, challenging, or xs, not competitive)
- Precision tests of the Standard Model of particle physics
 - Precise tests of QED Karshenboim (Phys. Rept. 05)
 - Basic symmetry test (like CPT as done in positronium but at GeV scale) Bernreuther et al. (Z. Phys. C 88), Yamazaki et al. (PRL'10)
- Direct or indirect sensitives to the BSM effects
 - BSM effect is enhanced via $\mathcal{O}(m_\ell/\Lambda_{
 m BSM})$
 - Lepton flavour universality violation (positronium vs dimuonium vs ditauonium)
 - Tau-philic BSM interactions and particles without missing energy

Spectroscopy

• The masses of the states

d'Enterria, Perez-Ramos, HSS (EPJC'22)

• Determined within non-relativistic quantum mechanics

 $n = 3 \ (E = -2.6 \ \mathrm{keV})$

The masses of the states

d'Enterria, Perez-Ramos, HSS (EPJC'22)

• Determined within non-relativistic quantum mechanics

The masses of the states

d'Enterria, Perez-Ramos, HSS (EPJC'22)

Determined within non-relativistic quantum mechanics

 $n = 3 \ (E = -2.6 \text{ keV})$ $(\Delta E \approx -2.25 \text{ eV}) \quad (\Delta E \approx -1.10 \text{ eV})$ Lamb $(\Delta E \approx -4.03 \text{ eV})$ $n = 2 \ (E = -5.9 \text{ keV})$ $(\Delta E \approx -8.67 \text{ eV})$ 2P Lamb $(\Delta E \approx -14.4 \text{ eV})$ $\frac{\delta V(r)}{V(r)} = \frac{\alpha}{\pi} \sum_{f} Q_{f}^{2} N_{C}^{f} \int_{1}^{+\infty} dx_{f} \frac{2x_{f}^{2} + 1}{3x_{f}^{4}} \sqrt{x_{f}^{2} - 1} e^{-2m_{f}x_{f}r}$ $n = 1 \ (E = -23.6 \text{ keV})$ Lamb $(\Delta E \approx -115 \text{ eV})$ IS

d'Enterria, Perez-Ramos, HSS (EPJC'22)

• Determined within non-relativistic quantum mechanics

Decay channels of ditauonium

HUA-SHENG SHAO

- Which are "real" bound states? d'Enterria, Perez-Ramos, HSS (EPJC'22)
 - Only the annihilation decays of the ground states (n=1) are faster than the weak decays of each constitute tau (290 fs)
 - We will only focus on n=1 states
 Excited states will impact the di-tau cross section at threshold Fu et al. (2305.00171)

FTCF 2024

Decay channels of ditauonium

- The spin-singlet state (para-ditauonium \mathcal{T}_0)
 - $J^{PC} = 0^{-+}$
 - Mainly to di-photon
 - Percent-level Dalitz decay
 - I9% tau weak decays

\mathcal{T} state	m_X (MeV)	J^{PC}	Γ_{tot} (eV)	Lifetime (fs)	Decay mode	Γ_X (eV)	\mathcal{B}_X
$1^{1}S_{0}$	3553.696 ± 0.240	0-+	0.02384	27.60	γγ	0.018533	77.72%
					$\gamma e^+ e^-$	$4.28 \cdot 10^{-4}$	1.79%
					$\gamma \mu^+ \mu^-$	$1.24\cdot10^{-4}$	0.52%
					$\gamma q \overline{q}$	$2.20\cdot10^{-4}$	0.92%
					$e^{+}e^{-}e^{+}e^{-}$	$2.32 \cdot 10^{-6}$	0.0094%
					$e^+e^-\mu^+\mu^-$	$1.38 \cdot 10^{-6}$	0.0058%
					$e^+e^-q\overline{q}$	$1.20 \cdot 10^{-6}$	0.0050%
					$\mu^+\mu^-\mu^+\mu^-$	$1.65 \cdot 10^{-7}$	0.00069%
					$\mu^+\mu^-q\overline{q}$	$2.72 \cdot 10^{-7}$	0.0011%
					q q q'q'	$8.23 \cdot 10^{-8}$	0.00035%
					$(2)\tau \rightarrow X$	0.004535	19.02%

Decay channels of ditauonium

- The spin-triplet state (ortho-ditauonium \mathcal{T}_1) d'Enterria, Perez-Ramos, HSS (EPJC'22)
 - $J^{PC} = 1^{--}$
 - Mainly to di-fermions
 - I4% tau weak decay

${\mathcal T}$ state	m_X (MeV)	J^{PC}	$\Gamma_{\text{tot}}\left(eV\right)$	Lifetime (fs)	Decay mode	Γ_x (eV)	\mathcal{B}_{x}	
1 ³ S ₁	3553.696 ± 0.240	1	0.03159	20.83	$e^+e^-(\gamma)$	0.006436	20.37%	
					 e⁺e[−] 	$2.95 \cdot 10^{-3}$	9.33%	1
					 e⁺e⁻γ 	$3.49 \cdot 10^{-3}$	11.04%	$ \underbrace{-}^{\mathbf{L}} (\wedge \setminus \perp \wedge \setminus) $
					$\mu^+\mu^-(\gamma)$	0.006436	20.37%	$\overline{\sqrt{2}} (\psi / \tau \psi / \tau)$
					 μ⁺μ[−] 	$6.10 \cdot 10^{-3}$	19.30%	\sqrt{Z}
					 μ⁺μ⁻γ 	$3.38 \cdot 10^{-4}$	1.07%	
					$q\overline{q}(\gamma)$	0.01416	44.82%	$ \downarrow\downarrow\rangle$
					777	$1.62 \cdot 10^{-5}$	0.051%	
					$e^{+}e^{-}e^{+}e^{-}$	$5.55 \cdot 10^{-6}$	0.0176%	
					$e^+e^-\mu^+\mu^-$	4.21 · 10 ⁻⁶	0.0133%	
					$e^+e^-q\overline{q}$	$1.85 \cdot 10^{-6}$	0.0058%	
					$\mu^+\mu^-\mu^+\mu^-$	$1.23 \cdot 10^{-7}$	O(10 ⁻⁶)	
					$\mu^+\mu^-q\overline{q}$	7.36 · 10-8	O(10 ⁻⁶)	
					qqq'q	9.73 · 10 ⁻⁹	O (10 ⁻⁷)	
					$v_r \bar{v}_r$	$1.32 \cdot 10^{-8}$	O (10 ⁻⁷)	
					$v_e \bar{v}_e$	$4.30 \cdot 10^{-11}$	<i>O</i> (10 ⁻⁹)	
					$\nu_{\mu}\bar{\nu}_{\mu}$	4.30 · 10-11	O(10-9)	
					$(2)\tau \rightarrow X$	0.004535	14.35%	

Prospects of ortho-ditauonium discovery

- The spin-triplet state (ortho-ditauonium \mathcal{T}_1)
 - Threshold scan at e+e-

d'Enterria, HSS (PLB'23)

Signal

$$\sigma^{\text{ideal}}(e^+e^- \to \mathcal{T}_1) = \frac{12\pi\Gamma_{\text{tot}}(\mathcal{T}_1)\Gamma_{e^+e^-}(\mathcal{T}_1)}{(s-m_{\mathcal{T}}^2)^2 + \Gamma_{\text{tot}}^2(\mathcal{T}_1)m_{\mathcal{T}}^2} \xrightarrow{\sqrt{s}=m_{\mathcal{T}}} 236.6 \ \mu\text{b}$$

Huge cross section ! Why not observed yet ?

d'Enterria, HSS (PLB'23)

HUA-SHENG SHAO

- The spin-triplet state (ortho-ditauonium \mathcal{T}_1)
 - Two important effects are missing ... Monochromatization of beam energies Initial-state photon radiation (ISR)

Wednesday, January 10, 24

FTCF 2024

d'Enterria, HSS (PLB'23)

- The spin-triplet state (ortho-ditauonium \mathcal{T}_1)
 - Larger signal yields requires:

The good accuracy of \sqrt{s} (as close as possible to $m_{\mathcal{T}}$)

Beam energy measurement system at BEPC II allows $~2 imes 10^{-5}$ accuracy

E.g. BEPC II+VEPP-2000

The good precision of \sqrt{s} (as small as possible of $\delta_{\sqrt{s}}$)

Monochromatization has been studied in the literature since Renieri in 1975 for ADONE.

Active studies in the FCC-ee community (see a recent <u>talk</u> by A. Faus-Golfe)

Possible to reach $\delta_{\sqrt{s}}=50~{\rm keV}$, but the price to pay is the reduction of the integrated luminosity

- The spin-triplet state (ortho-ditauonium \mathcal{T}_1)
 - Threshold scan at e+e-

d'Enterria, HSS (PLB'23)

Colliding system, \sqrt{s} ($\delta_{\sqrt{s}}$ spread), \mathcal{L}_{int} , experiment		σ		N			S/\sqrt{B}
	\mathcal{T}_1	$\tau^+\tau^-$	$\mu^+\mu^-$	\mathcal{T}_1	$\mathcal{T}_1 \to \mu^+ \mu^-$	$\mu^+\mu^-$	
<i>e</i> ⁺ <i>e</i> ⁻ at 3.5538 GeV (1.47 MeV), 5.57 pb ⁻¹ , BES III	1.9 pb	117 pb	6.88 nb	10.4	2.1	38 300	0.01σ
e^+e^- at $\sqrt{s} \approx m_T$ (1.24 MeV), 140 pb ⁻¹ , BES III	2.2 pb	103 pb	6.88 nb	310	63	$9.63 \cdot 10^5$	0.06σ
e^+e^- at $\sqrt{s} \approx m_T$ (1 MeV), 1 ab ⁻¹ , STCF	2.6 pb	95 pb	6.88 nb	$2.6 \cdot 10^{6}$	$5.3 \cdot 10^5$	$6.88 \cdot 10^9$	6.4σ
e^+e^- at $\sqrt{s} \approx m_T$ (100 keV), 0.1 ab ⁻¹ , STCF	22 pb	46 pb	6.88 nb	$2.2 \cdot 10^6$	$4.5 \cdot 10^{5}$	$6.88 \cdot 10^8$	17σ

- The spin-triplet state (ortho-ditauonium \mathcal{T}_1)
 - Threshold scan at e+e-

d'Enterria, HSS (PLB'23)

Colliding system, \sqrt{s} ($\delta_{\sqrt{s}}$ spread), \mathcal{L}_{int} , experiment		σ			Ν		S/\sqrt{B}
	\mathcal{T}_1	$\tau^+\tau^-$	$\mu^+\mu^-$	\mathcal{T}_1	$\mathcal{T}_1 \to \mu^+ \mu^-$	$\mu^+\mu^-$	
<i>e</i> ⁺ <i>e</i> ⁻ at 3.5538 GeV (1.47 MeV), 5.57 pb ⁻¹ , BES III	1.9 pb	117 pb	6.88 nb	10.4	2.1	38 300	0.01σ
e^+e^- at $\sqrt{s} \approx m_T$ (1.24 MeV), 140 pb ⁻¹ , BES III	2.2 pb	103 pb	6.88 nb	310	63	$9.63 \cdot 10^5$	0.06σ
e^+e^- at $\sqrt{s} \approx m_T$ (1 MeV), 1 ab ⁻¹ , STCF	2.6 pb	95 pb	6.88 nb	$2.6 \cdot 10^{6}$	$5.3 \cdot 10^5$	$6.88 \cdot 10^9$	6.4σ
e^+e^- at $\sqrt{s} \approx m_T$ (100 keV), 0.1 ab ⁻¹ , STCF	22 pb	46 pb	6.88 nb	$2.2 \cdot 10^6$	$4.5 \cdot 10^{5}$	$6.88 \cdot 10^8$	17σ

Ortho-ditauonium can be observed at STCF without monochromatization

- The spin-triplet state (ortho-ditauonium \mathcal{T}_1)
 - Threshold scan at e+e-

d'Enterria, HSS (PLB'23)

Colliding system, \sqrt{s} ($\delta_{\sqrt{s}}$ spread), \mathcal{L}_{int} , experiment		σ			N		
	\mathcal{T}_1	$\tau^+\tau^-$	$\mu^+\mu^-$	\mathcal{T}_1	$\mathcal{T}_1 \to \mu^+ \mu^-$	$\mu^+\mu^-$	
<i>e</i> ⁺ <i>e</i> ⁻ at 3.5538 GeV (1.47 MeV), 5.57 pb ⁻¹ , BES III	1.9 pb	117 pb	6.88 nb	10.4	2.1	38 300	0.01σ
e^+e^- at $\sqrt{s} \approx m_T$ (1.24 MeV), 140 pb ⁻¹ , BES III	2.2 pb	103 pb	6.88 nb	310	63	$9.63 \cdot 10^5$	0.06σ
e^+e^- at $\sqrt{s} \approx m_T$ (1 MeV), 1 ab ⁻¹ , STCF	2.6 pb	95 pb	6.88 nb	$2.6 \cdot 10^6$	$5.3\cdot10^5$	$6.88\cdot 10^9$	6.4σ
e^+e^- at $\sqrt{s} \approx m_T$ (100 keV), 0.1 ab ⁻¹ , STCF	22 pb	46 pb	6.88 nb	$2.2 \cdot 10^6$	$4.5 \cdot 10^{5}$	$6.88 \cdot 10^{8}$	17σ

- Ortho-ditauonium can be observed at STCF without monochromatization
- With monochromatization to $\delta_{\sqrt{s}}=100~{\rm keV}$ and 10 times smaller luminosity, we can use ditauonium to precisely determine the mass of the tau lepton

- The spin-triplet state (ortho-ditauonium \mathcal{T}_1)
 - Threshold scan at e+e-

d'Enterria, HSS (PLB'23)

Colliding system, \sqrt{s} ($\delta_{\sqrt{s}}$ spread), \mathcal{L}_{int} , experiment		σ		Ν			S/\sqrt{B}
	\mathcal{T}_1	$\tau^+\tau^-$	$\mu^+\mu^-$	\mathcal{T}_1	$\mathcal{T}_1 \to \mu^+ \mu^-$	$\mu^+\mu^-$	
<i>e</i> ⁺ <i>e</i> ⁻ at 3.5538 GeV (1.47 MeV), 5.57 pb ⁻¹ , BES III	1.9 pb	117 pb	6.88 nb	10.4	2.1	38 300	0.01σ
e^+e^- at $\sqrt{s} \approx m_T$ (1.24 MeV), 140 pb ⁻¹ , BES III	2.2 pb	103 pb	6.88 nb	310	63	$9.63\cdot 10^5$	0.06σ
e^+e^- at $\sqrt{s} \approx m_T$ (1 MeV), 1 ab ⁻¹ , STCF	2.6 pb	95 pb	6.88 nb	$2.6 \cdot 10^{6}$	$5.3 \cdot 10^5$	$6.88\cdot 10^9$	6.4σ
e^+e^- at $\sqrt{s} \approx m_T$ (100 keV), 0.1 ab ⁻¹ , STCF	22 pb	46 pb	6.88 nb	$2.2\cdot 10^6$	$4.5 \cdot 10^{5}$	$6.88\cdot 10^8$	17σ

- Ortho-ditauonium can be observed at STCF without monochromatization
- With monochromatization to $\delta_{\sqrt{s}}=100~{\rm keV}$ and 10 times smaller luminosity, we can use ditauonium to precisely determine the mass of the tau lepton

 Ditauonium contributes 2% (50%) of the di-tau cross section w/o (w/) beam energy monochromatization.

- The spin-triplet state (ortho-ditauonium \mathcal{T}_1)
 - Threshold scan at e+e-

d'Enterria, HSS (PLB'23)

• As a bonus of the ditauonium observation, we can also precisely determine the mass of the tau lepton with monochromatization

FTCF 2024

- The spin-triplet state (ortho-ditauonium \mathcal{T}_1)
 - Exploring other possibilities

d'Enterria, HSS (PLB'23)

Remaining challenge: combinatorial backgrounds (mainly from heavy quark decays)

Colliding system, \sqrt{s} , \mathcal{L}_{int} , detector	$\sigma_{ m N}$	NLO	$N(\mathcal{T}$	(1 + j)	with $L_{xy} > 1$	30 (100) µm
	$\mathcal{T}_1 + X$	$\mathcal{T}_1 + j$	$\mathcal{T}_1 \rightarrow e^+ e^-$	$\mathcal{T}_1 \to \mu^+ \mu^-$	$\mathcal{T}_1 \to \ell^+ \ell^-$	$\mathcal{T}_1 \to \mu^+ \mu^-$
p-p at 14 TeV, 3 ab-1, ATLAS/CMS	42 ⁺¹¹ ₋₁₉ fb	$18 \pm 9 \text{ fb}$	1100	1100	130 (10)	130 (10)
p-p at 14 TeV, 300 fb ⁻¹ , LHCb	42^{+11}_{-19} fb	$18 \pm 9 \text{ fb}$	110	110	5 (-)	5 (-)
p-p at 114.6 GeV, 10 fb ⁻¹ , ALICE/LHCb	2.2 ^{+0.3} _{-0.4} fb	1 ± 0.5 fb	<10	<10	_	-

- The spin-triplet state (ortho-ditauonium \mathcal{T}_1)
 - Exploring other possibilities

d'Enterria, HSS (PLB'23)

Prospects of para-ditauonium discovery

• The spin-singlet state (para-ditauonium \mathcal{T}_0) d'Enterria, HSS (PRD'22) Signal $h,e^- \longrightarrow h,e^$ $h,e^+ \longrightarrow h,e^+$ $h,e^+ \longrightarrow h,e^+$ $h,e^+ \longrightarrow h,e^+$

- Cross sections for signal and backgrounds are simulated with the equivalent-photon approximation (EPA)
- For e+e-, we used the well-known improved Weizsacker-Williams function
- For hadron-hadron, we considered the ultra-peripheral collisions, where the initial hadrons are intact

d'Enterria, HSS (JHEP'22)

- The spin-singlet state (para-ditauonium \mathcal{T}_0) d'Enterria, HSS (PRD'22)
 - Cross sections for resonances are computed with HELAC-Onia HSS (CPC'13,CPC'16)
 - LbL cross sections are computed with MadGraph5_aMC@NLO Alwall et al. (JHEP'14)

Colliding system, c.m. energy, \mathcal{L}_{int} , exp.				$N imes \mathcal{B}_{\gamma\gamma}$				
	$\eta_{\rm c}(1{ m S})$	$\eta_{\rm c}(2{\rm S})$	$\chi_{c,0}(1P)$	$\chi_{c,2}(1P)$	LbL	\mathcal{T}_0	\mathcal{T}_0	$\chi_{c,2}(1P)$
e^+e^- at 3.78 GeV, 20 fb ⁻¹ , BES III	120 fb	3.6 ab	15 ab	13 ab	30 ab	0.25 ab	-	-
e^+e^- at 10.6 GeV, 50 ab ⁻¹ , Belle II	1.7 fb	0.35 fb	0.52 fb	0.77 fb	1.7 fb	0.015 fb	750	38 500
e ⁺ e ⁻ at 91.2 GeV, 50 ab ⁻¹ , FCC-ee	11 fb	2.8 fb	3.9 fb	6.0 fb	12 fb	0.11 fb	5 600	$3\cdot 10^5$
p-p at 14 TeV, 300 fb ⁻¹ , LHC	7.9 fb	2.0 fb	2.8 fb	4.3 fb	6.3 fb	0.08 fb	24	1290
p-Pb at 8.8 TeV, 0.6 pb ⁻¹ , LHC	25 pb	6.3 pb	8.7 pb	13 pb	21 pb	0.25 pb	0.15	8
Pb-Pb at 5.5 TeV, 2 nb ⁻¹ , LHC	61 nb	15 nb	21 nb	31 nb	62 nb	0.59 nb	1.2	62

- Cross sections increase with center-of-mass energy and Z⁴
- Large charmonium background $\sigma(\eta_c(1S)): \sigma(\chi_{c2}(1P)): \sigma(\chi_{c0}(1P)): \sigma(\eta_c(2S)): \sigma(\mathcal{T}_0)$ 100 50 30 25 1

- The spin-singlet state (para-ditauonium \mathcal{T}_0) d'Enterria, HSS (PRD'22)
 - Cross sections for resonances are computed with HELAC-Onia HSS (CPC'13,CPC'16)
 - LbL cross sections are computed with MadGraph5_aMC@NLO Alwall et al. (JHEP'14)

Colliding system, c.m. energy, \mathcal{L}_{int} , exp.	$\sigma imes \mathcal{B}_{\gamma\gamma}$							$N imes \mathcal{B}_{\gamma\gamma}$		
	$\eta_{\rm c}(1{ m S})$	$\eta_{\rm c}(2{\rm S})$	$\chi_{c,0}(1P)$	$\chi_{c,2}(1P)$	LbL	\mathcal{T}_0	\mathcal{T}_0	$\chi_{c,2}(1P)$		
e^+e^- at 3.78 GeV, 20 fb ⁻¹ , BES III	120 fb	3.6 ab	15 ab	13 ab	30 ab	0.25 ab	-	_		
e^+e^- at 10.6 GeV, 50 ab ⁻¹ , Belle II	1.7 fb	0.35 fb	0.52 fb	0.77 fb	1.7 fb	0.015 fb	750	38 500		
e ⁺ e ⁻ at 91.2 GeV, 50 ab ⁻¹ , FCC-ee	11 fb	2.8 fb	3.9 fb	6.0 fb	12 fb	0.11 fb	5 600	$3\cdot 10^5$		
p-p at 14 TeV, 300 fb ⁻¹ , LHC	7.9 fb	2.0 fb	2.8 fb	4.3 fb	6.3 fb	0.08 fb	24	1290		
p-Pb at 8.8 TeV, 0.6 pb ⁻¹ , LHC	25 pb	6.3 pb	8.7 pb	13 pb	21 pb	0.25 pb	0.15	8		
Pb-Pb at 5.5 TeV, 2 nb ⁻¹ , LHC	61 nb	15 nb	21 nb	31 nb	62 nb	0.59 nb	1.2	62		

- Cross sections increase with center-of-mass energy and Z⁴
- Large charmonium background $\sigma(\eta_c(1S)): \sigma(\chi_{c2}(1P)): \sigma(\chi_{c0}(1P)): \sigma(\eta_c(2S)): \sigma(\mathcal{T}_0)$ 100 50 30 25 1

- The spin-singlet state (para-ditauonium \mathcal{T}_0) d'Enterria, HSS (PRD'22)
 - Trigger: two back-to-back exclusive 1.5-2 GeV photons w/
 - $m_{\gamma\gamma} pprox m_{\mathcal{T}_0}$ Reconstruction performance (Belle-II type & high-resolution FCCee crystal calo)

Acceptance: $10^{\circ} < \theta_{\gamma} < 170^{\circ}$ Mass resolution: $\sim 2\%$ Photon reco effic. : $\sim 100\%$

3800

m_{yy} (MeV)

3600

3400

FTCF 2024

- The spin-singlet state (para-ditauonium \mathcal{T}_0) d'Enterria, HSS (PRD'22)
 - Significance FCC-ee 5σ Belle II 3σ
 - Main challenge

Control the lineshapes of charmonia, in particular χ_{c2}

• We consider other possibilities, but turn out to be challenging

Dalitz decay

FSR photon

Conclusion

- Ditauonium can provide an interesting probe to study several aspects of particle physics.
- In QED, we can predict its energy levels and decay channels precisely.
- Its observation feasibilities at colliders have been explored. $e^+e^- \rightarrow \mathcal{T}_1 \rightarrow \mu^+\mu^- @ \text{STCF}$ $pp \rightarrow \mathcal{T}_1 j \rightarrow \mu^+\mu^- j @ \text{LHC}$ $\gamma\gamma \rightarrow \mathcal{T}_0 \rightarrow \gamma\gamma @ \text{FCC} - \text{ee \& Belle II}$
- With beam monochromatization, ditauonium at STCF can in fact allow a precise determination of the mass of tau lepton at O(25 keV)

Conclusion

- Ditauonium can provide an interesting probe to study several aspects of particle physics.
- In QED, we can predict its energy levels and decay channels precisely.
- Its observation feasibilities at colliders have been explored. $e^+e^- \rightarrow \mathcal{T}_1 \rightarrow \mu^+\mu^- @ \text{STCF}$ $pp \rightarrow \mathcal{T}_1 j \rightarrow \mu^+\mu^- j @ \text{LHC}$ $\gamma\gamma \rightarrow \mathcal{T}_0 \rightarrow \gamma\gamma @ \text{FCC} - \text{ee \& Belle II}$
- With beam monochromatization, ditauonium at STCF can in fact allow a precise determination of the mass of tau lepton at O(25 keV)

Thank you for your attention !

Backup Slides

- 1-million events generated for signal & backgrounds. Run MVA (BDT) with 12 different single-γ and γ-pair kinematic variables for signal/backgds separation:
 (i) Strong discrimination power (factor of ~20) of LbL continuum from signal.
 - (ii) No discrimination achieved for overlapping charmonia (decay γ angular modulation

of tensor χ_{c2} different than scalar τ_0 signal, but $\times 50$ suppressed yields)

- Signal extracted through multi-Gaussian m, fit, by considering:
- → η_c(1S): No overlap w/ signal ("std.candle"): 0.5M clean evts to fully control E_γ scale&res. plus exp. & theory uncertainties.
- → χ_{c0} , $\eta_c(2S)$: Partial overlap with signal. Exploit ~100M $\gamma\gamma \rightarrow \chi_{c0}$, $\eta_c \rightarrow X$ decays with ×50 larger BRs (e.g. X=3- and 4-mesons) to fully remove their contamination.
- → χ_{c2} : Full overlap with signal! Exploit alternative $\gamma\gamma \rightarrow \chi_{c2} \rightarrow X$ decays (e.g. 11M evts.
 - for X=4 π) to determine its lineshape to within O(0.2%).

 $\left(\begin{array}{c} 10^{5} \\ 10^{4} \\ 10^{4} \\ 10^{2} \\ 10^{2} \\ 2800 \end{array} \right)^{10^{4}} \left(\begin{array}{c} 1S \\ \eta_{c}(1S) \\ 10^{2} \\ 2800 \end{array} \right)^{10^{4}} \left(\begin{array}{c} 1S \\ \eta_{c}(1S) \\ \eta_{c}(1S) \\ 10^{2} \\ 2800 \end{array} \right)^{10^{4}} \left(\begin{array}{c} 1S \\ \eta_{c}(2S) \\ \eta_{c}$

Reconstructed yields (LbL subtracted)

• The spin-singlet state (para-ditauonium \mathcal{T}_0) d'Enterria, HSS (PRD'22)

- Whereas the charmonium resonances decay directly from the IP, the \mathcal{T}_0 has a proper lifetime of 28 fs, i.e. a decay length 8 μm

 $\tau_0 \rightarrow e^+e^-\gamma$, $\mu^+\mu^-\gamma$ with BR~2.3%?

■ $\mathcal{O}(150)$, $\mathcal{O}(25)$ signal counts at FCC-ee/Belle-II... But para- τ_0 produced almost at rest ($\beta\gamma \approx 0.06$) \otimes

HUA-SHENG SHAO

FTCF 2024