The Measurement of EDM and Anomalous magnetic moment (g - 2) for τ

Yongcheng Wu

Nanjing Normal University

Xin Chen, Y. Wu; JHEP10(2019)089, 1803.00501 Xin Chen, Y. Wu; Eur.Phys.J. C77(2017)697, 1703.04855 Xin Chen, Y. Wu; Phys.Lett.B790(2019)332, 1708.02882

Outline

- Introduction and Current Situation
- $e^+e^- \rightarrow \tau^+\tau^-$ Event Reconstruction
 - Matrix Element method and Optimal Observable
 - Expected sensitivities
- Constraints on BSM
- Summary

Introduction

- Electric Dipole Moment
 - Current Strongest CPV test
- Anomalous Magnetic Moment (g-2)
 - Most precisely measured observable
 - Muon g-2 anomaly

•
$$\Gamma^{\mu}(q^2) = -ieQ_f \left\{ \gamma^{\mu}F_1(q^2) + \frac{\sigma^{\mu\nu}q_{\nu}}{2m_f} [i F_2(q^2) + F_3(q^2)\gamma_5] \right\}$$

• Low momentum transfer
 $F_1(0) = 1, F_2(0) = a_f = \frac{g-2}{2}, F_3(0) = d_f \frac{2m_f}{e Q_f}$

• BSM Contribution to EDM/g-2:

 $\frac{m_{\tau}}{m_{e}} \sim 3460$ $\left(\frac{m_{\tau}}{m_{\mu}}\right)^{2} \sim 280$

Mod.Phys.Lett.A22(2007)159 Phys.Lett.B255(1991)611 Phys.Lett.B395(1997)369 Rev.Mod.Phys.87(2015)531

2024-01-16

Current Sensitivities

Lepton	EDM $oldsymbol{d}_\ell \left(oldsymbol{e} \cdot oldsymbol{cm} oldsymbol{m} ight)$	$a_\ell = (g-2)/2$ PDG2023
е	$< 1.1 \times 10^{-29}$	$(1159.65218062^{\pm 0.0000012}) \times 10^{-6}$
μ	$< 1.8 \times 10^{-19}$	$(1165.92059 \pm 0.00022) \times 10^{-6}$ Combine BNL and FNA
τ	$[-1.85, 0.61] \times 10^{-17}$	[-0.052, 0.013]

• EDM

- High loop corrections
- $d_e \lesssim 10^{-38} e \cdot cm$

•
$$d_\ell \sim \frac{m_\ell}{m_e}$$

• Electron
$$(g - 2)_e$$
: Atoms 7 (2019) 28
• $a_e^{SM} = a_e^{QED} + a_e^{EW} + a_e^{Had} = (1159.65218161^{\pm 0.00000023}) \times 10^{-6}$

• Muon
$$(g - 2)_{\mu}$$
: PDG2023

- Theoretical Prediction:
 - $a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{Had} = (1165.91810 \pm 0.00001 \pm 0.00040 \pm 0.00018) \times 10^{-6}$
- The difference:

•
$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} =$$

(249 ± 22 ± 43)×10⁻¹¹

• Fermilab/J-PARC

Tau
$$(g-2)_{\tau}$$
:

•
$$a_{\tau}^{SM} = 0.00117721(5)$$

Mod.Phys.Lett.A22(2007)159; hep-ph/0701260

200

Tau Measurement

- EDM: Belle JHEP 04 (2022) 110 Phys.Lett.B 551 (2003) 16
 - $e^+e^- \rightarrow \gamma^* \rightarrow \tau^+\tau^-$
 - 8 different final states:
 - $(e\nu\bar{\nu})(\mu\nu\bar{\nu}), (e\nu\bar{\nu})(\pi\nu), (\mu\nu\bar{\nu})(\pi\nu), (e\nu\bar{\nu})(\rho\nu), (\mu\nu\bar{\nu})(\rho\nu), (\pi\nu)(\rho\nu), (\rho\nu)(\rho\bar{\nu}), (\pi\nu)(\pi\bar{\nu})$
 - Matrix Element

 $\mathcal{M}_{\text{prod}}^2 = \mathcal{M}_{\text{SM}}^2 + Re(d_{\tau})\mathcal{M}_{Re}^2 + Im(d_{\tau})\mathcal{M}_{Im}^2 + |d_{\tau}|^2\mathcal{M}_{d^2}^2,$

- Optimal Observable
 - Average over undetectable configuration
 - Ambiguities of the tau direction
- (g-2): DELPHI EPJC 35 (2004) 159
 - $e^+e^- \rightarrow e^+e^-\tau^+\tau^-$
 - Measuring the total cross-section

Current Studies

2024-01-16

FTCF 2024 ycwu@njnu.edu.cn

Current Studies

- $H \to \tau^+ \tau^- \gamma$ JHEP 12 (2016) 111 LHEP 2 (2019) 2, 5
 - SMEFT Dim-6:

 $c_1 \ \bar{\tau}_R \sigma^{\mu\nu} B_{\mu\nu} \ H^{\dagger} L_3 + c_2 \ \bar{\tau}_R \sigma^{\mu\nu} \ H^{\dagger} W_{\mu\nu} L_3 + h.c.$

• g-2 related to Higgs coupling

 $-0.0144 < a_{\tau}^{\gamma} < 0.0106.$ (95% CL), (at the LHC)

• Bent Crystal JHEP 03 (2019) 156 Phys. Rev. Lett 123 (2019) 011801

$$p p \to D_s^+ X, \quad D_s^+ \to \tau^+ \nu_{\tau}, \quad \tau^+ \to \pi^+ \pi^+ \pi^- \bar{\nu}_{\tau}.$$

FTCF 2024 ycwu@njnu.edu.cn

Measurement at e^+e^- machine

- Process:
 - $e^+e^- \rightarrow \gamma^* \rightarrow \tau^+\tau^-$
 - At STCF, about 3.5 billion pair of $\tau^+\tau^-$ per year
- τ^{\pm} Decay Channels:
 - $\tau^{\pm} \to \pi^{\pm} \nu$ (~10.8%)
 - $\tau^{\pm} \to \pi^{\pm} \pi^{0} \nu \ (\rho^{\pm}) \ (\sim 25.4\%)$ $\tau^{\pm} \to \pi^{\pm} \pi^{\pm} \pi^{\mp} \nu \ (a^{\pm}) \ (\sim 9.3\%)$
 - $\tau^{\pm} \rightarrow \ell^{\pm} \nu_{\ell} \nu$ (~17% × 2)

- Target:
 - Reconstruct the neutrino \leftarrow Reconstruct the tau lepton

Tau Reconstruction

 C_{o}

- The two-fold ambiguity
 - Using only momentum/Energy information

- τ^{\pm} life time:
 - $\tau = (290.3 \pm 0.5) \times 10^{-15} s$
 - $c\tau = 87.03 \mu m$

 $C_{l\gamma}$

 e^+

 au^+

Impact Parameters

• The ambiguity can be resolved by using the impact parameters

Phys. Lett. B 313 (1993) 458

- Advancement in silicon trackers
 - Much better resolutions

 $\sigma = a \oplus b / (p_T \sin^{1/2} \theta)$

	In mm	а	b/GeV	
	d_0	0.015	0.007	
Belle	<i>z</i> ₀	0.020	0.010	Belle II TDR - 1011.0352

Impact parameter in reconstruction

• In transverse plane:

- Along z-axis:
 - $z_0^{fit} = L \sinh \eta_\tau S \sinh \eta_{track}$
- Contribution to χ^2 :

•
$$\chi^2_{Imp,i} = \left(\frac{d_0^{fit} - d_0}{\sigma_d}\right)^2 + \left(\frac{z_0^{fit} - z_0}{\sigma_z}\right)^2$$

Performance

- The tau/neutrino momentum can be reconstructed by minimizing χ^2 event by event
- Compared with two other cases:
 - Random: Choose one of the two solutions randomly (PLB 313, 458)
 - Resolved: no fitting, but using the impact parameter to resolve the two-fold ambiguity

• Fractions of good reconstructed neutrinos: $42\% \rightarrow 59\% \rightarrow 65\%$

Sensitivities: Matrix Element/Optimal Observable

J

• With all momentum determined:

$$|\mathcal{M}|^2_{d_{\tau}} \propto M_0^d - M_1^d \frac{c_{\tau}^{NP}}{\Lambda} + M_2^d \left(\frac{c_{\tau}^{NP}}{\Lambda}\right)^2,$$
$$|\mathcal{M}|^2_{a_{\tau}} \propto M_0^a + M_1^a \frac{a_{\tau}^{NP}}{2m_{\tau}} + M_2^a \left(\frac{a_{\tau}^{NP}}{2m_{\tau}}\right)^2,$$

$$\begin{split} \mathcal{L}_{d_{\ell}} \supset -\frac{i}{2} d_{\ell}^{NP} \bar{\ell} \sigma_{\mu\nu} \gamma_5 \ell F^{\mu\nu} &= \frac{i}{2} \frac{\sqrt{2}e}{v} \left(\frac{v}{\Lambda}\right)^2 c_{\ell}^{NP} \bar{\ell} \sigma_{\mu\nu} \gamma_5 \ell F^{\mu\nu}, \\ \mathcal{L}_{a_{\ell}} \supset \frac{e}{4m_{\ell}} a_{\ell}^{NP} \bar{\ell} \sigma_{\mu\nu} \ell F^{\mu\nu}. \\ J_{\pm}^{\mu} (\tau^{\pm} \to \pi^{\pm} \nu) &= p_{\pi^{\pm}}^{\mu}, \\ J_{\pm}^{\mu} (\tau^{\pm} \to \pi^{\pm} \pi^0 \nu) &= p_{\pi^{\pm}}^{\mu} - p_{\pi^0}^{\mu}, \\ TauDecay: EPJC 73 (2013) 2489 \\ T_{\pm}^{\mu} (\tau^{\pm} \to \pi_1^{\pm} \pi_2^{\pm} \pi_3^{\mp} \nu) &= F^{13} (q_1^{\mu} - q_3^{\mu} - G^{13} Q^{\mu}) + (1 \leftrightarrow 2), \end{split}$$

• Construct Optimal Observable:

$$\mathcal{OO}^{(i)} \equiv \frac{(M_1^i/\text{GeV})}{M_0^i},$$

• Ignore high order terms

Phys. Rev. D 45 (1992) 2405 Phys. Lett. B 306 (1993) 411

Z. Phys. C 62 (1994) 397

Sensitivities: OO distributions

- For small c_{τ} and a_{τ} , the ratio of the distribution of different value can be parameterized as
 - $R_{OO} = 1 + b(OO x_0)$

Sensitivities

Comparison with Belle is also performed, factor of 4 better

 $a_{\tau}^{SM} = 0.00117721(5)$

Tau g-2 in 2HDM + Singlet (NMSSM)

- Model • Two Doublets + Singlet $\hat{\Phi}_{1} = \begin{pmatrix} G^{+} \\ \frac{v + \phi_{1} + iG^{0}}{\sqrt{2}} \end{pmatrix}, \quad \hat{\Phi}_{2} = \begin{pmatrix} H^{+} \\ \frac{\phi_{2} + i\phi_{3}}{\sqrt{2}} \end{pmatrix}, \quad \hat{S} = \frac{1}{\sqrt{2}}(\omega + \phi_{4} + i\phi_{5})$
- Mixings to Mass Eigenstates h_j : $\phi_i = R_{ij}h_j$
- Couplings for Mass Eigenstates:
 - Gauge Couplings: $g_W^{h_i} = \frac{2m_W^2}{v}R_{1i}$, $g_Z^{h_i} = \frac{m_Z^2}{v}R_{1i}$
 - Yukawa Couplings:

•
$$y_d^{h_i} = \frac{m_d}{v} \left(R_{1i} + \xi_d (R_{2i} + iR_{3i}) \right)$$

• $y_u^{h_i} = \frac{m_u}{v} \left(R_{1i} + \xi_u (R_{2i} - iR_{3i}) \right)$
• $y_\ell^{h_i} = \frac{m_\ell}{v} \left(R_{1i} + \xi_\ell (R_{2i} + iR_{3i}) \right)$

Consider Type-II Yukawa Couplings:

•
$$\xi_{d,\ell} = -\tan\beta$$

• $\xi_u = \cot\beta$

Tau g-2 in 2HDM + Singlet (NMSSM)

- Model
 - Two Doublets + Singlet

$$\hat{\Phi}_1 = \begin{pmatrix} G^+ \\ \frac{v+\phi_1+iG^0}{\sqrt{2}} \end{pmatrix}, \quad \hat{\Phi}_2 = \begin{pmatrix} H^+ \\ \frac{\phi_2+i\phi_3}{\sqrt{2}} \end{pmatrix}, \quad \hat{S} = \frac{1}{\sqrt{2}}(\omega + \phi_4 + i\phi_5)$$

• Contribution to g-2:

$$a_{\ell}^{1loop} = -\frac{m_{\ell}^2}{8\pi^2} \sum_{i=1}^n \int_0^1 dx \int_0^x dy \frac{y(y-1) \left| y_{\ell}^{h_i} \right|^2 + (y-1)Re\left(\left(y_{\ell}^{h_i} \right)^2 \right)}{m_{\ell}^2 [y(y-x) + (1-y)] + m_{h_i}^2 y}$$

$$a_{\ell}^{2loop} = \sum_{f,i} \frac{2\alpha G_F v^2 m_{\ell}}{3\sqrt{2}\pi^3 m_f} \Big[Re(y_{\ell}^{h_i}) Re(y_{f}^{h_i}) f(z_{fh_i}) - Im(y_{\ell}^{h_i}) Im(y_{f}^{h_i}) g(z_{fh_i}) \Big]$$

$$a_{\ell,W}^{2loop} = -\left(\frac{\alpha G_F v m_{\ell}}{4\sqrt{2}\pi^3}\right) \sum_{i} \frac{g_{W}^{h_i}}{2m_{W}^2/v} Re(y_{\ell}^{h_i}) \Big[3f(z_{Wh_i}) + \frac{23}{4}g(z_{Wh_i}) + \frac{3}{4}h(z_{Wh_i}) + \frac{f(z_{Wh_i}) - g(z_{Wh_i})}{2z_{Wh_i}} \Big]$$

$$JHEP 09 (2018) 059$$

Higgs Basis

 h_i

 z^{γ}, Z

Tau g-2 in 2HDM + Singlet (NMSSM)

Compare with muon and electron

Summary

- EDM/Anomaly Magnetic Moment are sensitive to BSM
- Room of improvement for tau lepton measurement
 - Maybe more sensitive to BSM Larger mass
 - Reconstruction of the neutrinos
 - Full matrix element Optimal Observable
- In some case, tau lepton measurement can be more sensitive than muon/electron measurements

Backups

Event Selections

Event Counts

Mode	Signal $\tau^+\tau^-$ (pb)	Background $\tau^+\tau^-$ (pb)	Continuum (pb)	Upsilon (fb)
$a_1 + a_1$	3.09	0.00	0.22	0.37
$a_1 + \rho$	16.14	0.39	0.73	1.16
$a_1 + \pi$	9.30	0.70	0.42	0.59
$\pi + \pi$	7.42	2.50	0.51	0.68
$\pi + \rho$	24.13	3.16	0.98	1.01
$\rho + \rho$	20.96	1.20	0.73	1.19
Total	81.04	7.95	3.58	4.99

Table 1. The effective cross sections for different processes after the selection cuts, in different $\tau^+\tau^-$ decay modes.