The 2024 International Workshop on Future Tau Charm Facilities, USTC, Hefei, 2024/01/16

CP asymmetries in $\tau \to K_S \pi \nu_{\tau}$ decays

Xin-Qiang Li

Central China Normal University

based on:

Feng-Zhi Chen, Xin-Qiang Li, Shi-Can Peng, Ya-Dong Yang, Hong-Hao Zhang, JHEP 01 (2022) 108 Feng-Zhi Chen, Xin-Qiang Li, Ya-Dong Yang, JHEP 05 (2020) 151 Feng-Zhi Chen, Xin-Qiang Li, Ya-Dong Yang, Xin Zhang, PRD 100 (2019) 113006

Outline

□ Introduction

\Box CP asymmetries in $\tau \rightarrow K_S \pi \nu_{\tau}$ decays within the SM

\Box CP asymmetries in $\tau \rightarrow K_S \pi v_{\tau}$ decays in a general EFT

D Summary

$$\mathcal{A}_{\rm CP}^{\rm rate} \equiv \frac{\Gamma(\tau^+ \to [\pi^+ \pi^-] \, {}^{"}_{K_{S}"} \, \pi^+ \bar{\nu}_{\tau}) - \Gamma(\tau^- \to [\pi^+ \pi^-] \, {}^{"}_{K_{S}"} \, \pi^- \nu_{\tau})}{\Gamma(\tau^+ \to [\pi^+ \pi^-] \, {}^{"}_{K_{S}"} \, \pi^+ \bar{\nu}_{\tau}) + \Gamma(\tau^- \to [\pi^+ \pi^-] \, {}^{"}_{K_{S}"} \, \pi^- \nu_{\tau})}$$

BaBar Collaboration, PRD 85 (2012) 031102

- commonly discussed decay-rate asymmetry
- > CP asymmetry in the angular distribution

$$A_{CP}^{i} = \frac{\int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \cos \alpha \left[\frac{d^{2} \Gamma(\tau^{-} \to K_{S} \pi^{-} \nu_{\tau})}{ds \, d \cos \alpha} - \frac{d^{2} \Gamma(\tau^{+} \to K_{S} \pi^{+} \bar{\nu}_{\tau})}{ds \, d \cos \alpha} \right] ds \, d \cos \alpha}{\frac{1}{2} \int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d^{2} \Gamma(\tau^{-} \to K_{S} \pi^{-} \nu_{\tau})}{ds \, d \cos \alpha} + \frac{d^{2} \Gamma(\tau^{+} \to K_{S} \pi^{+} \bar{\nu}_{\tau})}{ds \, d \cos \alpha} \right] ds \, d \cos \alpha}$$

Belle Collaboration, PRL 107 (2011) 131801

Semi-leptonic (hadronic) tau decays

Can be used to extract the fundamental SM parameters: $\alpha_s(m_\tau)$, m_{sr} , $|V_{us}|$, ...

□ An ideal low-energy QCD-testing laboratory: how QCD currents are hadronized, and further information about the hadronic resonance parameters (M_R , Γ_R), ...

□ Offer further possibilities of studying CPV effects [I. I. Bigi, 1210.2968; 2111.08126]

2024/01/16

Xin-Qiang Li CCNU CP asymmetries in tau -> K_S pi nu decays

Semi-leptonic (hadronic) tau decays

□ For a general hadronic decay, the decay amplitude can be written as:

2024/01/16

Xin-Qiang Li CCNU CP asymmetries in tau -> K_S pi nu decays

Why $\tau \to K_S \pi \nu_\tau$ decays

□ Have the largest Br among semi-lep. decays with 1 kaon [D. Epifanov et al. [Belle], PLB 654 (2007) 65]

describe the $K\pi$ spectrum

> The $K^*(892)$ alone not sufficient to

K^{*}(1410) model reproduces data well

 $Br(\tau \rightarrow K_S \pi \nu_{\tau}) = (0.404 \pm 0.002(stat.) \pm 0.013(syst.))\%$

> The hadronic currents parametrized by two form factors:

$$J^{\mu} = {\sf F}_V(q^2) igg(g^{\mu
u} - rac{q^{\mu}q^{
u}}{q^2} igg) (q_1 - q_2)_{
u} + {\sf F}_{\mathbb{S}}(q^2) q^{\mu}, \, q^{\mu} = q_1^{\mu} + q_2^{\mu}$$

Promising for searches for CPV both within the SM and beyond [I. I. Bigi, 1210.2968; 2111.08126]

2024/01/16

Why $\tau \to K_S \pi \nu_\tau$ decays

 \Box Decay-rate asymmetry in $\tau \rightarrow K_S \pi \nu_{\tau}$ decays:

$$\mathcal{A}_{\mathrm{CP}}^{\mathrm{rate}} \equiv \frac{\Gamma(\tau^+ \to [\pi^+ \pi^-] \, {}^{"}_{\mathcal{K}_S} \, {}^{"}_{\mathcal{K}_S} \pi^+ \bar{\nu}_{\tau}) - \Gamma(\tau^- \to [\pi^+ \pi^-] \, {}^{"}_{\mathcal{K}_S} \pi^- \nu_{\tau})}{\Gamma(\tau^+ \to [\pi^+ \pi^-] \, {}^{"}_{\mathcal{K}_S} \pi^+ \bar{\nu}_{\tau}) + \Gamma(\tau^- \to [\pi^+ \pi^-] \, {}^{"}_{\mathcal{K}_S} \pi^- \nu_{\tau})}$$

2.8 σ deviation $\begin{cases} A_{\rm CP}^{\rm Exp} = (-3.6 \pm 2.3 \pm 1.1) \times 10^{-3} \\ A_{\rm CP}^{\rm SM} = (3.6 \pm 0.1) \times 10^{-3} \end{cases}$

BaBar Collaboration, PRD 85 (2012) 031102

I. Bigi and A. I. Sanda PLB 625 (2005) 47 Y. Grossman and Y. Nir, JHEP 04 (2012) 002

\Box CP asymmetry in the angular distribution of $\tau \rightarrow K_S \pi \nu_{\tau}$ decays

$\int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \cos \alpha \left[\frac{d^2 \Gamma(\tau^- \to K_S \pi^- \nu_\tau)}{ds d \cos \alpha} - \frac{d^2 \Gamma(\tau^+ \to K_S \pi^+ \bar{\nu}_\tau)}{ds d \cos \alpha} \right] ds d \cos \alpha$	\sqrt{s} [GeV]	$A_{{ m SM},i}^{CP}$ [10 ⁻³]	$A_{\exp,i}^{CP}$ [10 ⁻³]
$A_{CP}' = \frac{1}{1 \int_{-\infty}^{\infty} d^2 \Gamma(\tau^- \to K_S \pi^- \nu_\tau) + d^2 \Gamma(\tau^+ \to K_S \pi^+ \bar{\nu}_\tau)} \int_{-\infty}^{\infty} d\tau d\tau d\tau$	0.625 - 0.890	0.39 ± 0.01	$7.9\pm3.0\pm2.8$
$\frac{1}{2} \int_{s_{1,i}}^{2,i} \int_{-1} \left[\frac{ds d \cos \alpha}{ds d \cos \alpha} + \frac{ds d \cos \alpha}{ds d \cos \alpha} \right] ds d \cos \alpha$	0.890 - 1.110	0.04 ± 0.01	$1.8\pm2.1\pm1.4$
Belle Collaboration, PRL 107 (2011) 131801	1.110 - 1.420	0.12 ± 0.02	$-4.6\pm7.2\pm1.7$
compatible with zero with a sensitivity of $\mathcal{O}(10^{-3})$	1.420 - 1.775	0.27 ± 0.05	$-2.3 \pm 19.1 \pm 5.5$

 \Box Can be used to probe many BSM effects: H^{\pm} , Leptoquark, ...

$\tau \rightarrow K_S \pi \nu_{\tau}$ decays within the SM

□ Tree-level Feynman diagrams in weak interaction within the SM:

 \Box According to the well-known $\Delta S = \Delta Q$ rule, τ^- can only decay into \overline{K}^0 , while τ^+ into K^0

□ In the SM, V_{us} is real (no weak phase) & the same strong phase between the two CPrelated processes

$$\implies \mathcal{A}(\tau^+ \to K^0 \pi^+ \bar{\nu}_\tau) = \mathcal{A}(\tau^- \to \bar{K}^0 \pi^- \nu_\tau)$$

$\tau \rightarrow K_S \pi \nu_{\tau}$ decays within the SM

□ Caution: due to $K^0 - \overline{K}^0$ mixing, the exp. reconstructed kaons are the mass $(|K_S\rangle, |K_L\rangle)$ rather than the flavor $(|K^0\rangle, |\overline{K}^0\rangle)$ eigenstates

$$|K_{S}^{0}\rangle = \frac{(1+\epsilon)|K^{0}\rangle + (1-\epsilon)|\bar{K}^{0}\rangle}{\sqrt{2(1+|\epsilon|^{2})}}, \qquad |K^{0}\rangle = \frac{\sqrt{2(1+|\epsilon|^{2})}}{2(1+\epsilon)}\left[|K_{S}^{0}\rangle + |K_{L}^{0}\rangle\right], \qquad \textbf{ϵ: characterizes the amount of CPV in the neutral kaon system} \qquad \textbf{κ_{S}}$$

\Box In the absence of CPV, $\epsilon = 0$, we have in the SM that :

$$|K_{S}\rangle = \frac{|K^{0}\rangle + |\bar{K}^{0}\rangle}{\sqrt{2}} \longrightarrow \frac{d^{2}\Gamma(\tau^{-} \to K_{S,L}\pi^{-}\nu_{\tau})}{ds\,d\cos\alpha} = \frac{1}{2}\frac{d^{2}\Gamma(\tau^{-} \to \bar{K}^{0}\pi^{-}\nu_{\tau})}{ds\,d\cos\alpha} \longrightarrow \frac{d^{2}\Gamma(\tau^{+} \to K_{S,L}\pi^{+}\bar{\nu}_{\tau})}{ds\,d\cos\alpha} = \frac{1}{2}\frac{d^{2}\Gamma(\tau^{+} \to K^{0}\pi^{+}\bar{\nu}_{\tau})}{ds\,d\cos\alpha} \longrightarrow \frac{d^{2}\Gamma(\tau^{+} \to K_{S,L}\pi^{+}\bar{\nu}_{\tau})}{ds\,d\cos\alpha} = \frac{1}{2}\frac{d^{2}\Gamma(\tau^{+} \to K^{0}\pi^{+}\bar{\nu}_{\tau})}{ds\,d\cos\alpha} \longrightarrow \frac{1}{2}\frac{d^{2}\Gamma(\tau^{+} \to K^{0}\pi^{+}\bar{\nu}_{\tau})}{ds\,d\cos\alpha}$$

 \Box However, CPV in neutral kaon system well established: $|\epsilon| = (2.228 \pm 0.011) \times 10^{-3}$

2024/01/16

 $\mathcal{A}(\tau^+ \to K^0 \pi^+ \bar{\nu}_\tau) = \mathcal{A}(\tau^- \to \bar{K}^0 \pi^- \nu_\tau)$

$\tau \rightarrow K_S \pi \nu_{\tau}$ decays within the SM

D Once CPV in $K^0 - \overline{K}^0$ mixing considered, non-zero CP asymmetries appear in the decays

 \Box Experimentally, the K_S intermediate states reconstructed via the $\pi^+\pi^-$ final state

□ When the kaon decay time is long enough, the $\pi^+\pi^-$ final state can arise not only from $K_{S'}$, but also from $K_{L'}$, due to the CPV in $K^0 - \overline{K}^0$ mixing

 \Rightarrow the interference between $K_S \& K_L$ amplitudes important for studying CPV!

□ Time-dependent and doubly differential decay widths:

$$\frac{d^{2}\Gamma(\tau^{-} \rightarrow K_{S,L}\pi^{-}\nu_{\tau} \rightarrow [\pi^{+}\pi^{-}]\pi^{-}\nu_{\tau})}{ds\,d\cos\alpha} = \frac{d^{2}\Gamma(\tau^{-} \rightarrow \bar{K}^{0}\pi^{-}\nu_{\tau})}{ds\,d\cos\alpha}\Gamma(\bar{K}^{0}(t) \rightarrow \pi^{+}\pi^{-}),$$

$$\frac{d^{2}\Gamma(\tau^{+} \rightarrow K_{S,L}\pi^{+}\bar{\nu}_{\tau} \rightarrow [\pi^{+}\pi^{-}]\pi^{+}\bar{\nu}_{\tau})}{ds\,d\cos\alpha} = \frac{d^{2}\Gamma(\tau^{+} \rightarrow K^{0}\pi^{+}\bar{\nu}_{\tau})}{ds\,d\cos\alpha}\Gamma(K^{0}(t) \rightarrow \pi^{+}\pi^{-}),$$

$$\frac{d^{2}\Gamma(\tau^{+} \rightarrow K_{S,L}\pi^{+}\bar{\nu}_{\tau} \rightarrow [\pi^{+}\pi^{-}]\pi^{+}\bar{\nu}_{\tau})}{ds\,d\cos\alpha} = \frac{d^{2}\Gamma(\tau^{+} \rightarrow K^{0}\pi^{+}\bar{\nu}_{\tau})}{ds\,d\cos\alpha}\Gamma(K^{0}(t) \rightarrow \pi^{+}\pi^{-}),$$

$$\frac{d^{2}\Gamma(\tau^{+} \rightarrow K_{S,L}\pi^{+}\bar{\nu}_{\tau} \rightarrow [\pi^{+}\pi^{-}]\pi^{+}\bar{\nu}_{\tau})}{ds\,d\cos\alpha} = \frac{d^{2}\Gamma(\tau^{+} \rightarrow K^{0}\pi^{+}\bar{\nu}_{\tau})}{ds\,d\cos\alpha}\Gamma(K^{0}(t) \rightarrow \pi^{+}\pi^{-}),$$

$$\frac{d^{2}\Gamma(\tau^{+} \rightarrow K_{S,L}\pi^{+}\bar{\nu}_{\tau} \rightarrow [\pi^{+}\pi^{-}]\pi^{+}\bar{\nu}_{\tau})}{ds\,d\cos\alpha}\Gamma(K^{0}(t) \rightarrow \pi^{+}\pi^{-}),$$

Time-dep. CPA in the angular distribution

- $(d\omega = dsd\cos\alpha)$
- \succ bin choice $[s_{1,i}, s_{2,i}]$
- ➢ time interval [t_1 , t_2]
- > exp.-dep. effects parametrized by F(t)

$$\begin{split} A_{i}^{CP}(t_{1},t_{2}) &= \frac{\int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \cos \alpha \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \bar{\Gamma}_{\pi^{+}\pi^{-}}(t) \, dt - \frac{d\Gamma^{\tau^{+}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \bar{\Gamma}_{\pi^{+}\pi^{-}}(t) \, dt \right] d\omega}{\frac{1}{2} \int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \bar{\Gamma}_{\pi^{+}\pi^{-}}(t) \, dt + \frac{d\Gamma^{\tau^{+}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \bar{\Gamma}_{\pi^{+}\pi^{-}}(t) \, dt \right] d\omega} \\ &= \frac{\left(\langle \cos \alpha \rangle_{i}^{\tau^{-}} + \langle \cos \alpha \rangle_{i}^{\tau^{+}} \right) A_{K}^{CP}(t_{1},t_{2}) + \left(\langle \cos \alpha \rangle_{i}^{\tau^{-}} - \langle \cos \alpha \rangle_{i}^{\tau^{+}} \right)}{1 + A_{K}^{CP}(t_{1},t_{2}) \cdot A_{\tau,i}^{CP}} \end{split}$$

$$A_{K}^{CP}(t_{1},t_{2}) = \frac{\int_{t_{1}}^{t_{2}} F(t) \left[\bar{\Gamma}_{\pi^{+}\pi^{-}}(t) - \Gamma_{\pi^{+}\pi^{-}}(t)\right] dt}{\int_{t_{1}}^{t_{2}} F(t) \left[\bar{\Gamma}_{\pi^{+}\pi^{-}}(t) + \Gamma_{\pi^{+}\pi^{-}}(t)\right] dt} \rightarrow CPA \text{ in kaon decay}$$

$$A_{\tau,i}^{CP} = \frac{\int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} - \frac{d\Gamma^{\tau^{+}}}{d\omega}\right] d\omega}{\int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} - \frac{d\Gamma^{\tau^{+}}}{d\omega}\right] d\omega} \rightarrow CPA \text{ in tau decay}$$

$$(\cos \alpha)_{i}^{\tau^{-}} - \langle \cos \alpha \rangle_{i}^{\tau^{+}} = \frac{\int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \cos \alpha \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} - \frac{d\Gamma^{\tau^{+}}}{d\omega}\right] d\omega}{\frac{1}{2} \int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} + \frac{d\Gamma^{\tau^{+}}}{d\omega}\right] d\omega}$$
Within the SM:
$$A(\tau^{+} \rightarrow K^{0}\pi^{+}\bar{\nu}_{\tau}) = A(\tau^{-} \rightarrow \bar{K}^{0}\pi^{-}\nu_{\tau})$$

$$A(\tau^{+} \rightarrow K^{0}\pi^{+}\bar{\nu}_{\tau}) = A(\tau^{-} \rightarrow \bar{K}^{0}\pi^{-}\nu_{\tau})$$

tau decay width weighted

 $\int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \cos \alpha \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} + \frac{d\Gamma^{\tau^{+}}}{d\omega} \right] d\omega$

Decay-rate asymmetry within the SM

 \Box Within the SM, since $A_{\tau}^{CP} = 0$, the direct decay-rate asymmetry is exactly equal to A_{K}^{CP} :

$$egin{aligned} &A_{CP}^{ ext{rate}}(t_1,t_2) = rac{\Gamma_{ au^+} \int_{t_1}^{t_2} dt F(t) \Gammaig(K^0(t) o \pi^+ \pi^-ig) - \Gamma_{ au^-} \int_{t_1}^{t_2} dt F(t) \Gammaig(ar{K}^0(t) o \pi^+ \pi^-ig) \ & \Gamma_{ au^+} \int_{t_1}^{t_2} dt F(t) \Gammaig(K^0(t) o \pi^+ \pi^-ig) + \Gamma_{ au^-} \int_{t_1}^{t_2} dt F(t) \Gammaig(ar{K}^0(t) o \pi^+ \pi^-ig) \ & = rac{A_{ au}^{CP} + A_K^{CP}(t_1,t_2)}{1 + A_{ au}^{CP} A_K^{CP}(t_1,t_2)} = A_K^{CP}(t_1,t_2) \end{aligned}$$

• $A_{K}^{CP}(t_{1}, t_{2})$: CPV in $K^{0} - \bar{K}^{0}$ mixing $A_{K}^{CP}(t_{1} \ll \Gamma_{S}^{-1}, \Gamma_{S}^{-1} \ll t_{2} \ll \Gamma_{L}^{-1}) \approx -2 \operatorname{Re}(\epsilon_{K}) = -(3.32 \pm 0.06) \times 10^{-3}$ $F(t) = \begin{cases} 1 & t_{1} < t < t_{2} \\ 0 & \text{otherwise.} \end{cases}$ efficiency function F(t) provided by BaBar

2.8 σ puzzle still there:

$$A_{\rm SM}^{CP} = (3.6 \pm 0.1) \times 10^{-3}$$

 $A_{\text{EXP}}^{CP} = (-3.6 \pm 2.3 \pm 1.1) \times 10^{-3}$

Time-dep. CPA in the angular distribution

□ Within the SM, CPA in angular distribution:

$$A_i^{CP}(t_1, t_2) = 2 \left\langle \cos \alpha \right\rangle_i^{\tau^-} A_K^{CP}(t_1, t_2)$$

 $A_K^{\text{CP}}(t_1 \ll \Gamma_S^{-1}, \Gamma_S^{-1} \ll t_2 \ll \Gamma_L^{-1}) \approx -2\text{Re}(\epsilon_K) = -(3.32 \pm 0.06) \times 10^{-3}$ as input!

D For $\langle \cos \alpha \rangle_i^{\tau^{\pm}}$: depending on the two normalized FFs

 $=\frac{-2\Delta_{\mathcal{K}\pi}\Re e[\tilde{\mathcal{F}}_{+}(s)\tilde{\mathcal{F}}_{0}^{*}(s)]\lambda^{1/2}\left(s,\mathcal{M}_{\mathcal{K}}^{2},\mathcal{M}_{\pi}^{2}\right)}{\left|\tilde{\mathcal{F}}_{+}(s)\right|^{2}\left(1+\frac{2s}{m^{2}}\right)\lambda\left(s,\mathcal{M}_{\mathcal{K}}^{2},\mathcal{M}_{\pi}^{2}\right)+3\Delta_{\mathcal{K}\pi}^{2}\left|\tilde{\mathcal{F}}_{0}(s)\right|^{2}}$

$$\tilde{F}_{+,0}(s) = F_{+,0}(s)/F_{+}(0)$$

$$\left\langle \bar{K}^{0}(p_{K})\pi^{-}(p_{\pi})\left|\bar{s}\gamma^{\mu}u\right|0\right\rangle = \left[(p_{K}-p_{\pi})^{\mu}-\frac{\Delta_{K\pi}}{s}q^{\mu}\right]F_{+}(s)+\frac{\Delta_{K\pi}}{s}q^{\mu}F_{0}(s)$$

• due to interference between vector & scalar FFs

• Vector form factor : the thrice-subtracted dispersion representation D.R. Boito, R. Escribano and M. Jamin, Eur. Phys. J. C59 (2009) 821

FFs: • Scalar f

 $\langle \cos \alpha \rangle^{\tau^{-}}(s) = \frac{\int_{-1}^{1} \cos \alpha \left(\frac{d^{2} \Gamma^{\tau^{-}}}{ds d \cos \alpha}\right) d \cos \alpha}{\int_{-1}^{1} \left(\frac{d^{2} \Gamma^{\tau^{-}}}{ds d \cos \alpha}\right) d \cos \alpha}$

$$F_{+}(s) = \exp\left\{\lambda'_{+}rac{s}{M_{\pi^{-}}^{2}} + rac{1}{2}(\lambda''_{+} - {\lambda'_{+}}^{2})rac{s^{2}}{M_{\pi^{-}}^{4}} + rac{s^{3}}{\pi}\int_{s_{K\pi}}^{s_{cut}}ds'rac{\delta_{+}(s')}{(s')^{3}(s'-s-i\epsilon)}
ight\}$$

$$F_0^1(s) = rac{1}{\pi} \sum_{j=1}^3 \int_{s_j}^\infty ds' rac{\sigma_j(s') F_0^j(s') t_0^{1 o j}(s')^*}{s' - s - i\epsilon}$$
, ($1 \equiv K\pi$, $2 \equiv K\eta$, and $3 \equiv K\eta'$)

For CP studies, the Breit-Wigner form is not applicable, as it violates Watson's theorem and unphysical!

Time-dep. CPA in the angular distribution

D Numerical results for $A_i^{CP}(t_1, t_2)$ in four mass bins:

	$\sqrt{s} \; [\text{GeV}]$	$A_{{ m SM},i}^{ m CP}~[10^{-3}]$	$A_{\exp,i}^{CP}$ [10 ⁻³]	$n_i/N_s~[\%]$
	0.625 - 0.890	0.39 ± 0.01	$7.9\pm3.0\pm2.8$	36.53 ± 0.14
	0.890 - 1.110	0.04 ± 0.01	$1.8\pm2.1\pm1.4$	57.85 ± 0.15
2	1.110 - 1.420	0.12 ± 0.02	$-4.6 \pm 7.2 \pm 1.7$	4.87 ± 0.04
	1.420 - 1.775	0.27 ± 0.05	$-2.3 \pm 19.1 \pm 5.5$	0.75 ± 0.02

SM predictions still below the Belle sensitivity of $\mathcal{O}(10^{-3})$, but expected to be detectable at Belle II, with $\sqrt{70}$ times more sensitive results!

Belle-II, PTEP 2019 (2019) 123C01

Two more predictions:

as large as the SM prediction for
$$A_{CP}^{rate}$$

 $A_{\rm SM}^{CP} = (3.6 \pm 0.1) \times 10^{-3}$ $3 \pm 0.06) \times 10^{-3}$ 0.70 GeV < $\sqrt{s} < 0.75$ GeV

 $A_i^{CP}(t_1, t_2) = \begin{cases} (3.06 \pm 0.06) \times 10^{-3}, & 0.70 \,\text{GeV} < \sqrt{s} < 0.75 \,\text{GeV} \\ (1.38 \pm 0.18) \times 10^{-3}, & 1.40 \,\text{GeV} < \sqrt{s} < 1.50 \,\text{GeV} \end{cases}$

□ Interesting to see if Belle II & STCF can measure the CPviolating angular observables in such two mass intervals?

 $\tau^{\pm} \rightarrow K^0(\overline{K}^0)\pi^{\pm}\overline{\nu}_{\tau}(\nu_{\tau})$ in a general EFT

□ When NP presents

in tau decays:

CP-violating observables:

$$A_i^{\rm CP} \simeq \left(\langle \cos \alpha \rangle_i^{\tau^-} + \langle \cos \alpha \rangle_i^{\tau^+} \right) A_K^{\rm CP} + \left(\langle \cos \alpha \rangle_i^{\tau^-} - \langle \cos \alpha \rangle_i^{\tau^+} \right)$$

 \Box The most general $SU(3)_{\mathcal{C}} \otimes U(1)_{em}$ -invariant low-energy effective Lagrangian:

 $\mathcal{A}(au^+ o K^0 \pi^+ ar{
u}_ au)
eq \mathcal{A}(au^- o ar{K}^0 \pi^-
u_ au)$

$$\mathcal{L}_{\text{eff}} = -\frac{G_F V_{us}}{\sqrt{2}} \left\{ \bar{\tau} \gamma_\mu (1 - \gamma_5) \nu_\tau \cdot \bar{u} \left[\gamma^\mu - (1 - 2 \,\hat{\epsilon}_R) \gamma^\mu \gamma_5 \right] s \right\}$$

$$+ \, ar{ au}(1-\gamma_5)
u_ au \cdot ar{u} \left[\hat{\epsilon}_S - \hat{\epsilon}_P \gamma_5
ight] s + 2 \, \hat{\epsilon}_T \, ar{ au} \sigma_{\mu
u} (1-\gamma_5)
u_ au \cdot ar{u} \sigma^{\mu
u} s \Big\} + ext{h.c.}$$

Decay amplitude for $\tau^- \to \overline{K}{}^0 \pi^- \nu_{\tau}$: $\mathcal{M} = \mathcal{M}_V + \mathcal{M}_S + \mathcal{M}_T$

scalar operator + tensor operator

$$=\frac{G_F V_{us}}{\sqrt{2}} \left[L_{\mu} H^{\mu} + \hat{\epsilon}_S^* L H + 2\hat{\epsilon}_T^* L_{\mu\nu} H^{\mu\nu}\right]$$

Tensor form factors

Leptonic currents:

 $L = \bar{u}(p_{\nu_{\tau}})(1 + \gamma_{5})u(p_{\tau}),$ $L_{\mu} = \bar{u}(p_{\nu_{\tau}})\gamma_{\mu}(1 - \gamma_{5})u(p_{\tau}),$ $L_{\mu\nu} = \bar{u}(p_{\nu_{\tau}})\sigma_{\mu\nu}(1 + \gamma_{5})u(p_{\tau}),$

\square *K* π tensor FF: due to lack of enough exp. data, the once-subtracted dispersion representation

for $F_T(0)$: obtained from the lowest-order χ PT with tensor source

• $\mathcal{L}_{4}^{\chi \mathsf{PT}} = \Lambda_1 \langle t_+^{\mu\nu} f_{+\mu\nu} \rangle - i\Lambda_2 \langle t_+^{\mu\nu} u_\mu u_\nu \rangle + \Lambda_3 \langle t_+^{\mu\nu} t^{+\mu\nu} \rangle + \Lambda_4 \langle t_+^{\mu\nu} \rangle^2$

O. Cata and V. Mateu, JHEP 09 (2007) 078

□ Hadronic matrix elements:

 $H = \langle \pi^{-} \overline{K}^{0} \mid \overline{s}u \mid 0 \rangle = F_{S}(s)$

 $H^{\mu}=\langle\pi^{-}\overline{K}^{0}\mid\overline{s}\gamma^{\mu}u\mid0
angle=Q^{\mu}F_{+}(s)+rac{\Delta_{K\pi}}{s}q^{\mu}F_{0}(s)$

 $F_T(s) = F_T(0) \exp\left\{\frac{s}{\pi} \int_{s_{K-}}^{\infty} ds' \frac{\delta_T(s')}{s'(s'-s-i\epsilon)}\right\}$

 $H^{\mu
u} = \langle \pi^- \overline{K}^0 \mid \overline{s} \sigma^{\mu
u} u \mid 0
angle = i F_T(s) \left(p^\mu_K p^
u_\pi - p^\mu_\pi p^
u_K
ight)$

$$\left\langle \bar{K}^{0}(p_{K})\pi^{-}(p_{\pi}) \left| \frac{\delta L_{4}^{\chi \text{PT}}}{\delta \bar{t}_{\mu\nu}} \right| 0 \right\rangle = i \frac{\Lambda_{2}}{F_{\pi}^{2}} (p_{K}^{\mu} p_{\pi}^{\nu} - p_{K}^{\nu} p_{\pi}^{\mu}) \implies F_{T}(0) = \Lambda_{2} / F_{\pi}^{2}, \text{ with } \Lambda_{2} = (11.1 \pm 0.4) \text{MeV}$$

I. Baum et al., PRD 84 (2011) 074503

Tensor form factors

□ To account for the *s*-dep. of these FFs, we have included the two spin-1 resonances $K^*(892)$ & $K^*(1410)$, both contribute dominantly to $F_+(s)$ & $F_T(s)$

 \succ $F_T(s)$: obtained with R χ T including spin-1 resonances

•
$$\mathcal{L}_{6}^{R\chi T} = \mathcal{L}_{kin}(\hat{V}_{\mu}) - \frac{1}{2\sqrt{2}} \left(f_{V} \langle \hat{V}_{\mu\nu} f_{+}^{\mu\nu} \rangle + ig_{V} \langle \hat{V}_{\mu\nu} [u^{\mu}, u^{\nu}] \rangle \right) - f_{V}^{T} \langle \hat{V}_{\mu\nu} t_{+}^{\mu\nu} \rangle$$

Ecker, J. Gasser, H. Leutwyler, A. Pich, and E. de Rafael, PLB 223 (1989) 425

$$F_{T}(s) = \frac{\Lambda_{2}}{F_{\pi}^{2}} \left[1 + \frac{\sqrt{2}f_{V}^{T}g_{V}}{\Lambda_{2}} \frac{s}{M_{K^{*}}^{2} - s} + \frac{\sqrt{2}f_{V}^{T'}g_{V}}{\Lambda_{2}} \frac{s}{M_{K^{*'}}^{2} - s} \right]$$

$$\tilde{F}_{T}(s) = F_{T}(s)/F_{T}(0)$$

$$= \frac{\Lambda_{2}}{F_{\pi}^{2}} \left[\frac{M_{K^{*}}^{2} + \beta s}{M_{K^{*}}^{2} - s} - \frac{\beta s}{M_{K^{*'}}^{2} - s} \right]$$

$$energy-dep. width \gamma_{n}(s)$$

$$= \frac{m_{K^{*}}^{2} - \kappa_{K^{*}}\tilde{H}_{K\pi}(0) + \beta s}{D(m_{K^{*}}, \gamma_{K^{*}})} - \frac{\beta s}{D(m_{K^{*'}}, \gamma_{K^{*'}})}$$

$$\beta = \frac{\sqrt{2}f_{V}^{T}g_{V}}{\Lambda_{2}} - 1 \simeq \pm 0.75\gamma: \text{ characterizes the relative weight}$$
of the two resonances, and plays the same role as γ for $F_{+}(s)$

$$Xin Zhang, PRD 100 (2019) 113006$$

Tensor form factors

Combining χPT @ low s + RχT @ intermediate s
 + asymptotic behaviors @ high s, we obtain the once-subtracted dispersion representation:

$$F_T(s) = F_T(0) \exp\left\{\frac{s}{\pi} \int_{s_{K\pi}}^{\infty} ds' \frac{\delta_T(s')}{s'(s'-s-i\epsilon)}\right\}$$

$$\delta_T(s) = \begin{cases} \arctan[\frac{\Im m \tilde{F}_T(s)}{\Re e \tilde{F}_T(s)}], & s_{K\pi} < s < s_{cut} \\ n_T \pi, & s \ge s_{cut} \end{cases}$$
asymptotic 1/s as dictated b

> in elastic region (below ~ 1.2 GeV), $\delta_T(s) = \delta_+(s)$

 $\frac{1}{(s'-s-i\epsilon)}$

as required by Watson's theorem [K. M. Watson, Phys. Rev. 95 (1954) 228]

> in inelastic region (above ~ 1.2 GeV), $\delta_T(s)$ and $\delta_+(s)$ start to behave differently due to the different relative weights of the two resonances $K^*(892)$ & $K^*(1410)$

2024/01/16

Xin-Qiang Li CCNU CP asymmetries in tau -> K_S pi nu decays

CP-violating observables in the general EFT

Decay-rate asymmetry:

$$\begin{split} A_{\rm CP}^{\rm rate}(\tau \to K \pi \nu_{\tau}) &= \frac{\Gamma(\tau^+ \to K^0 \pi^+ \bar{\nu}_{\tau}) - \Gamma(\tau^- \to \bar{K}^0 \pi^- \nu_{\tau})}{\Gamma(\tau^+ \to K^0 \pi^+ \bar{\nu}_{\tau}) + \Gamma(\tau^- \to \bar{K}^0 \pi^- \nu_{\tau})} \\ \\ \text{ence} &= \frac{\mathrm{Im}[\hat{\epsilon}_T] \, G_F^2 |V_{us}|^2 S_{\rm EW}}{128 \, \pi^3 \, m_{\tau}^2 \, \Gamma(\tau \to K_S \pi \nu_{\tau})} \, \int_{s_{K\pi}}^{m_{\tau}^2} ds \left(1 - \frac{m_{\tau}^2}{s}\right)^2 \, \lambda^{\frac{3}{2}} \left(s, M_K^2, M_{\pi}^2\right) \end{split}$$

 $\times |F_T(s)| |F_+(s)| \sin [\delta_T(s) - \delta_+(s)]$,

only vector-tensor interference as the only possible mechanism

CPA in angular distribution:

both from scalar-vector and scalar-tensor interferences

$$\begin{split} A_{CP}^{i} \simeq & \Delta_{K\pi} \, S_{\mathrm{EW}} \, \frac{N_{s}}{n_{i}} \int_{s_{1,i}}^{s_{2,i}} \left\{ -\frac{\mathrm{Im}[\hat{\epsilon}_{S}]}{m_{\tau}(m_{s}-m_{u})} \, \mathrm{Im}\left[F_{+}(s)F_{0}^{*}(s)\right] - \frac{2\mathrm{Im}[\hat{\epsilon}_{T}]}{m_{\tau}} \, \mathrm{Im}\left[F_{\tau}(s)F_{0}^{*}(s)\right] \right. \\ & \left. + \left[\left(\frac{1}{s} + \frac{\mathrm{Re}[\hat{\epsilon}_{S}]}{m_{\tau}(m_{s}-m_{u})} \right) \, \mathrm{Re}\left[F_{+}(s)F_{0}^{*}(s)\right] - \frac{2\mathrm{Re}[\hat{\epsilon}_{T}]}{m_{\tau}} \, \mathrm{Re}[F_{\tau}(s)F_{0}^{*}(s)] \right] A_{K}^{CP} \right\} C(s) \, ds \, . \end{split}$$

 \Box Constraints on Re[$\hat{\epsilon}_{s,T}$]: more stringent from decay rates of various exclusive τ decays

 $\operatorname{Re}[\hat{\epsilon}_{S}] = (0.8^{+0.8}_{-0.9} \pm 0.3)\%, \operatorname{Re}[\hat{\epsilon}_{T}] = (0.9 \pm 0.7 \pm 0.4)\%$ S. Gonzàlez-Solís, A. Miranda, J. Rendón and P. Roig, Phys. Lett. B 804 (2020) 135371

 \Box Constraints on Im[$\hat{\epsilon}_{S,T}$]: more sensitive to these CP-violating observables

2024/01/16

Xin-Qiang Li CCNU CP asymmetries in tau -> K_S pi nu decays

CP-violating observables in general EFT

 \Box Fit results on $\operatorname{Im}[\hat{\epsilon}_{S,T}]$ from $\mathcal{B}_{\exp}^{\tau^{-}}$ and $A_{\exp,i}^{CP}$ in four different bins from Belle:

- \succ remarkably negative correlation between Im[$\hat{\epsilon}_{s}$] & Im[$\hat{\epsilon}_T$], as both vector & tensor FFs dominated by $K^*(892)$ and $K^*(1410)$, and hence have almost the same phases, especially in elastic region
- > bound on $\text{Im}[\hat{\epsilon}_s]$ consistent with $|\text{Im}(\eta_s)| < 0.026$ @ 90% C.L. obtained by Belle [PRL 107 (2011) 131801]
- > upper bound on $\text{Im}[\hat{\epsilon}_T]$ only of $\mathcal{O}(10^{-1})$, much weaker than $2|\text{Im}[\hat{\epsilon}_T]| \leq 10^{-5}$ from neutron EDM & $D^{0} - \overline{D}^{0}$ mixing [V. Cirigliano *et al.*, PRL 120 (2018) 141803]

CP-violating observables in general EFT

$\square A_i^{CP}$ in the presence of non-standard scalar & tensor interactions:

- > with best-fit values of $\text{Im}[\hat{\epsilon}_S]$ and $\text{Im}[\hat{\epsilon}_T]$, the CPA distributions have almost the same magnitude but opposite in sign in whole $K\pi$ invariant-mass region
- the non-standard scalar & tensor contributions are about one order of magnitude larger than the SM prediction

We strongly suggest the future experiments, especially Belle II & STCF, to make more precise measurement of these CP asymmetries in the angular distributions
 Belle-II, PTEP 2019 (2019) 123C01; H. Sang, X. Shi, X. Zhou, X. Kang and J. Liu, CPC 45 (2021) 053003

2024/01/16

Xin-Qiang Li CCNU CP asymmetries in tau -> K_S pi nu decays

□ If BSM interactions originate from a weakly-coupled heavy NP well above the EW scale

 $SU(2)_L$ invariance of \mathcal{L}_{eff} implies other processes to put further limits on $Im[\hat{\epsilon}_{S,T}]$

□ For the tensor operator: $\mathcal{L}_{\text{SMEFT}} \supset [C_{\ell equ}^{(3)}]_{klmn}(\bar{\ell}_{Lk}^i \sigma_{\mu\nu} e_{Rl}) \epsilon^{ij}(\bar{q}_{Lm}^j \sigma^{\mu\nu} u_{Rn}) + \text{h.c.}$ **↓** dim-6 SMEFT operator

$$C^{(3)}_{\ell equ}]_{klmn} [(\bar{\nu}_{Lk}\sigma_{\mu\nu}e_{Rl})(\bar{d}_{Lm}\sigma^{\mu\nu}u_{Rn}) - V_{am}(\bar{e}_{Lk}\sigma_{\mu\nu}e_{Rl})(\bar{u}_{La}\sigma^{\mu\nu}u_{Rn})] + \text{h.c.}$$

 $\tau \rightarrow K_S \pi \nu_{\tau}$ & neutron EDM share the same WC:

$$d_u(\mu) = -2\sqrt{2}G_F \frac{em_\tau}{\pi^2} V_{us}^2 \operatorname{Im}[\hat{\epsilon}_T(\mu)] \log \frac{\Lambda}{\mu} \qquad [C_{\ell equ}^{(3)}]_{3321} = -2\sqrt{2}G_F V_{us}\hat{\epsilon}_T^*$$

Assuming the neutron EDM receives contribution only from $\hat{\epsilon}_T$, we get:

 $|d_n = g_T^u(\mu)d_u(\mu)| < 1.8 \times 10^{-26} e \text{ cm} \implies |\text{Im}[\hat{\epsilon}_T]| \le \frac{1.5 \times 10^{-5}}{\ln\left(\frac{\Lambda}{\mu_\tau}\right)} \le 4 \times 10^{-6} \text{ for } \Lambda \ge 100 \text{GeV \& } \mu_\tau = 2 \text{GeV}$ $\text{nEDM collaboration, PRL 124 (2020) 081803} \qquad A_{CP}^i|_{\max} \sim \mathcal{O}(10^{-6}) \qquad \text{strongest limit obtained so far!}$

Caveat: tensor operator $(\bar{\tau}\sigma_{\mu\nu}\tau_R)(\bar{u}_L\sigma^{\mu\nu}u_R)$ can also associate with the WC combination

 $V_{ud} \operatorname{Im}[C_{\ell equ}^{(3)}]_{3311} + V_{us} \operatorname{Im}[C_{\ell equ}^{(3)}]_{3321} = 2\sqrt{2}G_F \left(V_{ud}^2 \operatorname{Im}[\epsilon_T]_{3311} + V_{us}^2 \operatorname{Im}[\epsilon_T]_{3321}\right)$

 $d_u(\mu) = -2\sqrt{2}G_F \,\frac{em_\tau}{\pi^2} \left(V_{ud}^2 \,\mathrm{Im}[\epsilon_T]_{3311} + V_{us}^2 \,\mathrm{Im}[\epsilon_T]_{3321} \right) \log \frac{\Lambda}{\mu}$

> when delicate cancellation exists between them, stringent limit on $Im[\hat{e}_T]$ can be diluted

□ In this case, another interesting constraint on $(\bar{\tau}\sigma_{\mu\nu}\tau_R)(\bar{c}_L\sigma^{\mu\nu}u_R)$ from $D^0 - \bar{D}^0$ mixing: $V_{cd}[C_{\ell equ}^{(3)}]_{3311} + V_{cs}[C_{\ell equ}^{(3)}]_{3321} = V_{ud}V_{cd}[\epsilon_T]_{3311} + V_{us}V_{cs}[\epsilon_T]_{3321}$ double insertion $M_{12}^{\text{NP}} = \frac{1}{2M_D} \Big[C_2'(\mu) \langle D^0 | (\bar{c}_L^\alpha u_R^\alpha) (\bar{c}_L^\beta u_R^\beta) | \bar{D}^0 \rangle (\mu) + C_3'(\mu) \langle D^0 | (\bar{c}_L^\alpha u_R^\beta) (\bar{c}_L^\beta u_R^\alpha) | \bar{D}^0 \rangle (\mu) \Big]$ $C_2' = \frac{1}{2}C_3' = 16G_F^2 \frac{m_\tau^2}{\pi^2} (V_{ud}V_{cd}[\epsilon_T]_{3311} + V_{us}V_{cs}[\epsilon_T]_{3321})^2 \log \frac{\Lambda}{\mu_\tau}$ $x_{12} = \frac{2|M_{12}|}{\Gamma_D} = (0.409 \pm 0.048)\%, \quad \phi_{12} = \arg(\frac{M_{12}}{\Gamma_{12}}) = (0.58^{+0.91}_{-0.90})^0$ ψ we can get further constraint on $\text{Im}[\hat{\epsilon}_T]$!

 \Box Combined constraints from $d_n \& D^0 - \overline{D}^0$ mixing:

 $|\text{Im}[\hat{\epsilon}_T]| \leq 4 \times 10^{-6}$

D Prediction for CPA with $|\text{Im}[\epsilon_T]| = 5 \times 10^{-3}$: still has a significant impact on the CPA!

Summary

- $\Box \tau \rightarrow K_S \pi \nu_\tau$ decays: very promising for CP studies
 - ➤ In the SM, there exist both decay-rate asymmetry & CP asymmetry in angular distribution due to CPV in $K^0 \overline{K}^0$ mixing, with results of $\mathcal{O}(10^{-3})$ and detectable @ Belle II & STCF
 - Within a general EFT, only vector-tensor interference produces a direct decay-rate asymmetry, while both scalar-vector & scalar-tensor interferences possible for CPA in the angular distribution
- \Box With other bounds considered, 2.8 σ deviation for A_{CP}^{rate} not easily explained by heavy NP

CP asymmetry in the angular distribution in three different cases:

sensitive to BSM scalar & tensor interactions!

□ Measurable @ Belle II & STCF?

Thank you for your attention!

Backup

Tau lepton physics

□ **r** : discovered in 1975 by Martin Perl *et al.* (SLAC-LBL)

- ▶ Mass: $m_{\tau} = 1776.86 \pm 0.12$ MeV
- > Lifetime: $\tau_{\tau} = (2.903 \pm 0.005) \times 10^{-13} s$

□ In SM, tau decays via charged-current weak interaction:

- > purely leptonic: $\tau \rightarrow \nu_{\tau} \ell \bar{\nu}_{\ell}, \tau \rightarrow \nu_{\tau} \ell \bar{\nu}_{\ell} \gamma, ...$
- > semi-leptonic (hadronic): $\tau \rightarrow \nu_{\tau}\pi$, $\tau \rightarrow \nu_{\tau}K\pi$, ...
- ➤ rare and forbidden: LFV, LNV, BNV, …

six modes account for 90%, 25 modes for the last 10%

□ τ : the only lepton heavy enough to decay into hadrons: Br $\simeq 66\%!$

□ Very rich phenomenology: see *biennial tau workshops!*

2024/01/16

PDG 2023

Experimental facilities for tau physics

Many dedicated facilities, with large tau samples [C. Z. Yuan, talk @ IAS Program on HEP 2021]

Experiment	Integrated luminosity (fb ⁻¹)	Cross section (nb)	Number of produced τ pairs (10 ⁹)	Typical tag efficiency	Tagged τ pairs (10 ⁹)	Fraction of Non-τ background
BESIII	50	$0\sim 3.6$	~ 0.15	10%	0.015	<1%
BaBar+Belle	1,500	0.9	1.35	33%	0.45	8%
LEP (ALEPH, DELPHI, L3, OPAL)	0.20×4	1.5	0.0012	79% (ALEPH), 92% within cosθ <0.90	0.0007	1.2% (ALEPH)
STCF/SCT	10,000	2.5	25	10%=BESIII	1.5	<1%=BESIII
Belle II	50,000	0.9	45	33%=Belle	15	8%=Belle
CEPC	45,000	1.5	70	87% (^10% over ALEPH)	60	<1.2%@ALEPH
FCC-ee	115,000	1.5	170	87% (^10% over ALEPH)	150	<1.2%@ALEPH

□ With these large tau samples, lots of tau physics projects: see *biennial tau workshops!*

Super Tau-Charm Facility (STCF) in China

- Peaking luminosity >0.5×10³⁵ cm⁻²s⁻¹ at 4 GeV
- Energy range E_{cm} = 2-7 GeV
- Potential to increase luminosity and realize beam polarization
- A nature extension and a viable option for China accelerator project in the post BEPCII/BESIII era

expected to have higher detection efficiency and low backgrounds for productions at threshold

> excellent resolution, kinematic constraining

1 ab⁻¹ data expected per year

Xiaorong Zhou, talk @ charm 2020

 important playground for study of QCD, exotic hadrons, flavor and search for new physics.

Physics @ a STCF in a nutshell

Interplay with B physics

V. Vorobyev, talk @ charm 2021

□ For the scalar operator: originate from the following two SMEFT operators

$$\mathcal{L}_{\text{SMEFT}} \supset [C_{\ell equ}^{(1)}]_{klmn} (\bar{\ell}_{Lk}^{i} e_{Rl}) \epsilon^{ij} (\bar{q}_{Lm}^{j} u_{Rn}) + [C_{\ell edq}]_{klmn} (\bar{\ell}_{Lk}^{i} e_{Rl}) (\bar{d}_{Rm} q_{Ln}^{i}) + \text{h.c.}$$

$$\Rightarrow [C_{\ell equ}^{(1)}]_{klmn} \left[(\bar{\nu}_{Lk} e_{Rl}) (\bar{d}_{Lm} u_{Rn}) - V_{am} (\bar{e}_{Lk} e_{Rl}) (\bar{u}_{La} u_{Rn}) \right] \qquad \Rightarrow (\bar{\nu}_{\tau} \tau_{R}) (\bar{s}_{L} u_{R})$$

$$+ [C_{\ell edq}]_{klmn} \left[V_{an}^{*} (\bar{\nu}_{Lk} e_{Rl}) (\bar{d}_{Rm} u_{La}) + (\bar{e}_{Lk} e_{Rl}) (\bar{d}_{Rm} d_{Ln}) \right] + \text{h.c.} \qquad \Rightarrow (\bar{\nu}_{\tau} \tau_{R}) (\bar{s}_{R} u_{L})$$

$$= (\bar{\nu}_{\tau} \tau_{R}) (\bar{s}_{R} u_{L})$$

$$= (\bar{\nu}_{\tau} \tau_{R}) (\bar{s}_{R} u_{L})$$

$$= (\bar{\nu}_{\tau} \tau_{R}) (\bar{s}_{R} u_{L})$$

 \succ constraint on $\hat{\epsilon}_s$ can be obtained from other processes;

> when potential cancellations exist between $C_{\ell equ}^{(1)} \& C_{\ell edq}$, the allowed values of $\hat{\epsilon}_s$ can be diluted

Mixing between scalar and tensor operators:

$$\hat{\epsilon}_S = -\frac{[C_{\ell equ}^{(1)}]_{3321}^*}{2\sqrt{2}G_F V_{us}}, \qquad \hat{\epsilon}_T = -\frac{[C_{\ell equ}^{(3)}]_{3321}^*}{2\sqrt{2}G_F V_{us}}$$

$$\begin{pmatrix} \hat{\epsilon}_S \\ \hat{\epsilon}_T \end{pmatrix}_{(\mu=2 \text{ GeV})} = \begin{pmatrix} 1.72 & -0.0242 \\ -2.17 \times 10^{-4} & 0.825 \end{pmatrix} \begin{pmatrix} \hat{\epsilon}_S \\ \hat{\epsilon}_T \end{pmatrix}_{(\mu=m_Z)} , \quad \begin{pmatrix} C_{\ell equ}^{(1)} \\ C_{\ell equ}^{(3)} \\ C_{\ell equ}^{(3)} \end{pmatrix}_{(\mu=m_Z)} = \begin{pmatrix} 1.20 & -0.185 \\ -0.00381 & 0.959 \end{pmatrix} \begin{pmatrix} C_{\ell equ}^{(1)} \\ C_{\ell equ}^{(3)} \\ C_{\ell equ}^{(4)} \end{pmatrix}_{(\mu=1 \text{ TeV})}$$

Constraints on $Im[\hat{\epsilon}_{S,T}]$ from other processes \Box For scalar operator: no direct contribution to $d_{n_{f}}$ but can mix into tensor operator via RGE $|\mathrm{Im}[\hat{\epsilon}_T]| \lesssim 4 \times 10^{-6} \implies |\mathrm{Im}[\hat{\epsilon}_S(\mu_\tau)]| \lesssim 2.3 \times 10^{-3},$ comparable to $Im[\hat{\epsilon}_{S}] = -0.008 \pm 0.027$ **D** The scalar operator $(\overline{\tau}_L \tau_R)(\overline{c}_L u_R)$ \mathcal{U} double insertion contributes to $D^0 - \overline{D}^0$ mixing: $M_{12}^{\rm NP} = \frac{1}{2M_D} \Big[C_2'(\mu) \langle D^0 | (\bar{c}_L^\alpha u_R^\alpha) (\bar{c}_L^\beta u_R^\beta) | \bar{D}^0 \rangle(\mu) \Big]$ $C_2' = -G_F^2 \frac{m_\tau^2}{\pi^2} \left(V_{us} V_{cs} \,\hat{\epsilon}_S \right)^2 \log \frac{\Lambda}{\mu_\tau}$ $x_{12} = \frac{2|M_{12}|}{\Gamma_D} = (0.409 \pm 0.048)\%,$ \mathcal{U} С $\phi_{12} = \arg\left(\frac{M_{12}}{\Gamma_{12}}\right) = (0.58^{+0.91}_{-0.90})^{\circ}$ > Constraint from $D^0 - \overline{D}^0$ mixing is one order of magnitude stronger than from neutron EDM HFLAV collaboration, EPJC 81 (2021) 226 $\text{Im}[\hat{\epsilon}_{S}(\mu_{\tau})] \in [-3.1, 1.6] \times 10^{-4} \ @ 2\sigma$ $\succ A_{CP}^{i}|_{\text{max}} \sim \mathcal{O}(10^{-3})$: of the same order as A_{SM}^{CP}

Caveat: once cancellations occur, bounds diluted

 $V_{ud} \operatorname{Im}[C_{\ell eau}^{(1)}]_{3311} + V_{us}[C_{\ell eau}^{(1)}]_{3321}$ (for d_n),

D Predictions for CPA with $\text{Im}[\hat{\epsilon}_{S}(\mu_{\tau})] = -3 \times 10^{-4}$: slightly smaller than the SM prediction

2024/01/16

1.8