

STCF Beam Background

Simulation and Implementation

Yupeng Pei^[1], Zhujun Fang^[1], Huangchao Shi^[1,2]
[1] University of Science and Technology of China
[2] Zhejiang University

On behalf of STCF Background Group

2024.01.17 Hefei

The 2024 International Workshop on Future Tau Charm Facilities

Outline

- STCF Introduction
- STCF Beam Background Simulation
- Background Mixing Algorithm
- Summary

Super Tau-Charm Facility (STCF)

STCF key parameters:

- E_{cm} : 2-7GeV
- Peak Luminosity: $> 0.5 \times 10^{35} \text{ cm}^{-2} \cdot \text{s}^{-1} @ 4 \text{GeV}$
- Potential for upgrade to increase L and realize polarized beam

STCF Background Challenge

Parameters	BEPCII	STCF	Compare
$I_t(\mathbf{A})$	0.91	2	2.2
$\boldsymbol{\beta}_{\boldsymbol{y}}^{*}(\boldsymbol{m}\boldsymbol{m})$	15	0.6	0.04
ξ_y	0.04	~0.06	~1.5

≻How to improve luminosity:

- I_t \uparrow : total beam current
- $\beta_y^*\downarrow$: envelop function
- ξ_y \uparrow : beam-beam parameter

≻Higher background level:

- Touschek : $\times 316$
- Beam-gas : $\times 2.2$
- RBhabha and two-photon : $\times 50$

Beam Background at STCF

Touschek effect

- Scattering between inner beam particles
- Generation rate $\propto N_{bunch}$, beam size⁻¹, energy⁻³
- Main Background

Beam-gas effect

- Effect with residual gas in the beam pipe
- Coulomb scattering, bremsstrahlung
- Generation \propto pressure

Luminosity-related background

- Radiative Bhabha: $e^+e^- \rightarrow e^+e^-\gamma$
- Two-photon process: $e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-e^+e^-$

Other background

- Injection
- Synchrotron radiation

Outline

- STCF Introduction
- STCF Beam Background Simulation
- Background Mixing Algorithm
- Summary

STCF Background Simulation Framework

Generator:

- Beam-related background: sampling with cross section
- Luminosity-related: available generator
- Injection and SR not included

Accelerator tracking:

• **SAD** developed by KEK

MDI interaction and detector:

• Geant4 based framework

STCF MDI design

- Machine-Detector interface:
 - includes: beam pipe, magnet, cryostat, tungsten shield
 - beam separated at z=0.5 m
 - diameter limited by QD0 and beam distance

Parameter	Value
QD0 position L_0	0.9 m
Occupancy angle	15°
Diameter at IP	60 mm
Min diameter	28 mm

Lost Simulation | SAD Output

STCF Collimator

➤ About collimator:

- Inside beam pipe, scrape off-orbit particles before IR
- Horizontal and vertical
- Trapezoid structure to reduce impedance
- Movable along aperture and beam
- Setup at lattice drift segments with large upstream beta functions and lengths > 1.5 m

Name	Orientation	Limitation	Design	
	Onemation	Rmax/mm	Zmid/m	R/mm
CoH01	Hor.	78.63	-45.0	15
CoH02	Hor.	78.70	-56.0	15
CoV01	Ver.	9.40	-19.2	5
CoV02	Ver.	9.32	-31.0	5

SuperKEKB collimator structure

After Collimator | Compare lost rate

> Add collimator suppress beam background (especially beam-gas)

Shielding design

Add shielding in three places:

TID, NIEL and Count

			Detector Sensitive Volume			Electronics	
Background statistics based on	Sub-detector	TID (Gy/y)	NIEL (1 MeV neutron/cm²/y)	Count Rate (MHz)	TID (Gy/y)	NIEL (1 MeV neutron/cm²/y)	
USCAR	ITK-µRWELL-1	157.8	1.0×10^{10}	455	48.5	4.3×10^{9}	
Offline Software of Super Tau-Charm Facility	ITK-µRWELL-2	51.5	$6.6 imes 10^{9}$	461	23.9	$5.4 imes 10^{9}$	
	ITK-µRWELL-3	21.3	7.9×10^{9}	315	15.2	$8.0 imes 10^9$	
> Detector with highest background:	ITK-MAPS-1	2053.3	2.0×10^{10}	46.3	417.5	3.0×10^{10}	
	ITK-MAPS-2	26.6	5.7×10^{9}	10.8	16.5	$6.0 imes 10^{9}$	
• 11D. MAI 5-1	ITK-MAPS-3	18.6	9.7×10^{9}	16.8	12.0	1.1×10^{10}	
• NIEL: MDC	MDC	7.4	1.1×10^{13}	535	1.93	3.2×10^{9}	
	RICH	0.54	$5.0 imes 10^{9}$	12.7	2.1	4.0×10^{9}	
• Count: MDC	DTOF	1.7	$8.6 imes 10^{9}$	41.4	1.5	5.7×10^{8}	
	ECAL-B	0.35	8.9×10^{9}	95.5	0.03	$7.0 imes 10^{8}$	
	ECAL-E	1.2	1.2×10^{10}	78.5	1.2	1.3×10^{9}	
Electronics with highest	MUD-B-RPC	0.03	$7.7 imes 10^{8}$	36.2			
background	MUD-B-PS	0.002	1.6×10^{10}	23.5	0.06	85×10^8	
Dackground.	MUD-E-RPC	0.01	2.6×10^{8}	7.5	0.00	0.5 × 10	
• TID: MAPS-1	MUD-E-PS	0.004	1.9×10^{10}	19.1			
• NIEL: MAPS		10 ⁵ (µ) 10 ⁴ system 10 ³ cr	300 NIEL	10 ¹⁴			

≻Component:

• Touschek is dominant

Outline

- STCF Introduction
- STCF Beam Background Simulation
- Background Mixing Algorithm
- Summary

Background Mixing Introduction

Background Mixing: Before digitization, signals mixed with beam background at the Geant4 step level.

Simulated background particles as input; a unified algorithm applied to each sub-detector.

Beam Background Database

- Time window: 1000ns
- \geq 1 Bkg event = all Bkg particles in 1 time window.

		Lost Rate (MHz)
Touschek		1120
Beam-gas	Coulomb	208
	Bremsstrahlung	2.1
Luminosity-related	Radiative Bhabha	615
	Two-photon	103

STCF Event Pile-up

Average number of physics events in each collision:

$$<\mu>=\frac{f_{phy}}{N_b\times\frac{c}{L}}=1.6\times10^{-3}$$

- > Probability of gen 2 PhyEvt in one collision: 1.28×10^{-6}
- Signal event generate at 0 ns, 32.9% probability of another physics event occurring within 1000 ns time window

Physics Background

Physics Event GenRate f_{phy}	$\leq 400 \text{ kHz}$
Storage ring circumference L	617m
Bunch number N _b	514
Collision time interval	4 ns

Event Composition

- ➤ 1 event includes:
 - Signal: $e^+e^- \to \pi^+\pi^- J/\psi \to \pi^+\pi^-\mu^+\mu^-(e^+e^-)$ @ 4.260 GeV
 - Beam Bkg: Touschek, Beam-gas, Luminosity-related
 - **Physics Bkg**: $e^+e^- \rightarrow anything @ 4.260 \text{ GeV}$
- > 1 signal event sampling at [50, 400]ns; Physics bkg sampling each 4 ns until time interval larger than 1000ns
- Extend time window for last physics bkg; Mixing beam bkg; Go to next event

Results

- Performance: 3.3 s/Event; 22 Mb/Event
- ➢ Mixed samples used for other system research:
 - Study of sub-detector reconstruction
 - Performance of tracking
 - Trigger system event-level analysis

1000 Events	Signal $(\mu\mu\pi\pi)$	Background
ІТК	1.5M	5.2M
MDC	46M	281M
RICH	840K	4.5M
DTOF	1.7M	27M
ECAL	133M	16G
MUD	4.7M	5.0G
Total	187.7M	21.3G

```
NBeamBKG = 2, Time Window = [0, 2000] ns
Size of Output Vector = 9
Evt #1, Type = Sig(0), EvtID = -1, Start Time = 284
Evt #2, Type = PhyBkg(1), EvtID = 8424, Start Time = 412
Evt #3, Type = PhyBkg(2), EvtID = 4040, Start Time = 1084
Evt #4, Type = Tous(-1), EvtID = 7929, Start Time = 0
Evt #5, Type = Lumi(-2), EvtID = 8042, Start Time = 0
Evt #6, Type = Beamgas(-3), EvtID = 4643, Start Time = 0
Evt #7, Type = Tous(-1), EvtID = 7007, Start Time = 1000
Evt #8, Type = Lumi(-2), EvtID = 5533, Start Time = 1000
Evt #9, Type = Beamgas(-3), EvtID = 1802, Start Time = 1000
```


Outline

- STCF Introduction
- STCF Beam Background Simulation
- Background Mixing Algorithm
- Summary

- Beam background research framework established.
- Add the collimators and shielding can significantly reduce the beam background level.
- Based on OSCAR, completed the statistical of beam background on detector and electronics.
- Finished the algorithm for signal and background mixing.

> Future plan

- Optimize the collimators and shielding
- Achieve a more refined background statistics.
- Optimize the background mixing algorithm to reduce time and size consumption..

Back up

STCF Background

- ▶ 基于<mark>OSCAR</mark>的本底统计,OSCAR有更完善的几何
- ≻目前的本底统计:
 - 电离损伤 TID:单位质量沉积能量大小,单位:Gy/y
 - **非电离损伤** NIEL:单位面积通过的等效中子数,根据粒子种类和动能计算,单位: 1 MeV neutron/(cm2*y)。每条径迹仅统计一次
 - 计数率 Count (仅探测器):产生一定阈值以上能量沉积的击中数,单位:Hz
 - **单粒子翻转效应 SEE (仅电子学)**: 质子、中子和其他重核轰击芯片的敏感区, 可能导致电路节点的逻辑状态发生改变。设有20MeV动能下限阈值
- ▶ 在step级别统计沉积能量、位置、粒子种类和动能等,最终以2维直方图形式输出

STCF Lattice and MDI design

- □以Lattice设计定义束流本地版本 □几个重要的版本:
- ▶ V2: CDR版本,作为过渡版本
- ➢ V7: current lattice
- ▶ V7C3: 增加 collimator

Collimator 的优化

≻ Tip-scattering 算法:

- 模拟部分粒子可以<mark>穿过 collimator</mark>,并继续在储 存环中运动的情况
- Geant4中建模collimator;模拟e[±]通过collimator 的存活率及分布;Geant4模拟的结果输入SAD

截断方法会低估束-气本底

模拟算法	Touschek 上游	Touschek 下游	束-气上游	束-气下游
SAD 硬截断 (trun.)	6.42×10^{9}	6.24×10^{8}	1.41×10^{7}	3.83×10^{6}
Tip scattering(tip.)	6.38×10^{9}	6.12×10^{8}	1.51×10^{7}	4.27×10^{6}
比值(tip./trun.)	0.99	0.98	1.07	1.11

- ≻ Collimator 孔径的优化:
- 未考虑 TMCI 效应
- 孔径设计需均衡粒子丢失率和束流寿命
- Touschek $\forall R_x$ 变换更敏感; 束-气对 R_y 更敏感

优化孔径可有效压低Touschek本底(~60%)

	Touschek 上游	Touschek 下游	束-气上游	束-气下游
无 collimator (Hz)	3.47×10^{10}	2.08×10^{9}	1.08×10^{10}	1.27×10^{8}
初始 collimator (Hz)	6.38×10^{9}	6.12×10^{8}	1.51×10^{7}	4.27×10^{6}
优化 collimator (Hz)	2.19×10^{9}	1.17×10^{8}	1.06×10^{7}	4.15×10^{6}

V7C3 仍需要额外屏蔽

≻ V7C3版本底仍高于V2, 需要在MDI区域设置额外屏蔽层

➢ Touschek占主导,进入探测器的粒子种类主要为正负电子和光子

	V7/V2	V7C3/V2	V7C3中 Touschek占比	
ITK1	102.28	1.20	76%	_
ITK2	93.24	1.46	91%	
ITK3	101.58	1.77	87%	Count
MDC	166.05	9.77	94%	10 ⁵
PID-B	130.46	6.71	92%	104
PID-E	156.46	14.21	96%	
ECAL-B	123.51	7.69	93%	10 ³
ECAL-E	126.18	7.28	92%	10 ²
MUC-B-RPC	62.29	5.07	85%	-
MUC-B-PS	56.38	3.64	81%	-1
MUC-E-RPC	43.47	4.46	82%	
MUC-B-PS Yupeng Pei	49.81	3.06	75%	

基于V7C3 Standalone

Count

gamma z

gamma p

27

基于V7C3 Standalone

不同屏蔽方案的本底降低效果

口在V7C3版本standalone环境下初步测算各探测器计数率与屏蔽的关系

	No shield	Outer tube	Outer tube+	3 shields	V7C3/V2	现有最优屏蔽 下的本库/V2
			endcap			
ITK1	100%	62%	59%	142%	1.20	1.70
ITK2	100%	191%	202%	116%	1.46	1.70
ITK3	100%	139%	88%	102%	1.77	1.81
MDC	100%	73%	32%	6%	9.77	0.55
RICH	100%	63%	27%	7%	6.71	0.45
DTOF	100%	7%	3%	2%	14.21	0.33
EMCB	100%	60%	30%	10%	7.69	0.79
EMCE	100%	17%	10%	6%	7.28	0.44
MUDBRPC	100%	57%	38%	92%	5.07	4.68
MUDBPS	100%	118%	81%	63%	3.64	2.30
MUDERPC	100%	33%	45%	51%	4.46	2.27
Yupen MeiDEPS	100%	90%	65%	93%	3.06	2.84

28

基于V7C3 Standalone

Neutrton NIEL 曲线分析

- 模拟单本底粒子事例,对一个信号事例混入1us时间窗内对应数目 本底的hit
- 一个信号事例需要读取约4500个单粒子事例的hit,前台每个信号 事例用时约90s

信号抽样时间

- 信号抽样区间: [50,400] ns
- •考虑信号抽样之前,本底尾巴的影响 ⇒ 起始定于50ns
- 时间窗内信号不可被截断 ⇒ 末了定于400ns

物理本底抽样

• 信号抽样后,每4ns 泊松抽样,决定此时物理本底个数 N_{PB}:

 $<\mu>=rac{f_{phy}}{N_b imes rac{C}{L}} = 1.6 imes 10^{-3}$

- $N_{PB} \ge 1$: 从物理本底库抽样 N_{PB} 个物理本底
- N_{PB} < 1: 时间向后4ns, 抽样次数 NSam++
- 事例判定条件: 抽样时间间隔大于1000ns (Nsam > 250)
- 最后一个物理本底的时间决定延长的时间窗
- 依次混合信号,物理本底,束流本底的 Point

