STCF RICH PIDB progress

Speaker: Jiaming Li On behalf of STCF RICH PIDB Group

University of Science and Technology of China University of Chinese Academy of Sciences 2024.01.16

Outline

- 1、 Physical requirements for STCF PIDB
- 2、 RICH PIDB detector design
- 3、 RICH PIDB readout electronics design
- 4 、 Conclusion

Outline

1、 Physical requirements for STCF PIDB

- 2、 RICH PIDB detector design
- 3、 RICH PIDB readout electronics design
- 4 、 Conclusion

PIDB RICH Detector

reflective CsI photocathode,

hybrid amplification of THGEM-MicroMegas.

Technical Specification

- Covered area: 13 m²
- Thickness < 200 mm
- Material budget < $0.3 X_0$
- Accumulated charge < 2 μ C/cm² @ 10 year
- $K/\pi > 3\sigma @ 2.0 ~GeV/c$
- MPGD: High gain($^{10^{5}}$), low IBF($^{10^{-3}}$)
- Pixel size: $5 \times 5 \text{ mm}^2$
- Single Photon angular resolution: < 2.5 mrad

Outline

- 1、 Physical requirements for STCF PIDB
- 2、 RICH PIDB detector design
- 3、 RICH PIDB readout electronics design
- 4 、 Conclusion

Performance of RICH

RICH performance in simulation

- Background level: 10⁻³hit / (pixel × time window)
 DID vatio for = K as 0000 in
- PID ratio for π , K, p > 98% in momentum \in [0.7, 2.0] GeV/c
- More detail in RICH software report
- Will validate parameters used in simulation & validate the PID performance in prototype beam test

Structure of RICH Detector

Engineering prototype

Build the Prototype

- Radiator purification
- Coating CsI photocathode on THGEM on large area, QE test
- THGEM-MicroMegas: gain and uniformity
- AGET-based readout electronics
- Custom ASIC-based readout electronics
- On going: Test of encoding anode
- On going: Cosmic ray test system
- Preparing the beam test

Radiator Purification

- Remove water and oxygen
 - The C_6F_{14} is absorbent to water and oxygen \leftarrow less transparent to VUV
 - Developed using metal catalyst purification, faster and smaller loss
- Hunting for C_6F_{14} with stable quality
 - Tried various samples from various suppliers, optical properties not stable
 - Multiple chemical analyses conducted. Cooperating with suppliers to figure out the relations between optical properties and chemical properties.

Coating CsI Photocathode on THGEM

- Build the large area coating system & cooperate with Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences.
- Build the QE & radiator transmittance measurement system.

Gain & Uniformity

• Test with THGEM-MicroMegas and AGET-based readout electronics.

Gain

Encoding anode

- The encoding anode method is proposed to reduce the number of readout channels to 1/5.
- Connect and read out the anode by a special geometric rule (encoding) and determine the hit position by the firing mode (decoding).
- Dual-layer readout for the resistive anode, with a large top pixel corresponding to 16 small bottom pixels (5 mm × 5 mm), and the small pixels are encoded.

Outline

- 1、 Physical requirements for STCF PIDB
- 2、 RICH PIDB detector design
- 3、RICH PIDB readout electronics design
- 4 、 Conclusion

PIDB Readout Electronics

- The RICH PIDB detector consists of 12 identical block modules, each with 43,200 readout channels when using the 5×5 mm² readout pads.
- The readout electronics are located directly behind the detector to avoid a large number of long readout cables.
- Each block module is divided into 12 FEEs along the beam direction, each with 3600 channels of integration.

Conceptual design of the RICH PIDB readout electronics

PIDB Readout Electronics

Challenges posed to readout electronics:

- High density
- Large number of channels
- High resolution
- Short dead time

Requirements for the readout electronics

Signal processing chain of the readout electronics

- The prototype ASIC integrates 32 channels, including analog processing circuits and analog-to-digital conversion (ADC) circuits.
- Compatible with both external trigger mode and triggerless mode.
- All outputs are digital, can be directly connected to the digital data processing ASIC.

Block diagram of the prototype ASIC

- Since the digital waveform data can be further processed by digital filters, a CR-(RC)² semi-Gaussian shaper is selected.
- A characteristics table based on the BSIM3v3 model is created to optimize the transfer function and ENC better.

Schematic of the analog processing circuit

- Higher sampling rate to extract more information from the waveform.
- Lower power consumption for high density and low cooling requirements.
- Effective signal duration only accounts for about 1% of the total time.

Switched Capacitor Array (SCA) + ADC (ADC in suspend mode without valid signal)

Sampling			
Digitization			
Readout			

Working sequence of the digitization circuit

Block diagram of the digitizing circuit

- This 32-channel mixed-signal ASIC is fabricated in the 180 nm CMOS process with a die size of 10,005 $\mu m \times 6,168 \, \mu m.$
- Approaches to reducing crosstalk between sensitive front-end and digital circuits:
 - Place the noisy digital circuits in the deep Nwell.
 - Use Dcap cell as filler during digital implementation to reduce the power ripple.
 - ➢ Isolate the ESD loop between digital IO and analog IO.

Photograph of the fabricated chip 18

- Output waveforms are sampled and digitized by 128 independent cells, the mismatch between cells results in different codes for the same input.
- This mismatch is a form of fixed pattern noise that can be corrected by sampling the baseline waveforms and generating the DC correction data.
- Output waveform is similar under different input charges, with a gain of 15.2 code/fC and an INL of 0.92%.

- ENC at the discriminator input affects the lower limit of the threshold setting and then the detection efficiency in triggerless mode.
- Measured ENC ≈ 627 e + 18.8 e/pF
- With a threshold greater than 1.2 fC, the noise hit frequency for a single channel is a few Hz.

- Time resolution is tested for various input charges at 20-pF input capacitance.
- Constant Fraction Discriminators (CFD) and 2-point linear fit are used for time calculation.
- Digital filter and waveform fitting methods will be further investigated to improve the time resolution.

Timing extraction algorithm used for the digital waveform

Original waveform Waveform after DC fix

- The step voltage waveform is used as the input signal to test the counting rate capability.
- The gain remains almost the same and the readout efficiency maintains 100% up to 15 kHz repetition rate for a single channel, meeting the requirement.

Measured output rate versus input rate for a single channel

Step voltage waveform used for the dead time test

Gain variation with input rate

PIDB FEE Functional Verification

• Based on the 32-channel prototype ASIC, a 512-channel FEE prototype was designed.

Layout of the 512-channel FEE prototype

Photograph of the FEE prototype

23

• Functional verification and energy spectrum test with ⁵⁵Fe are completed.

Experimental setup for energy spectrum testing

Outline

- 1、 Physical requirements for STCF PIDB
- 2、 RICH PIDB detector design
- 3、 RICH PIDB readout electronics design
- 4、Conclusion

Conclusion

- Use THGEM-MicroMegas based RICH as barrel PID detector.
- Estimated PID ratio for π , K, p > 98% in momentum $\in [0.7, 2.0]$ GeV/c.
- Developed the AGET-based readout electronics and custom ASIC-based prototype readout electronics.
- Engineering prototype setup, running the cosmic ray test.

Ongoing:

- Hunting for C_6F_{14} with stable quality.
- Optimize the process to improve the QE of Csl.
- Preparing for the beam test.
- Develop the 64-channel custom ASIC.

Thanks!