

Inner Tracker for Super Charm-Tau Factory based on compact Time Projection Chamber

T. Maltsev, L. Shekhtman, A. Sokolov

Hefei, China January 2024

Outline

- TPC geometry and materials
- GEANT4: π-mesons in TPC
- GenFit: momentum resolution in gas
- Reconstruction of momentum in beampipe

Super Charm-Tau Factory Detector

- 1. Vacuum pipe
- 2. Inner tracker
- 3. Drift chamber
- 4. PID
- 5. Calorimeter
- 6. SC magnet
- 7. Muon system

Inner Tracker

Tasks

- Measure soft π[±] mesons momentum (p < 100 MeV/c)
- Complement the drift chamber in measuring the momenta
- Detect secondary vertices from the decays of short-lived particles (K_S, Λ)

Requirements

- Cover angle close to 4π
- Handle with high particle flux luminosity of 10³⁵ cm⁻² s⁻¹
- Provide spatial resolution ~ 100 μm

Simulation of π^+ transverse momentum distribution in $e^+e^- \rightarrow DD^*$ (V. Vorobyev)

Vacuum beampipe		Thin inner wall		
Material	Thickness	Material	Thickness	
Beryllium	1 mm	Kapton	50 µm	
Paraffin	0.5 mm	Teflon	100 µm	
Beryllium	1 mm	Copper	5 µm	

Gas v	olume	
Material	Thickness	
Ar+20%CO ₂	20 cm	-

Outer wall							
Material	Thickness						
Copper	15 µm						
Teflon	100 µm						
G10	1 mm						

Total length along beam axis: 60 cm

Vacuum beampipe radius: 1.5 cm

FPC – cylindrical geometry

GEANT4-simulation: passage of π -mesons through TPC materials

Magnetic field along beam axis: 1.5 T

$p_{initial}$ – initial momentum of π -meson inside beampipe

Distance to beam axis r, there $r^2 = x^2+y^2$ The most distant hit $\rightarrow r_{max}$ Many events $\rightarrow r_{abs max}$ (absolute maximum radius among events)

GEANT4-simulation, 50 initial π -mesons

GEANT4-simulation

GEANT4-simulation example of π -meson trajectory

GenFit takes hits from GEANT4 and approximates these hits with helix (Kalman filter) in order to reconstruct p_{gas} The output of Genfit is p_{reco}

TPC coordinate resolution was set to be $\sigma_x = \sigma_y = \sigma_z = 100 \ \mu m$

Spatial resolution of the end-cap detector (quadruple GEM)

https://doi.org/10.1016/j.nima.2022.167225

Momentum resolution in gas: momentum scan (π-mesons were directed perpendicular to beampipe wall)

Momentum residuals distribution example

GEANT4 simulation

Helix can be totally inside TPC volume for some values of initial momentum.

In this case we have to restrict number of hits in order to provide correct results from Genfit.

<number of hits> on < p_{gas}>

Momentum resolution on

GEANT4 + GenFit simulation results

Momentum resolution on angle

Number of events

GEANT4: p_{initial} on p_{gas} + parabola fit

GEANT4: momentum resolution on p_{initial}

GEANT4 simulation example of non-perpendicular π -meson start: p_{initial} = 80 MeV/c, $\alpha_{initial}$ = $\pi/4$ rad

GEANT4: $p_{initial} = 80 \text{ MeV/c}; < p_{loss} > on \alpha_{initial}$

GEANT4: $p_{initial} = 80 \text{ MeV/c}; dp/p \text{ on } \alpha_{initial}$

Conclusions on GEANT4 + GenFit simulation

Minimum initial π -mesons **momentum to pass** through walls of TPC:

- inner wall 47 MeV/c
- outer wall 60 MeV/c

Reconstruction of first **momentum in gas** is possible for incident **angle less than 1 rad** with:

- dp/p < 3.5% for p_{gas} in range 30–50 MeV/c
- dp/p < 1.5% for p_{gas} > 50 MeV/c

Reconstruction of momentum **inside beampipe** is possible with (not accounting momentum reconstruction in gas):

- dp/p 3% 1% for $p_{initial}$ in range 50–60 MeV/c
- dp/p 1% 0.5% for $p_{initial}$ in range 60–80 MeV/c
- dp/p < 0.5% for $p_{initial}$ > 80 MeV/c

Thank you for attention!

Back-up slides

Background tracks in TPC

Primary processes:

Two-photon process $e^+e^- \rightarrow \gamma^*\gamma^* \rightarrow e^+e^-e^+e^-$ (tracks in the center of TPC (near Z=0 cm))

Radiative Bha-Bha $e^+e^- \rightarrow e^+e^-\gamma$ (tracks on the sides of TPC (near Z=±30 cm))

Background tracks in TPC

Examples of TPC occupancy (energy depositions) within 6 µs

Background tracks in TPC

Number of charge particle tracks per TPC cross-section within 6 µs (1200 brunch crossings)

Background tracks in TPC have influence on electric field due to space charge

Map of trajectory deviations due to space charge from background tracks – deviations can be compensated in off-line analysis (experience of ALICE at CERN)

													\mathbf{R}	[c	m]		
	6	6 8 10		0	12		14		1	16		18 2		20			
	36	41	39	35	32	28	20	18	15	12	11	10	9	9	9		
	63	101	102	96	82	74	59	47	39	32	29	27	25	25	25		20
	116	163	169	155	145	129	100	105	73	62	56	48	47	46	45	_	20
5	176	251	243	242	217	190	152	167	114	93	86	77	74	72	71		
	201	307	399	392	415	320	294	184	151	139	101	149	147	102	135		4
5	285	446	480	483	457	420	361	314	264	179	236	140	197	174	1/5		
	153	486	560	563	531	485	423	396	320	282	277	238	227	216	217		0
	336	453	641	643	622	558	486	425	386	342	371	285	321	334	266		E
10	344	622	701	725	713	676	589	502	439	397	360	335	314	304	333		
	372	661	804	805	780	712	649	577	492	455	439	385	395	346	360		8
	386	657	875	885	878	841	748	675	577	504	519	430	454	465	413		
	514	790	918	966	953	930	827	708	632	577	531	494	490	466	459		
15	538	829	993	1055	1038	954	894	766	672	632	572	543	532	500	492		
15	676	895	1121	1131	1134	1085	984	866	781	698	676	634	591	599	587		
	745	992	1196	1224	1208	1183	1065	937	841	759	695	650	628	593	578		ŀ
	543	912	1214	1302	1287	1211	1084	1021	896	769	747	701	670	649	679		
	900	1111	1360	1365	1391	1352	1208	1079	970	874	821	768	729	723	663		
20	940	1160	1419	1476	1466	1421	1279	1151	1042	933	857	803	760	731	729		
	755	953	1473	1549	1541	1477	1318	1225	1075	974	910	858	824	768	772		
	1092	1205	1570	1640	1645	1609	1447	1290	1155	1094	994	895	902 877	830	790	. <u> </u>	ŀ
	1100	1308	1//3	1794	1724	1/09	1579	1419	1209	1004	1046	967	923	924	870		
		1473	1850	1873	1955	1839	1650	1472	1320	1174	1086	1012	969	918	904		
25	982	1533	1876	1954	1939	1866	1709	1518	1357	1218	1112	1039	982	944	920		
	1237	1629	1995	2038	2023	1969	1740	1558	1397	1247	1135	1057	1011	970	932		
						1002	1750	1555	1424	1200	1101	1005	1020	502	551	1	1

Gas Ar(45%)-iC₄H₁₀(15%)-CF₄(40%) ; E=1000 V/cm ; Gain 10⁴ ; IBF=1%

More details: <u>https://doi.org/10.1016/j.nima.2022.167225</u>