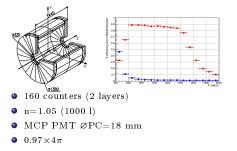
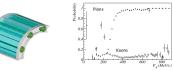

Status and R&D of ASHIPH option for PID

Ivan Ovtin Budker Institute of Nuclear Physics, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia

16 January, FTCF-2024

ASHIPH method for particle identification

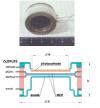


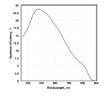

ASHIPH (Aerogel, SHifter, PHotomultiplier) method of light collection was suggested in 1992 (A. Onuchin et al. NIM A315, 1992, 517-520). Cherenkov light from particle in aerogel is collected by the wavelength shifter (WLS) placed in the middle of the counter and transported by WLS like a lightguide to photomultiplier (PMT):

- PMMA light guide doped with BBQ dye is used as WLS
- This method helped us significantly to decrease the PMT photocathode area (cost of the system)

ASHIPH systems at BINP (Novosibirsk):

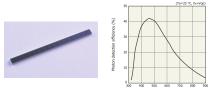
KEDR detector at VEPP-4M $e^+e^$ collider (2E=2÷10 GeV) SND detector at VEPP-2000 $e^+e^$ collider (2E=0.3÷2 GeV)





- 9 counters (1 layer)
- n=1.13 (9 l)
- Thickness ~30 mm
- MCP PMT ØPC=18 mm
- 0.6×4π

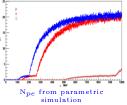
ASHIPH upgrade: MCP PMT \rightarrow SiPMs as photodetector


MCP PMT

- Manufacturer: "Ekran FEP" (Novosibirsk)
- Borosilikate glass window
- Multialkali (Sb-Na-K-Cs) photocathode
- MCPs with channel diametr of 7 μ m
- Maximum QE=23% at λ =500 nm
- Photoelectron collection coefficient ~ 0.6
- PDE=QE*CE=23*0.6~14%
- Axial magnetic field
- Power supply 2÷4 kV

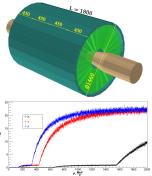
MPPC (Multi-Pixel Photon Counter) S13363-3050NE-16

Wavelength (nm)


- Manufacturer: "Hamamatsu"
- Effective photosensitive area/channel 3×3 mm
- Number of pixels/channel 3584
- PDE=40% at λ =500 nm
- Any direction magnetic field
- Power supply $<100 \text{ V} (V_{BR}=53 \text{ V typ.})$
- High level of DCR (0.5 Mcps)

Move to SiPMs must increase detected number of photoelectrons. $8 \div 10 \Rightarrow 20 \div 30$ ph.e.

ASHIPH-SiPM proposals for BINP colliding beam experiments


ASHIPH for SND (VEPP-2000)

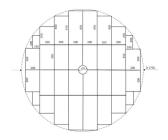
- Aerogel: 3cm & n=1.13
- $N_{pe}^{\Sigma}(\beta=1) \approx 20$
- 9 counters $26 \times 10 \times 3$ cm³ in 1 layer
- WLS(BBQ) 260×17×3 mm³
- $5 \times 9 = 45$ SiPMs 3×3 mm²
- π/K -separation
 - $\geq 4\sigma 0.3 \div 1 \text{ GeV/c} \text{ (thr. } \sim 5 \text{ph.e.)}$

ASHIPH for VEPP-6


- Aerogel: 8[см]/1.05
 - $N_{pe}^{\Sigma}(\beta=1) \approx 20$
 - 300 counters $45 \times 17 \times 4$ cm³ in two layers
 - $WLS BBQ 45 \times 20 \times 3 mm^3$
 - (6÷12)×300=1800÷3600 SiPMs 3×3 mm²

• π/K -separation:

- $\geq 4\sigma 0.5 \div 1.5 \text{ GeV/c} \text{ (thr. 5 ph.e.)}$
- $\geq 2.5\sigma 1.5 \div 2.0 \text{ GeV/c} (\text{thr 10 ph.e.})$

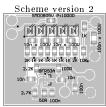

ASHIPH-SiPM proposals for non BINP colliding beam experiments

ASHIPH for Super Charm-Tau Factory (Sarov)

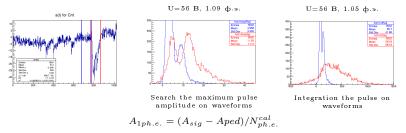
- Preliminary design:
 - Aerogel in three layers (6000 l): n=1.03 (8 cm) and n=1.015 (8+8 cm)
 - 1400 counter with sizes $\sim 18 \times 30 \times 8$ cm³
 - Amount of material ${\sim}15\% X_0$
 - Light collection WLS(BBQ) and 28000 SiPMs $3\!\times\!3~\mathrm{mm}^2$
- π/K -separation: 0.5÷2 GeV/c
- μ/π -separation: 0.4÷0.9 GeV/c
- EPJ Web of Conferences 212, 01012 (2019), A.Yu. Barnyakov et al 2020 JINST 15 C04032

ASHIPH for SPD (NICA, Dubna)

- Aerogel: 8cm+8cm & n=1.02
- $N_{pe}^{\Sigma}(\beta=1) \approx 16$
- 128 counters $47 \times 20 \times 8 \text{ cm}^3$ in 2 layers in 2 endcaps
- $\bullet~{\rm WLS}$ BBQ 470×14×3 ${\rm mm}^3$
- (4)×5×128=2560 SIPMs 6×6 mm²
- π/K -separation:
 - $\geq 4\sigma 0.7 \div 2.5 \text{ GeV/c} (\text{thr. 3 ph.e.})$

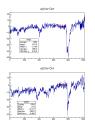

ASHIPH counter prototype & electronics

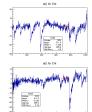
- The segment of ASHIPH system the SND detector are used
- The segment consist of 3 separate counters (only 1 counter is used)
- Cylindrical shape: R=105÷141 mm, length 260 mm, width 80 mm
- WLS position: displayed by $\sim 5^{\circ}$ from counter center
- Aerogel cover: teflon with a refractivity of $R \sim 98\%$
- Aerogel with n = 1.12, thickness 25 mm:
 - 4 tiles with sizes: 160×50×25 mm³, 70×50×25 mm³, 160×30×25 mm³, 70×30×25 mm³
 - counter not fully filled up to 30 mm
- A line of 5 SiPMs allows cover a WLS with sizes 17x3 mm²
- Serial connection of 5 SiPMs for power supply and serial connection of 5 SiPMs for signal does not work
- Parallel connection of 5 SiPMs for power supply and serial connection of 5 SiPMs for signal. The idea for the circuit is taken from the article NIMA 925 (2019) 148-155

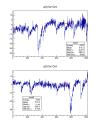


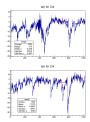
The number of photoelectrons is described by the Poisson distribution for small LED level:

$$p(n) = \frac{e^{-\mu}}{n!} \mu^n,$$
$$\mu = -ln \frac{N_0}{N_{all}},$$

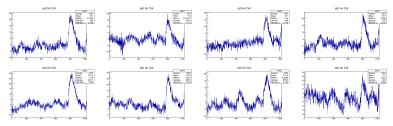

where n - number of photoelectrons, μ - average number of photoelectrons, N_{all} - total number of events, N_0 - number of events with zero amplitude (number of events in the pedestal).

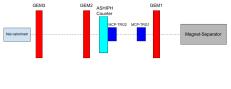


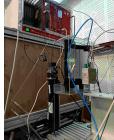

Calibration


 $Typical \ signals \ (Time(ns): Digitizer \ channels)$

• Electronic version 1

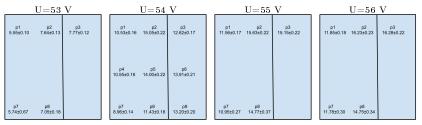





• Electronic version 2

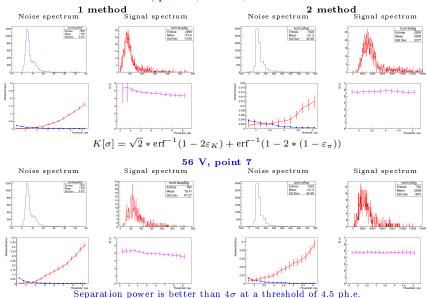
Scheme of the experiment on beam test facilities at BINP

- Electron energy 2.5 GeV;
- Tracking based on 3 coordinate GEM detectors ($\sigma_x \sim 70 \ \mu m$ and $\sigma_y \sim 200 \ \mu m$) and NaI calorimeter;
- Trigger formed from MCP-TRG1 and MCP-TRG2 coincidence (ØPC=18 mm), and VETO from GEMs "BUSY"-signals summarised as "OR";
- Signal MCP-TRG1,2 and from prototype are digitized by V1742 (CAEN, 12-bit, 5 GSample/s), operated in "Fast TRG"mode, saved waveforms;
- ~50 kevents were collected for each geometrical area on counter prototype and at different bias voltages on the SIPMs
- The external temperature during data acquisition was 24°C
- Data taking with electronic version 1 (June 2023) results are presented
- Data taking with electronic version 2 (December 2023) data under processing

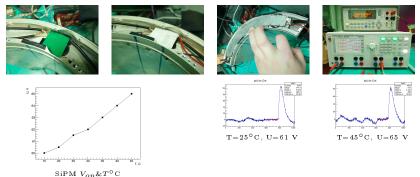


Test beam results

Cards with the resulting $N_{ph.e.} = (A_{sig} - Aped)/A_{1ph.e.}$ at various geometric points • 1 method - Search the maximum pulse amplitude on waveforms


U=53 V		U=54 V			U=55 V				U=56 V		
p1 p2 5.16±0.10 6.94±0.	p3 13 7.22±0.12	p1 10.86±0.16	p2 15.20±0.24	p3 12.76±0.18	p1 11.06±0.17	p2 14.93±0.23	p3 14.48±0.22		p1 11.28±0.18	p2 16.30±0.29	p3 16.03±0.27
		p4 10.64±0.17	p5 13.92±0.23	p6 13.82±0.21							
p7 p8 5.09±0.67 6.45±0.	.18	p7 8.97±0.15	p8 11.43±0.20	p9 13.10±0.21	p7 10.26±0.26	p8 13.93±0.36			p7 11.08±0.28	p8 14.59±0.48	

• 2 method - Integration the pulse on waveforms


- Inhomogeneity of light collection is ~30% over the counter
- The difference between results the two methods is not more than 1 ph.e.

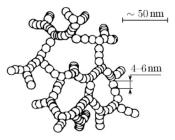
• the underthreshold efficiency mainly determined by its own DCR 56 V, point 2, T~24°C, DCR~3MHz

Temperature tests ongoing

- One of the main limitations to the use SiPMs in detectors is the need to create a cooling system due to the high DCR level which depends on temperature.
- The thermal stabilization system version was created for tests:
 - Platinum board mount temperature sensor with programmable multimeter (B7-78/2) for control
 - Thermoelectrical Peltier module (SnowBall-71, 30×30 mm, 3.6 A, 36 W) with programmable power supply (HAMEG)
 - Air aluminum radiator

- Imitation from LED (16 ph.e., T=45°C, electronic version 2) give separation power is better than 4σ (thr. 4.5 ph.e.)
- TB data taking with thermal stabilization system (for T=45°C) and electronic version 2 performed (December 2023) data under processing

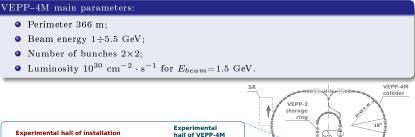
Summary

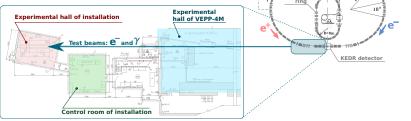

- The ASHIPH technique of Cherenkov light collection was developed in BINP
- ASHIPH-SiPM proposals for colliding beam experiments are presented
- ASHIPH-SiPM counter prototype constructed for tests
- Tests with ASHIPH-SiPM counter prototype on beam test facility at BINP are performed:
 - Average amplitude is around 14 ph.e. over the counter
 - Inhomogeneity of light collection is $\sim 30\%$ over the counter
 - Estimated separation power is better than 4σ at a threshold of 4.5 ph.e. (bias voltage of 56 V) at T=24°C
- Thermal stabilization system for SiPMs inside ASHIPH prototype counter for tests is designed
- N_{ph.e.} can be compared for ASHIPH-SiPM & ASHIPH-MCP PMT since used same SND (VEPP-2000) counter
 - ASHIPH-MCP PMT:
 - Aerogel n=1.13, 30 mm
 - Nph.e. = 8 (start experiment)
 - ASHIPH-SiPM:
 - Aerogel n=1.12, 25 mm
 - $N_{ph.e.} \approx 14 \times 1.3 \approx 18.2$
 - $N_{ph.e.}(ASHIPH SiPM)/N_{ph.e.}(ASHIPH MCPPMT) \approx 2.2$
 - agrees with PDE ratio for SiPM to MCP PMT

BACKUP

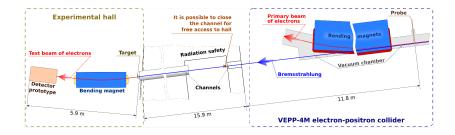
Aerogel

S.S.Kistler, "Coherent Expanded Aerogels and Jellies", Nature, 1931, vol. 127, p. 741.



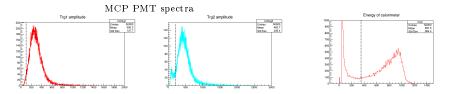


 $SiO_2 + H_2O(1+5\%)$


 $n^2 = 1 + 0.438 \cdot \rho$

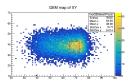
n=1.006...1.070 - synthesis n=1.070...1.130 - sintering VEPP-4M electron-positron collider is used to provide γ - and electron- beams.

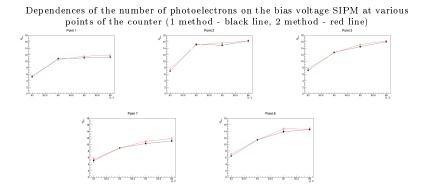
Beam test facilities at BINP


- A special probe is moved into the halo of a primary electron beam of the VEPP-4M collider for generation of Bremsstrahlung gammas.
- These gammas are converted to electron positron pairs on a lead target at the entrance to the experimental hall.
- Electrons with a certain momentum are selected using a bending magnet.

The beam parameters:

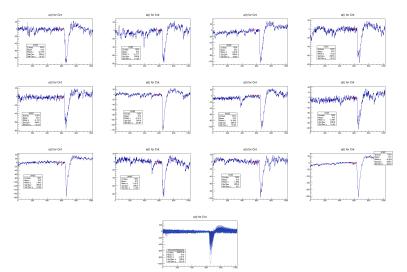
- Energy range 0.1÷3.5 GeV;
- Intensity 50÷100 Hz;
- Energy spread 7.8% for 0.1 GeV and 2.6% for 3.0 GeV.


Some cuts for event selection.

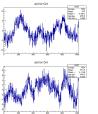

• NaI-calorimeter and MCP PMTs amplitudes cuts are applied to select single particle events with straight tracks.

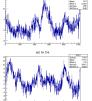
Events above the dashed lines are selected

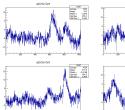
• Center of the spot on GEM map is used to select events.



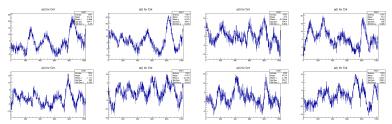
Test beam results – Waveforms (56 V, point 2)

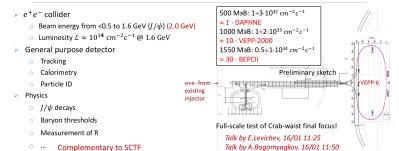

Typical signals (Time(ns):Digitizer channels)


• Electronic version 1


Temperature tests

Typical signals (Time(ns):Digitizer channels) with small LED light level $\bullet~T{=}25^\circ C,~U{=}61~V$


att for Crit


alt) for Crit

• $T=45^{\circ}C$, U=65 V

From plenary talk by I.Logashenko (15.01.2024)

Under consideration: VEPP-6

