FTCF2024 USTC Hefei https://indico.pnp.ustc.edu.cn/event/91/

The 2024 International Workshop on Future Tau Charm Facilities

January 14-18, 2024

Review of MAPS detectors for subatomic physics

Jerome Baudot

- \rightarrow Concepts
- → About performances
- \rightarrow Some sensors

CMOS Monolithic Active Pixel sensors for subatomic physics

Sensing + signal amplification/conversion/treatment + matrix readout logic + data treatment/transmission

- Other "monolithic" technologies
 - CCD (SLD)
 - DEPFET (Belle II) => Not addressed here
 - SOI (R&D)

- Introduced for vertex detectors at e+ecolliders
 - Genuinne attractiveness
 small pitch & low material budget & low power
- <u>1st applications at heavy ion colliders</u>
 - STAR @ RHIC => PXL with MIMOSISA-28 sensor
 - ALICE @ LHC => ITS2 with ALPIDE sensor
- Extended range of applications
 - Trackers
 - Calorimeters
 - Time of Flight
 - Ion identification
 - Connected domains:
 - detectors in space
 - Scientific imaging

Concepts

- \rightarrow Optimisations
- → Technologies
- \rightarrow Charge collection
- → Read-out architecture
- → Stitching

Intro to CMOS-MAPS R&D

Sensitive layer / Collection node

- Drive charge collection
- => defines collection pitch
- Modifications depends on techno.
- Optimised by R&D cycle:
 - TCAD simulation
 - prototyping
 - characterisation

Periphery µ-circuits

- (Insensitive area, usually)
- => defines interface to outside world
 - Powering, configuration, signal transmission
- Optimised by simulation & verification
 - as complex as any large ASICS
 - Prototyping used to validate

- In-pixel & in-matrix µ-circuits
 - (Above sensitive layer)
 - Convert charge collection properties
 into actual performance
 - => defines read-out pitch
 - Optimised by simulation & verification
 - prototyping still required to estimate for noise, pixel-to-pixel fluctuations, SEE
 - Integration in det. modules
 - Final sensor thickness, interconnection, geometrical arrangement
 - => defines material budget & operability
 - Optimised by iterative prototyping with increased complexity

The curse of the monolithic approach

CMOS-MAPS technological processes

Small collection node (\rightarrow small det. capacitance)

• If depleted through High-Resistivity material

- Tower 180 nm
 - ALICE-ITS2 , ATLAS-ITK, Belle II , CEPC, CBM, CLIC, LHCb-UT, TIIX
- TPSCo 65 nm
 - ALICE-ITS3, ALICE3, FCCee

=> All techno in **ECFA-DRD3**-WG1 project => Tower-180/TPSCo-65/LF-110 in **DRD7**-WG6

Large collection node (\rightarrow large det. Capacitance)

• Depletion through High-Voltage allowed by process

- Mu3e, LHCb-MT, ATLAS-ITK
- IHP 130 nm SIGe BiCMOS
 - Monolith, PicoAd, Faser

Context of MAPS R&D: the experiments

Attractive MAPS features for vertexing/tracking

=> small pitch, low mass & low power

- <u>1st applications</u>
 - STAR-PXL@ RHIC 2014-16
 - MIMOSA-28 doi:10.1088/1748-0221/7/01/C01102
 - ALICE -ITS2 @ LHC (10 m²) 2022-32
 - ALPIDE <u>doi:10.1016/j.nima.2016.05.016</u>
 - sPHENIX-MVTX @ RHIC 2023- (also ALPIDE)
 - Mu3e detector @ PSI 2023-
 - MUPix10 doi:10.1016/j.nima.2020.164441
 - MVD in CBM @ FAIR for late ~2028

- MIMOSIS talk at Eurizon 2023 workshop

- Extended applications to higher radiation levels and/or hit rates
 - ATLAS-ITK @ LHC, successful R&D but not selected (yet)
 MALTA, TJ-Monopix, LF-Monopix, ATLASPix
 - Belle II-VTX @ SuperKEKB upgrade project for late 20s
 - OBELIX talk at talk at AIDAinnova 2023 workshop

Pushing performances for more science

- Highly granular & light vertexing
 - ALICE-ITS3 XL-sensor (30x10 cm²) - MOSS/MOST/MOSAIX doi: <u>10.1016/j.nima.2023.168018</u>
 - All future e+e- colliders at high energy targetting spatial resolution ≤ 3 µm
 JadePix, MIC, TaichuPix @ CEPC doi: 10.1016/j.nima.2023.168945
 - ALICE3 vertexing inside beam-pipe
- Tracking
 - Upgrades: Belle II @ SuperKEKB, LHCb @ LHC
 OBELIX, MALTA
 - New systems: EIC @ eRHIC, ALICE3 @ LHC Future e+e-/µµ/hh colliders

Charge collection: basic facts

- Fixed amount of charge generated by ionization in sensitive layer limited by substrate
 all of it is collected over a cluster of pixels
- In standard process, partial depletion
 => charges move by diffusion and drift
 => sizeable charge sharing

 In modified process, close to or complete depletion (sometimes called DepletedMAPS)
 => drift strongly dominates
 => low charge sharing

Charge collection: basic facts

doi: 10.1088/1748-0221/14/05/C05013

- Fixed amount of charge generated by ionization => all of it is collected over a cluster of pixels
- Electric field configuration & sensitive thickness drive charge sharing

• Sizeable sharing =

- Lower charge on seed pixel \rightarrow low threshold for high efficiency
- Slow collection \rightarrow unfavourable / tolerance to radiation
- More information to reconstruct position

• Low sharing =

- High charge on seed pixel \rightarrow easy detection
- Fast collection \rightarrow beneficial for radiation tolerance & time resol.
 - Time resolution depends then on front-end
- Detrimental to position resolution
- I Sharing depends on impact position within pixel

Charge collection: basic facts

mp + additional p-implant

Field configuration driven by (P/N)well geometries & doping

- Fixed amount of charge generated by ionization
 all of it is collected over a cluster of pixels
- Electric field configuration & sensitive thickness drive charge sharing

• Sizeable sharing =

- Lower charge on seed pixel \rightarrow low threshold for high efficiency
- Slow collection \rightarrow unfavourable / tolerance to radiation
- More information to reconstruct position
- Low sharing =
 - High charge on seed pixel \rightarrow easy detection
 - Fast collection \rightarrow beneficial for <u>radiation tolerance & time resol</u>.
 - Time resolution depends then on front-end
 - Detrimental to position resolution
- !! Sharing depends on impact position within pixel

Charge collection: beyond basics

Institut Pluridisciplinair Hubert CUREP STRASBOURD

Introduce amplification by impact in silicon

- Stronger signal \rightarrow better radiation tolerance (caveat about behaviour of additional layers with fluence)
- Stronger signal \rightarrow no need anymore for front-end: smaller pixels, lower power
- Faster signal \rightarrow better time resolution (but just one of the ingredients)

Jérôme Baudot - Review on MAPS R&D - FTCF workshop 2024/01/15

Stitching or not-stitching?

Benefits

- Material budget with a single bent crystal
- System simplicity

- Yield => expecting first result from MOSS this year
- Insensitive area to drain data out

Need

- Small area innermost layers: ALICE-ITS2 + ALICE3 + FCC
- Large area => no go because of yield ?
- <u>R&D topic</u>
 - 1D stitching with ALICE
 - Power domain local-failure proof
 - 2D stitching?

Discussion on performance

- \rightarrow position resolution
- \rightarrow time resolution
- \rightarrow power dissipation
- \rightarrow (radiation tolerance)
- \rightarrow integration

Position resolution

What we know

- Resolution driven by
 - Charge sharing
 - Pixel-signal encoding resolution
 - Detection threshold
- Best today still the 'slow' MIMOSA-26/28
- Beyond state-of-the-art needs
 - ALICE 3 inner layers: 2.5 µm
 - Future lepton colliders: 3 µm
- <u>R&D topics</u>
 - CMOS process with smaller feature size \rightarrow TPSCo 65 nm
 - But some work is still ahead of us
 - Removing front-end amplifier from pixel
 - \rightarrow requires amplification in silicon

Time resolution

What we know

- Resolution driven by
 - Charge sharing
 - Time of arrival encoding
 - Time walk
- Various ranges achieved:
 - Nanoseconds on large sensors (ATLAS-ITK R&D) (180 nm)
 - Sub-nanosecond on R&D sensors
 - Tower 180 nm & 65 nm
 - LF-150 nm: CACTUS doi: 10.1088/1748-0221/15/06/P06011
 - IHP SiGe BiCMOS 130 nm: Fastpix
 - => strong R&D on-going

- 4D-tracking
- Time of flight for particle identification

<u>م</u> 250

O 150

100

50

0 5

[₹]200

Power dissipation

Front-end analogue power

- Proportional to $\left(\frac{Q}{C}\right)^{-2}$ doi: 10.1016/j.nima.2013.05.073
 - Benefit of small diode for collection node & depletion
- Techno dependence
 - ALPIDE (180nm) 40 nW/pixel \rightarrow MOSS (65nm) 10 nW/pixel @ same 5 μs
- Speed dependence (timestamping)
 - Few 10s nW @ $\mu s \rightarrow$ few μW @ ns

Read-out & serialisation

- Data driven approach compulsory
- Global signals (like clocks) detrimental
- Of course increase with logic complexity
 - Triggering, handling occupancy fluctuations, ...

Data transmission

- Depends of needed bandwidth
 - Close to analogue power for MIMOSIS
- Much reduced for triggered sensor
 - See OBELIX but price in trigger logic

Sensor	MIMOSA28	ALPIDE	MIMOSIS-1	OBELIX	ATLASPix-3
Date	2008/10	2015-17	2021	2021	2019
Techno	AMS-350 nm	TJ-180 nm	TJ-180 nm	TJ-180 nm	TSI 180 nm
Pixel pitch (µm²)	20.7x20.7	29x27	30x27	33x33	150x50
Time Stamp (ns)	112/ x10 ³	5000	5000	25	25
read-out	Continuous	Continuous	Continuous	triggered	triggered
Bandwidth (Mbits/s)	180	1200	2400	320	1300
Power (mW/cm ²)	150	35	~50	200	150
Hit rate (Mhz/cm ²)	O(0.1)	10	15-70	>100	>100

Integration:

- Experience from
 - STAR-PXL, PLUME, ALICE-ITS2, MALTA
 - FASER, MU3e, Belle II-VTX

PLUME: first double sided module

• 12 cm length, 8 Mpixels, 0.35 % X0

• Used in phase-2 SuperKEKB

<u>R&D topics</u>

- Stitching or pseudo-stitching
- Connecting sensors on modules
 - For data and/or power
- Regulating power

Note: Quite difficult to have generic project => need an experiment to get practical

Bending large MAPS

From https://indico.cern.ch/event/1071914/

Some MAPS (a very selective choice)

MIMOSIS project (IPHC, Goethe Uni.Frankfurt, GSI)

Goals & mean

- Match CBM vertex requirements & achieve step forward / Higgs-Factories
 combine position res. (~5µm) & low-power (<100 mW/cm²) & high hit-rate (>50 MHz/cm²)
- Specificity of CBM collisions: 100 kHz Au+Au @ 11 AGeV and 10GHz p+Au @ 30 AGeV => large hit-rate fluctuation & operation in vacuum

Full specs for MIMOSIS sensor

No safety factor

Position resolution	~5 µm			
Time resolution / continuous r.o.	~5 µs			
Power dissipation	<100 - 200 mW/cm			
Hit rate (average/50 µs peak)	20/70 MHz/cm ²			
Material budget / layer	0.05 % X ₀			
Operation temp in vacuum	- 40°C to +30°C			
Radiation* (non-ionizing)	~ 7x10 ¹³ n _{eq} /cm ²			
Radiation* (ionizing)	~ 5 Mrad			
Radiation gradient	100 %			
Heavy lons-tolerance	10 Hz/mm ²			

- MIMOSIS sensors
 - MIMOSIS-1 (2020)
 - MIMOSIS-2/2.1 (2022/2023)
 - Final MIMOSIS-3

٨	۸	I	M	0	S	IS	- 1	
		_	_	-	-	-	-	

Parameter	Value
Technology	TowerJazz CIS 180 nm
Epitaxial layer	\sim 25 μ m thick, $> 1 k \Omega \cdot$ cm
Sensor thickness	300 µm or 60 µm
Pixel size	$26.9\mu\text{m} imes30.2\mu\text{m}$
Pixel array	1024 $ imes$ 504 pixels
Sensitive area	\approx 4.2 cm ²
Array readout time	$pprox$ 5 μ s
Power consumption	$<$ 100 mW/cm^2

Full digital on top design

MIMOSIS-1 noise & threshold behaviour

From laboratory tuning

- Room temperature
- Conversion factor 1 mV ~ 1-1.5 e-
- Threshold range 100-250 e-
- Fixed pattern noise ~ 7-10 e-
- Temporal noise ~3-5 e-

A.Dorokhov, VCI 2022, <u>https://indi.to/vBJLx</u> R. Bugiel, Z.EL Bitar, NSS 2022, <u>https://nssmic.ieee.org/2022</u>

MIMOSIS-1 efficiency and position resolution

From Beam test

- Telescope made of 6 MIMOSIS-1 sensors
 - 5 GeV e from DESY II
 - 120 GeV π from SPS-CERN
 - Room temperature
- Fake rate (not shown) 10⁻⁷ /pixel/frame(5 μs) after NIEL fluence and for all thresholds
- Detection efficiency stable after NIEL for modified process
- Correlation resolution and charge-sharing as expected
- Resolution mildly degraded by NIEL fluence
 Bulk damages reduces cluster size

A.Dorokhov, VCI 2022, <u>https://indi.to/vBJLx</u> R. Bugiel, Z.EL Bitar, NSS 2022, <u>https://nssmic.ieee.org/2022</u>

POSITION RESOLUTION for short pixel side (μ m)

Belle-II / OBELIX-layout

Bandwidth

Submission in Q1-2024

1 output 320 MHz

Belle-II OBELIX key features & status

- 1. Pixel matrix with **detection efficiency** proven at hit rates & radiation levels expected
- 2. Handling of Belle II trigger rate & delay
- 3. Robust handling of trigger veto during injection
- 4. Power dissipation adapted to **air cooling** (inner layer) and **water cooling** (outer layer)
- 5. Simple system integration: **power regulation** on-chip, low data bandwidth
- 6. Providing **fast input to trigger** (~100 ns) with coarse granularity (8 areas)
- 7. Integration time within 50-100 ns range, option for finer time stamping (≤ 10 ns)
- 8. Monitoring of internal biases and temperature

- Low threshold (250 e-) established
- Time-walk compatible with 25 ns 98% in-time efficiency
- Radiation-tolerance validated during July 2023 beam test
- Implementation of trigger logic (TRU) in digital design
- Verified by simulation
- No specific mode required in TRU
- Tolerance up to 800 MHz/cm2 for 0.5 μs verified in simulation
- Demonstrated in simulations & test beam
- Digital logic power with hit rate known
- LDO layout on-going, but require full simulation
- Low bandwidth confirmed
- Parallel read-out (/ main path) implemented (TTT)
- Not yet checked at detector system level

- BCID mechanism adapted
- Additional mechanism (PTD) simulated with ~6 ns resolution

• Independent integration in OBELIX-1 (no risk)

TPSCo 65 nm: current status

From 1st submission in TPSCo 65 nm

- Based on APTS, CE-65, DPTS: talks at IWORID2022, TREDI 2023, ULTIMA 2023, PSD 2023
- Variety of pixel pitches: 10-25 μm
- Successful sensitive layer depletion
 - From modified process

Large consortium

- CERN-EP R&D roadmap WP1.2 + ALICE-ITS3 project
- France(Strasbourg, Marseille, Saclay), Italy(Bari, Torino, Catania, Cagliari, Salerno, Trieste), NIKHEF, Germany (DESY, Heidelberg, Munich) HEPHY-Vienna, EPFL, Zürich STFC-RAL, Oxford, Birmingham CCNU, Yonsei, Bolu, Talinn, Zagreb

doi: 10.1016/j.nima.2022.167213 doi: 10.48550/arXiv.2309.14814 doi: 10.1016/j.nima.2023.168478

TPSCo 65 nm: current status

From 1st submission in TPSCo 65 nm

- Based on APTS, CE-65, DPTS: talks at IWORID2022, TREDI 2023, ULTIMA 2023, PSD 2023
- Variety of pixel pitches: 10-25 µm
- Successful sensitive layer depletion
- Promising radiation tolerance

doi: 10.1016/j.nima.2022.167213 doi: 10.48550/arXiv.2309.14814 doi: 10.1016/j.nima.2023.168478

TPSCo 65 nm: current status

From 1st submission in TPSCo 65 nm

- Based on APTS, CE-65, DPTS: talks at IWORID2022, TREDI 2023, ULTIMA 2023, PSD 2023
- Variety of pixel pitches: 10-25 μm
- Successful sensitive layer depletion
- Promising radiation tolerance
- Promising time resolution

doi: 10.1016/j.nima.2022.167213 doi: 10.48550/arXiv.2309.14814 doi: 10.1016/j.nima.2023.168478

Conclusions for a review on MAPS

- Already a large choice of various optimisations
- A very active R&D world-wide pushing for (among others)
 - $-3 \mu m$ position resolution with fast readout and low-power (~20 mW/cm²)
 - -Sensors adapted to tracking: low granularity but high-rate (>100 MHz/cm²) & ~nanosecond timing
 - -Gigantic sensor (>100 cm²)
 - -Sub-nanosecond resolution on large sensors

... Sorry if I missed your favourite topics!

Thank you for your attention...backups from here on

Part of the Strasbourg technical team developing MAPS (Oct.23)

PIXEL 2024 workshop Strasbourg 18-22 Nov. 2024

Charge sharing & resolution

	STAR PXL	ALICE ITS2	HL- ATLAS ITK	CBM MVD	ALICE ITS3	Belle-II VXD	ALICE3 VTX	ALICE3 tacker	EIC tracker	LHCb UT	FCCee VTX	FCChh tracker
Data taking in	2014	2020	(2035)	2026	2029	2028	2035	2035	203?	2035	>2040	>2050
Total area (cm²)												
Spatial res. (µm)	< 10	~5	10	~5	~5	< 10	2.5	10	pitch 10	O(10 µm)	3 – 5	~10
Mat. budget (%X0)	0.37	0.35	<]	~0,3	0.05	0.15	0.15	0.3?	0.05- 0.55	0.3?	0.15	~2
Hit rate (MHz/cm²)	O(0.1)	O(1)	200 triggere d	15-70	~20	100 triggere d	35	0.005	Ş	20Gb/s	O(20)	
Time figure (ns)	200.10 ³	5.10 ³	25	5.10 ³	5.10 ³	~100	100	100	100 (ș)	O(1)	10 ² -10 ³	5x10 ⁻³
Trigger rate (kHz)						30			500			
Rad.hard. (kGy) (n _{eq} /cm²)	2 10 ¹²	30 2x10 ¹³	800 10 ¹⁵	30 /year < 10 ¹⁴ /y.	<100 <10 ¹⁴	100 5x10 ¹³	- 1.5x10 ¹⁵ /year	-	- 10 ¹⁵	2400 3x10 ¹⁵	20 5x10 ¹¹	100 10¹⁶
nb of layers	2	7				5-6			5 + 5d			
radii (cm)	3-8					1.2-13.?						
bunchX (ns)			25		25	4			10			

Specifications (normalized to 0-100% score) MIMOSA-28 / STAR ALPIDE / ITS2 -MIMOSIS / CBM -ITK R&D / ATLAS OBELIX / Belle II MOSS / ITS3 -vertex / ALICE3 -vertex / FCCee Power [250-5] (mW/cm^2) Radiation tolerance [0.01-10] Postion resolution [15-2] (µm) (10^15 n_eq/cm^2) Time resolution [500-0.01] (ns) Material budget X/X0 [1-0.01] (%) Hit rate [0.1-200] (MHz/cm^2)

Jérôme Baudot - Review on MAPS R&D - FTCF workshop 2024/01/15

ECFA-DRD3/7

FASTPIX technology demonstrator for sub-ns timing

- Modified 180 nm CMOS imaging process, design optimisations for fast charge collection
- Small hexagonal pixels (8.66 to 20 µm pitch)
- Time resolution of ~140 ps achieved in test beam

doi: 10.3390/instruments6010013

