



January 18, 2024

## Status of SuperKEKB

## Y. Ohnishi







### **SuperKEKB and Belle II**

- CMS Energy: 10.58 GeV
- Asymmetric Energy
- **Double Rings**
- Single Interaction Point
- Large Crossing Angle at IP : 83 mrad
- **Top-Up Injection**
- Positron Damping Ring

2







| Beam Energy                          | LER (e | e+): 4 | GeV,         | HER (e                           | ≥-): 7 | 7GeV                                 |  |  |
|--------------------------------------|--------|--------|--------------|----------------------------------|--------|--------------------------------------|--|--|
| Circumference:                       |        | 3      | km           |                                  |        |                                      |  |  |
| Emittance                            | LER:   | 4 nm,  | HER          | 4.6                              | nm     | Achievements:                        |  |  |
| Beam current                         | LER:   | 3.6 A, | HER          | 2.6                              | A      | LER: 1.46 A, HER: 1.                 |  |  |
| Max. number of bund                  | ches:  | 2346   |              |                                  |        |                                      |  |  |
| Vertical beta at IP:                 |        | 0.3 mm |              |                                  |        | 0.8 mm - 1.0 mm                      |  |  |
| Target Luminosity:                   |        | > 6 x  | <b>10</b> 35 | cm <sup>-2</sup> s <sup>-1</sup> | 1      | <b>4.65(4.71) x 10</b> <sup>34</sup> |  |  |
| Nano-Beam Scheme + Crab-Waist Scheme |        |        |              |                                  |        | < 1/10 of Target                     |  |  |

## SuperKEKB Collider









### Still Far from Target Luminosity ...





Pirates of the Caribbean: Dead Man Tell No Tales (2017)





### **History of SuperKEKB**











42%

Maintenance, Others

Machine Study

Physics Run Machine Tuning

Troubles

October - December, 2020









Luminosity ( $\times 10^{34}$  cm<sup>-2</sup>s<sup>-1</sup>)



 $n_b I_{b+} I_{b-}$  (mA<sup>2</sup>)

Improvements: from 2020 to 2021: Manage of HER BxB FB Gain and Collimator Impedance from 2021 to 2022: Chromatic X-Y Coupling Correction and LER BxB FB Optimization

### **Luminosity Performance**

$$L = \frac{N_{+}N_{-}n_{b}f_{0}}{4\pi\sigma_{x}^{*}\sigma_{y}^{*}}R_{L}$$

$$= \frac{n_{b}I_{b+}I_{b-}}{2\pi(e^{2}f_{0})\phi_{x}\Sigma_{z}\Sigma_{y}^{*}}$$
Expected
Bunch Length:  $\Sigma_{z} = 7.8 \ mm$ 

$$\varepsilon_{y+} = 35 \ pm$$

$$\Sigma_{z} = \sqrt{(\sigma_{z+})^{2} + (\sigma_{z-})^{2}}$$

$$\varepsilon_{y-} = 25 \ pm$$

$$\Sigma_{y}^{*} = \sqrt{(\varepsilon_{y+} + \varepsilon_{y-})\beta_{y}^{*}}$$
Half Crossing-Angle:  $\phi_{x} = 41.5 \ mrad$ 





- 1. Sudden Beam Loss
- 2. Beam-Size Blowup due to Beam-Beam Interactions
- 3. Beam-Related Background
- 4. Injection Efficiency and Emittance Blowup in the Beam Transport Line
- 5. Difficulties to Keep Beam Orbit Stable (from Low Current to Hight Current)
- 6. Short Lifetime and Narrow Dynamic Aperture with  $\beta_v^*$  Squeezing
- 7. Beam-Size Blowup due to -1 Mode Instability in the LER (Almost Fixed)





Beam Becomes Unstable Suddenly at High Beam Current. Beam Loss Leads to Severe Damage on Collimators or Final Focus Magnet (QCS) Quench.



### Sudden Beam Loss (SBL)

### **Damage of Collimator Head**



M. Aversano





TOP side









### **Vertical Collimator**

BOTTOM side





I think the colours are similar.

Photo from downstream.



Тор



Bottom Many Dusts





### Physical process of the "Fireball" hypothesis, leading to SBL



T. Abe et al. "Direct observation of breakdown trigger seeds in a normal-conducting rf accelerating cavity", Phys. Rev. AB 21, 122002, 2018

### **SBL and Fireball Hypothesis**

2 The fireball touches some metal surface with a low sublimation point (e.g. copper).

Fireball: Measured at RF Cavity → Breakdown Mechanism

Beam pipe: Copper; Low Sublimation Point

Collimator Head: Tungsten or Tantalum; High Sublimation Point

 $\rightarrow$  Potential for Fireball

Fireball Hypothesis Explain SBL Fast Plasma Evolution ~100 ns

(4) The plasma grows up into a macroscopic vacuum arc, possibly leading to significant interactions with the

Copper Coating of Collimator Head will be Effective if Different Sublimation Point is Problem.



11



- 1. Sudden Beam Loss
  - Copper Coating of Collimator Head, Additional Monitors (Acoustic Sensors, Loss Monitors, Specific TBT BPM)
- 2. Beam-Size Blowup due to Beam-Beam Interactions
  - Chromatic X-Y Coupling Correction, Reduction of Machine Error in IR
- 3. Beam-Related Background
  - More IR Radiation Shields
- 4. Injection Efficiency and Emittance Blowup in the Beam Transport Line
  - Wider Aperture at Injection Point, Shielding Effect to Suppress Coherent Synchrotron Radiation (CSR)
- 5. Difficulties to Keep Beam Orbit Stable
- Beam Pipe Deformation due to SR Heating, BPMs Push Quadrupole Magnets. Isolation of BPM will Be Tested. 6. Short Lifetime and Narrow Dynamic Aperture with  $\beta_v^*$  Squeezing
  - Sextupole and Octupole Optimization
- 7. Beam-Size Blowup due to -1 Mode Instability in LER  $\rightarrow$  Reduce Impedance and BxB FB Optimization

### Measure Against Seven Major Issues















### **Reduction of Impedance: Nonlinear Collimator**



### Beam Halo Can Be Scraped by Large Collimator Aperture.





### **Machine Parameters**

| June 8, 2022                                |                                                                        |                    | Target at P     | ost-LS1 (1)        | Target at Post-LS1 (2)  |                 | Un      |
|---------------------------------------------|------------------------------------------------------------------------|--------------------|-----------------|--------------------|-------------------------|-----------------|---------|
| Ring                                        | LER HER                                                                |                    | LER             | HER                | LER                     | HER             |         |
| Emittance                                   | Emittance4.04.6                                                        |                    | 4.0             | 4.6                | 4.0                     | 4.6             | nn      |
| Beam Current                                | nt 1321 1099                                                           |                    | 2080            | 1480               | 2750                    | 2200            | m       |
| Number of Bunches                           | 2249                                                                   |                    | 23              | 46                 | 2346                    |                 |         |
| Bunch Current                               | Bunch Current 0.587                                                    |                    | 0.89            | 0.63               | 1.17                    | 0.94            | m       |
| Horizontal Size $\sigma_x^*$                | <b>contal Size σ<sub>x</sub>*</b> 17.9 16.6                            |                    | 17.9            | 16.6               | 17.9                    | 16.6            | μn      |
| Vertical Cap Sigma Σ <sub>y</sub> * 0.303   |                                                                        |                    | 0.2             | 217                | 0.178                   |                 | μn      |
| Vertical Size σ <sub>y</sub> *              | 0.2                                                                    | 215                | 0.1             | 54                 | 0.126                   |                 | μn      |
| Betatron Tunes $v_x / v_y$                  | etatron Tunes v <sub>x</sub> / v <sub>y</sub> 44.525 / 46.589 45.532 / |                    | 44.525 / 46.589 | 45.532 / 43.573    | 44.525 / 46.589         | 45.532 / 43.573 |         |
| β <sub>x</sub> * / β <sub>y</sub> *         | <b>β</b> <sub>x</sub> * / β <sub>y</sub> * 80 / 1.0 60                 |                    | 80 / 0.8        | 60 / 0.8           | 80 / 0.6                | 60 / 0.6        | mr      |
| σ <sub>z</sub>                              | 4.6                                                                    | 5.1                | 6.5             | 6.4                | 6.5                     | 6.4             | mr      |
| Piwinski Angle                              | 10.7                                                                   | 12.7               | 10.7            | 12.7               | 10.7                    | 12.7            |         |
| Crab Waist Ratio                            | 80                                                                     | 40                 | 80              | 80                 | 80                      | 80              | %       |
| Beam-Beam ξ <sub>y</sub>                    | 0.0407                                                                 | 0.0279             | 0.0444          | 0.0356             | 0.0604                  | 0.0431          |         |
| Specific Luminosity 7.21 x 10 <sup>31</sup> |                                                                        |                    | 7.62 :          | x 10 <sup>31</sup> | 9.31 x 10 <sup>31</sup> |                 | cm⁻²s⁻¹ |
| Luminosity                                  | 4.65 >                                                                 | x 10 <sup>34</sup> | 1 x             | 10 <sup>35</sup>   | 2.4x 10 <sup>35</sup>   |                 | cm-2    |

 $10^{35}$  and 2.4 x  $10^{35}$  are tentative and considered by Y. Funakoshi.

# ift m <sup>1</sup>/mA<sup>2</sup> <sup>2</sup>s<sup>-1</sup> 15



### The First Milestone after LS1: 10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup>.



Specific luminosity  $\times 10^{31}$  (cm<sup>-2</sup>s<sup>-1</sup>/mA<sup>2</sup>)

### Strategy toward 2.4 x 10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup>

**Number of Bunches Reaches Design. Increase Bunch Current Without Beam-Beam Blowup** 

$$L_{sp} = \frac{L}{I_{b+}I_{b-}n_{b}}$$

Luminosity Frontier  $10^{34} \text{ cm}^{-2}\text{s}^{-1} \leftarrow \text{KEKB}$  $10^{35} \text{ cm}^{-2}\text{s}^{-1} \leftarrow \text{SuperKEKB}$ 

 $I_{b+}I_{b-}n_{b}$  (mA<sup>2</sup>)

Attempt to Improve Luminosity Toward a New Luminosity Unit.







Have to Overcome These Challenges ...



### 葉問 Ip Man 4: The Finale (2019)

## International Task Force (ITF) for SuperKEKB

Find Realistic Path to 10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup> after LS1 Find Ideas to 6x10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup> after LS2 with Major Modifications

ITF 2023 Activities from January 2023 for 1 year Chairperson: Y. Ohnishi







### **Organized under the B-Factory Promotion Office at KEK.**



### Need LS2 Upgrade to Achieve More than 2.4 x 10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup> Luminosity



LS2 : The 2nd Long Shutdown

## **Upgrade in LS2**





## IR Upgrade

- QC1P (Final Focus Magnet) Relocation
  - Closer to the IP by 100 mm (from  $L^* = 935$  mm to 835 mm)
  - $\bullet$   $\rightarrow$  Improve Dynamic Aperture and Touschek Lifetime
- Separation of Solenoid Field and QC1P
  - $\rightarrow X-Y \ Couplings \ and \ Chromatic \ X-Y \ Couplings \ at IP$
  - $\bullet$   $\rightarrow$  Vertical Dispersion Induced by IR
- Magnets with Nb<sub>3</sub>Sn

### **Possible Senario**

K. Aoki, Y. Arimoto, H. Koiso, N. Ohuchi, M. Tobiyama, M. Masuzawa





### **Current Version**



### **Updated Version**



20

## **Design of Final Focus**







- 1. Increase QC1P Aperture (Vertical) from 13 mm to 20. 7mm
- → Large Physical Aperture
- **2. Fabricate New Anti-Solenoid Coil and Move It Closer to IP**  $\rightarrow$  Less X-Y Coupling
- **3. Cover QC1P by Magnetic Material**
- → Reduce Magnetic Coupling
- 4. Move QC1P Closer to IP (100 mm)
- → Larger Dynamic Aperture (Longer Touschek Lifetime)

Current Design











Momentum Acceptance

### **Dynamic Aperture and Touschek Lifetime**

 $\beta_{v}^{*} = 270 \ \mu m$ 

Momentum Acceptance





- Luminosity Achievement in 2022: 4.7x10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>
- Difficulties to Increase Beam Current.
  - Sudden Beam Loss
- $\beta_v^*$  Squeezing < 1 mm
  - Short Lifetime and Narrow Dynamic Aperture
- January 2024: Resume Machine Operation after Long Shutdown (LS1)
  - First Target: More than 10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup>.  $\bigcirc$
- LS2: Further Upgrade Program (2030s ?)
- Experiences from SuperKEKB Help in the Design and R&D of the Future Colliders
  - FCC-ee, CEPC, Super Tau-Charm Factories

