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CP violation in s-quark decay

• CP violation in kaon decay has a long history, starting with the first 
observation of  in 1964 (J. Christenson, J. Cronin, V. Fitch and R. 
Turlay)

• The first evidence for direct CP violation, , by NA31 came in 1988 and 
was later confirmed by NA48 and KTEV in the early 2000s.

• Calculations have been carried out since at least the early 80s
• The calculations are notoriously difficult and even after 40 years, large 

uncertainties remain.
• CP violation in hyperon decay is probably harder to estimate and has 

received much less attention than its kaon counterparts.
• Observation of CP violation in hyperons would help us complete this picture.

KL → ππ

ϵ′ /ϵ



CP violation in  processes|ΔS | = 1,2

This direct CP-violating effect arises in the weak part of the
transition amplitudes to pions due to the interference
between isospin I ¼ 0 and I ¼ 2 final states (jΔIj ¼ 1=2
and jΔIj ¼ 3=2 transitions, respectively). The CP-violation
mechanism in the SM requires loop diagrams where all
three quark families are involved, the so-called penguin
diagrams, like those shown in Fig. 1. Predictions for the
kaon decays have been a challenge for many years since
there are partially canceling contributions from subleading
types of the penguin diagrams, where the gluon line is
replaced by γ; Z0; see, e.g., Ref. [12] and references therein.
Recently, a satisfactory understanding was reached
using Lattice [13,14] and effective field theory [15,16]
approaches to QCD. This progress ensures that the kaon
decays continue to be an important precision test of the SM.
The subject of our paper is a complementary approach to

studyCP violation (CPV) in two-body nonleptonicΔS ¼ 1
transitions of hyperons [17–22]. For such weak two-body
decays, one also needs an interference pattern: this time
between parity-even and parity-odd decay amplitudes.
These emerge from the spin degrees of freedom of the
initial and final baryons. Since we will consider decays of a
spin-1=2 baryon B to a spin-1=2 baryon b and a pion, the
parity-even amplitude leads to a p-wave final state, while
the parity-odd amplitude leads to an s-wave final state. The
two amplitudes are denoted P and S, respectively. In the
following, we will often write the decay generically as
DðB → bπÞ. When we need to be more specific, we use
indices Λ and Ξ to denote Λ → pπ− and Ξ− → Λπ−,
respectively. The decay amplitude is

A ∼ Sσ0 þ Pσ · n̂; ð2Þ

where σ0 is the 2 × 2 unit matrix, σ ≔ ðσ1; σ2; σ3Þ are the
Pauli matrices, and n̂ ¼ q=jqj is the direction of the
b-baryon momentum q in the B-baryon rest frame. It is
important to note that these amplitudes depend on the initial
(weak) decay, which produces the two final particles, but
depend also on the (strong) final-state interaction. These S
and P amplitudes are Lorentz scalars, which can depend
only on the invariant mass of the two-body system. Yet, this
quantity is fixed for a two-body decay: if we disregard the
unmeasurable overall phase, the two complex amplitudes

S and P can be fully specified by the overall normalization
jSj2 þ jPj2 and the size and relative phase of the interfer-
ence term S%P. These are directly related to the partial
decay width and the following two parameters [23]:

αD ≔
2ReðS%PÞ
jSj2 þ jPj2

and βD ≔
2ImðS%PÞ
jSj2 þ jPj2

: ð3Þ

The relation of the parameters to the shape of the angular
distribution, including the polarization, of the baryon b will
be shown in Sec. II. In the CP-conserving limit, the
amplitudes S̄ and P̄ for the charge-conjugated (c.c.) decay
mode of the antibaryon D̄ðB̄ → b̄þ π̄Þ are S̄ ¼ −S and
P̄ ¼ P. Therefore, the decay parameters have the opposite
values: ᾱD ¼ −αD and β̄D ¼ −βD.
Two independent experimental CPV tests can be defined

using these parameters,

AD
CP ≔

αD þ ᾱD
αD − ᾱD

and BD
CP ≔

βD þ β̄D
αD − ᾱD

; ð4Þ

where AD
CPðBD

CPÞ ≠ 0 indicates CP violation in theD decay.
The AD

CP test requires measurement of the angular bðb̄Þ
distribution from polarized BðB̄Þ-baryon decay. The BD

CP
test probes time-reversal-odd transitions and can be poten-
tially much more sensitive, but it requires in addition a
measurement of the bðb̄Þ-baryon polarization. In the SM,
CPV effects in the hyperon decays are dominated by the
QCD-penguin contribution, Fig. 1(a).
In the 1960s, hyperon decays were a tool for discrete

symmetry tests on equal footing with the kaons. The last
dedicated program to observe CP violation in hyperons was
performed by the Fermilab experiments E756 [24] and
HyperCP [25] at the dawn of this century. In these experi-
ments, the sum of theACP observables forΞ− → Λπ− ð½Ξ−'Þ
and Λ → pπ− ð½Λp'Þ, A½Ξ−'

CP þ A½Λp'
CP , was studied. Here, the

SM prediction amounts to −0.5 × 10−4 ≤ A½Ξ−'
CP þ A½Λp'

CP ≤
0.5 × 10−4 [26]. The published result A½Ξ−'

CP þ A½Λp'
CP ¼

0ð7Þ × 10−4 [27] is currently considered to be the most
precise test of CP symmetry in the hyperon sector.

FIG. 1. Quark diagrams relevant for kaon and hyperon decays. Direct CP-violation effects in kaon and hyperon decays in the SM are
given by the (a) QCD-penguin operators and (b) electroweak penguin operators. This figure was created using a modified script from
Ref. [15].
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Fig. IX–2 Long-distance contributions to K0 − K̄0 mixing.

CP-conserving mixing

There are two main classes of contributions, associated respectively with the short-
distance box diagrams of Fig. IX–1(a),(b) and the long-distance contributions like
those in Fig. IX–2,

!mtheory = (!m)SD
theory + (!m)LD

theory . (1.16a)

We shall consider the first of these here, the short distance component

(!m)SD
theory = 2Re

〈
K0

∣∣Hbox
w

∣∣ K̄0〉 . (1.16b)

Determining (!m)SD
theory has long been, and continues to be, a significant topic in

kaon physics. It involves almost all the field theory tools we describe in this book.
Our discussion will of necessity include some advanced features in order to present
a realistic picture of the current state of the art.

The construction of Hbox
w follows a standard procedure: to a given order of QCD

perturbation theory, first specify the Wilson coefficient at the scale µ =MW , then
use the renormalization group (RG) to evolve down to a hadronic scale µ < mc

and finally match onto the effective three-quark (i.e. u, d, s) theory. The result of
this is

Hbox
w = C(µ)O!S=2, (1.17)

where O!S=2 is the local four-quark operator

O!S=2 = d̄γµ(1 + γ5)s d̄γ µ(1 + γ5)s, (1.18)

and C(µ) is the corresponding Wilson coefficient,

|ΔS | = 2

K → ππ Λ → pπ− Ξ− → Λπ− K0 − K̄0
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those in Fig. IX–2,

!mtheory = (!m)SD
theory + (!m)LD

theory . (1.16a)

We shall consider the first of these here, the short distance component

(!m)SD
theory = 2Re

〈
K0

∣∣Hbox
w

∣∣ K̄0〉 . (1.16b)

Determining (!m)SD
theory has long been, and continues to be, a significant topic in

kaon physics. It involves almost all the field theory tools we describe in this book.
Our discussion will of necessity include some advanced features in order to present
a realistic picture of the current state of the art.

The construction of Hbox
w follows a standard procedure: to a given order of QCD

perturbation theory, first specify the Wilson coefficient at the scale µ =MW , then
use the renormalization group (RG) to evolve down to a hadronic scale µ < mc

and finally match onto the effective three-quark (i.e. u, d, s) theory. The result of
this is

Hbox
w = C(µ)O!S=2, (1.17)

where O!S=2 is the local four-quark operator

O!S=2 = d̄γµ(1 + γ5)s d̄γ µ(1 + γ5)s, (1.18)

and C(µ) is the corresponding Wilson coefficient,

Long-distance

• Within the SM they all probe the same quantity 

• the kaon observables have established CP violation but the uncertainty in their 
calculation still allows for relatively large contributions beyond the SM

• Beyond the SM, all these modes are complementary and observing CP 
violation in hyperon decay would add valuable information to the picture

∼ ImVtdV*ts = A2λ5η



CP violation in K → ππ

• Recall for  (PDG values)

•

• Indirect CP violation: 

• Direct CP violation: 

• Recent detailed theory calculations give for the SM

• From 2019:  (Brod et. al. PRL 125.171803)

• From 2019:  (Cirigliano et. al. JHEP02(2020)032)

K → ππ

η+− = A(KL → π+π−)
A(KS → π+π−) = ϵ + ϵ′ , η00 = A(KL → π0π0)

A(KS → π0π0) = ϵ − 2ϵ′ 

|ϵ | = (2.228 ± 0.011) × 10−3

Re(ϵ′ /ϵ) = (1.66 ± 0.23) × 10−3

ϵ = (2.16 ± 0.18) × 10−3

Re(ϵ′ /ϵ) = (1.3+0.6
−0.7) × 10−3



Hyperon non-leptonic decay - observables
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as illustrated in Fig. 1. This means that the longitudinal (ẑ) component 
depends on αΞ, and the transversal components are rotated by the 
angle φΞ with respect to the Ξ− polarization.

The decay parameter αΞ appears explicitly in the angular distribution 
of the direct decay Ξ− → Λπ−, whereas the sequential decay distribution 
of the daughter Λ depends on both αΛ and φΞ. CP symmetry implies 
that the baryon decay parameters α and φ equal those of the antibaryon 
α  and φ  but with opposite sign. Hence, CP violation can be quantified 
in terms of the observables

A
α α
α α

φ
φ φ

=
+
−

, ∆ =
+
2

. (3)Y Y Y

Y Y

Y Y
CP CP

CP violation can only be observed if there is interference between 
CP-even and CP-odd terms in the decay amplitude. Because the decay 
amplitude for Ξ− → Λπ− consists of both a P-wave and an S-wave part, the 
leading-order contribution to the CP asymmetry, AΞ

CP, can be written as

A δ δ ξ ξ≈ − tan( − )tan( − ), (4)Ξ
CP P S P S

where tan(δP − δS) = β/α denotes the strong-phase difference of the 
final-state interaction between the Λ and π− from the Ξ− decay. 
CP-violating effects would manifest themselves in a nonzero weak-phase 
difference ξP − ξS (refs. 22–24), an observable that is complementary to 
the kaon decay parameter ε′ (refs. 13,14,25) because the latter only involves 
an S-wave. The strong-phase difference can be extracted from the φΞ 
parameter, and is found to be small3,26: (−0.037 ± 0.014). Hence, 
CP-violating signals in AΞ

CP are strongly suppressed and difficult to 
interpret in terms of the weak-phase difference.

An independent CP-symmetry test in Ξ− → Λπ− is provided by deter-
mining the value of ∆φCP. At leading order, this observable is related 
directly to the weak-phase difference:

〈 〉
〈 〉ξ ξ

β β
α α

α
α

∆φ( − ) =
+
−

≈
1 −

, (5)
P S LO

2

CP

where α α α= ( − )/2〈 〉 , and can be measured even if δP = δS. The absence 
of a strong suppression factor therefore improves the sensitivity to 
CP-violation effects by an order of magnitude with respect to that of 
the AΞ

CP observable22,23. To measure ∆φCP using the standard polarim-
eter technique from refs.21,28 requires beams of polarized Ξ− and Ξ +. In 
such experiments the precision is limited by the magnitude of the 
polarization and the accuracy of the polarization determination, which 
in turn is sensitive to asymmetries in the production mechanisms27. In 
fact, no experiment with a polarized Ξ + has been performed, and the 
polarization of the Ξ− beams were below 5% (ref. 3). Here we present an 
alternative approach, in which the baryon–antibaryon pair is produced 
in a spin-entangled CP eigenstate and all decay sequences are analysed 
simultaneously.

To the best of our knowledge, no direct measurements of any of the 
asymmetries defined in equation (3) have been performed for the Ξ− 
baryon. The HyperCP experiment28, designed for the purpose of CP tests 
in baryon decays, used samples of around 107–108 Ξ− and Ξ + events to 
determine the products αΞαΛ and α α¯ ¯Ξ Λ. From these measurements, the 
sum A A+Λ Ξ

CP CP was estimated to be (0.0 ± 5.5 ± 4.4) × 10−4, where the first 
uncertainty is statistical and the second systematic. In addition to the 
aforementioned problem of the smallness of φΞ, which limits the sensi-
tivity of AΞ

CP to CP violation, an observable defined as the sum of asym-
metries comes with other drawbacks: if AΛ

CP and AΞ
CP have opposite signs, 

the sum could be consistent with zero even in the presence of CP-violating 
effects. A precise interpretation therefore requires an independent 
measurement of AΛ

CP with matching precision. The most precise result 
so far is a recent BESIII measurement4 where AΛ

CP was found to be (−6 ± 
12 ± 7) × 10−3. Furthermore, ref. 4 revealed a 17% disagreement with previ-
ous measurements on the αΛ parameter26, a result that rapidly gained 
some support from a re-analysis of CLAS data5. Although the CLAS result 
is in better agreement with BESIII than with the Particle Data Group value 
from 2018 and earlier, there is a discrepancy between the CLAS and BESIII 
results that needs to be understood. This is particularly important 
because many physics quantities from various fields depend on the 
parameter αΛ. Examples include baryon spectroscopy, heavy-ion phys-
ics and hyperon-related studies at the Large Hadron Collider29–34.

In this work we apply a newly designed method2,35 to study entangled, 
sequentially decaying baryon–antibaryon pairs in the process 
e e J ψ Ξ Ξ→ / →+ − − +. This approach enables a direct measurement of all 
weak decay parameters of the Ξ− → Λπ−, Λ → pπ− decay, and the corre-
sponding parameters of the Ξ̄+ . The production and multi-step decays 
can be described by nine kinematic variables, here expressed as the 
helicity angles ξ θ θ φ θ φ θ φ θ φ= ( , , , , , , , , )Λ Λ Λ Λ p p p p . The first, θ, is the 
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Fig. 1 | Illustration of the polarization vectors of Ξ− and Λ in relation to the 
decay parameters α, β and γ of the Ξ− → Λπ− decay. The Λ polarization PΛ has a 
component in the longitudinal as well as the transverse direction, where the 
former (ẑ) is defined by the Λ momentum. The longitudinal component 

depends on the Λ emission angle and arises from the transferred Ξ− polarization 

ΞP  combined with the decay parameter α. The remaining Ξ− polarization is 
transferred to the transverse components according to Pβ Ξ  (x̂) and PγΞ Ξ  (ŷ). 
Quarks: d, down; s, strange; u, up; u , antiup.

Figure from BESIII collaboration:: Ablikim, M., Achasov, M. N., Adlarson, P., Cetin, H. O., Kolcu, O. B. (2022). Probing CP symmetry and weak phases with entangled double-strange 
baryons. Nature, 606(7912), 64. And fron https://doi.org/10.1007/s00601-022-01762-0 


dΓℬi→ℬf π

dΩf
=

Γℬi→ℬf π

4π (1 + α 𝒫i ⋅ p̂f)

𝒫f = (α + 𝒫i ⋅ p̂f) p̂f + β𝒫i × p̂f + γp̂f × (𝒫i × p̂f)
1 + α𝒫i ⋅ p̂f

|α |2 + |β |2 + |γ |2 = 1
β = 1 − α2 sin ϕ

γ = 1 − α2 cos ϕ

β

γ

1 − α2

ϕ



Theory - notation

• contributions from different isospin and different parity amplitudes

           ℳ = χ†
f (S + σ ⋅ p̂f P) χi

S = S1ei(δS
1+ξS

1) + S3ei(δS
3+ξS

3)

P = P1ei(δP
1 +ξP

1 ) + P3ei(δP
3 +ξP

3 )

HW

Λ p

π−

HW

ΛΞ−

π−

I = 0, J = 1
2 I = 1

2 , J = 1
2

ℓ = 0, 1

ΔI = 1
2 , 3

2

ℓ = 0, 1

ΔI = 1
2 , 3

2

I = 1
2 , 3

2 I = 1



• Amplitudes from a fit to PDB data on BR and decay parameters 

•  decay phases are extracted from pion-nucleon scattering data

•  phases measured by HyperCP
– BESIII also has a measurement, so far with large uncertainty

• Theory calculations of these strong phases also exist, for  decays a recent 
 calculation gives 

α
Λ
Ξ

Ξ
χPT δP − δS = (8.78+0.19

−0.22)∘

The amplitudes/phases have been measured

M. Hoferichter,et al  Phys. Rep. 625, 1 (2016) 

M. Huang et al. (HyperCP Collaboration) PRL 93, 011802

B-L. Huang et.al. Phys. Rev. D 96, 016021 (2017) 

TABLE I:

mode S P S3/S1 P3/P1 strong phases

⇤ ! p⇡
�

1.382± 0.008 0.624± 0.005 0.03± 0.01 �0.04± 0.02 �
S
1 � �

P
1 = 7.31

� ± 0.12
�

⌅
� ! ⇤⇡

� �1.994± 0.009 0.392± 0.004 0.04± 0.01 0.01± 0.02 �
P
2 � �

S
2 = 4.6

� ± 1.8
�

TABLE II:

mode ⇠
S
1 � ⇠

P
1

⇤ ! p⇡
�

(�0.1± 1) A
2
�
5
⌘

⌅
� ! ⇤⇡

�
(1.5± 1.1) A

2
�
5
⌘

TABLE III: default

Number of J/ sensitivity to A
⌅
CP

BESIII (current) 1.3⇥ 10
9

1.3⇥ 10
�2

BESIII (future) 1⇥ 10
10

4.8⇥ 10
�3

tau-charm factory 3.4⇥ 10
12

2.6⇥ 10
�4

1



Tests of CP invariance

• Compare a decay to the corresponding antiparticle decay,
  vs 

• If CP invariance holds, 
• Test for CP invariance by comparing the corresponding observables: 

               

• with

Λ → pπ− Λ̄ → p̄π+

Γ = Γ̄, α = − ᾱ, β = − β̄

ΔCP = Γ − Γ
Γ + Γ

ACP = α + α
α − α

BCP = β + β
α − α

ΔCP ≃ 2 S3
S1⏟

ΔI=1/2 rule

sin(δS
3 − δS

1)
strong phases

sin(ξS
3 − ξS

1)
weak phases

ACP ≃ −tan(δP − δS) tan(ξP − ξS)
BCP ≃ tan(ξP − ξS)

BCP > ACP > ΔCP



BES, BESIII, STCF

• the hyperons are produced in pairs in  collisions, in reactions with 
sequential decays such as

• The weak decay analyses the decaying baryon polarisation
• the combined angular distribution for this example allows BESIII to extract 

simultaneously the parameters  

e+e−

e+e− → J/ψ → Ξ−Ξ̄+ → ΛΛ̄π+π− → pp̄π+π−π+π−

αΞ, ᾱΞ, αΛ, ᾱΛ, ϕΞ, ϕ̄Ξ

The prospect of significantly improving the CPV tests in
hyperons is due to a novel method where hyperon-anti-
hyperon pairs are produced in electron-positron collisions
at the c.m. energy corresponding to the J=ψ resonance. The
J=ψ decays into a hyperon-antihyperon pair have relatively
large branching fractions of Oð10−3Þ [28]. The produced
hyperon-antihyperon pair has a well-defined spin-
entangled state based on the two possible partial waves
(parity symmetry in this strong decay allows for an s and a
d wave) [29,30]. The charge-conjugated decay modes of
the hyperon and antihyperon can be measured simulta-
neously, and their properties can be compared directly. The
uncertainties obtained in the proof-of-concept experiment
[31,32] based on 1.3 × 109 J=ψ for the A½Λp$

CP , A½Ξ−$
CP , and

B½Ξ−$
CP observables are given in the first row of Table I. With

the already available dataset of 1010 J=ψ collected at
BESIII [33], a significantly improved statistical precision
is expected, as shown in the second row of the table.
However, the uncertainty is still predicted to be 2 orders of
magnitude larger compared to the SM CPV signal.
Crucial improvements are expected at the next-generation

electron-positron colliders, the super-charm-tau or super-
tau-charm factories (SCTFs) being under consideration in
China [34] and in Russia [35]. Their design luminosity is 2
orders of magnitude larger than the BEPCII collider [36,37],
allowing for data samples of more than 1012 J=ψ events.
The projections for the improved statistical uncertainties of
the CPV tests, due to the increased data samples, are shown
in Table I. This will still not be sufficient to observe an effect
if it has a magnitude consistent with the SM predictions.
Therefore, besides the increased luminosity, two additional
improvements are being discussed to further increase the
precision: (1) a c.m. energy spread ΔE compensation and
(2) an electron beam polarization. For the first option, a
collision scheme is proposed where electrons (positrons)
with higher momenta are matchedwith positrons (electrons)
with lowermomenta. This promises aΔE reduction to better
match the natural width of J=ψ meson of Γ ¼ 0.09 MeV,
thus up to an order of magnitude increase of the number of
J=ψ events for a given integrated luminosity [38–40].
For the second option, an electron beam polarization of

80%–90% at J=ψ energies can be obtained with the same
beam current [41].
Since the benefits of the first improvement are obvious,

we focus on the impact of the use of a polarized electron
beam and show that the precision of theCP tests in eþe− →
J=ψ → ΛΛ̄ and eþe− → J=ψ → ΞΞ̄ can be significantly
improved. The initial findings for eþe− → J=ψ → ΛΛ̄
have already been reported at the SCTF workshop [42]
and independently in Ref. [43]. Here, we give a detailed
explanation of this result and extend it to sequential
hyperon weak decays. In Sec. II, we review the phenom-
enology and the current experimental status of CP tests in
two-body weak decays of hyperons. In Sec. III, we use the
formalism based on Jacob-Wick’s [44] helicity amplitudes
[45] to derive the hyperon-antihyperon production spin-
correlation matrix for electron-positron collisions with
longitudinal polarization of the electron beam. The asymp-
totic maximum log-likelihood method from Ref. [46] used
for the analysis of uncertainties for the CPVobservables is
introduced in Sec. III C. The single-step decays are dis-
cussed in Sec. IV, and the two-step decays are discussed in
Sec. V. Further experimental considerations are presented
in Sec. VI, and Sec. VII contains an outlook.

II. CP TESTS IN HYPERON DECAYS

A. General considerations

There are three independent observables that provide a
complete description of a weak decay DðB → bþ πÞ with
the amplitude given in Eq. (2). The first is the partial decay
width given by

Γ ¼ jqj
4πMB

ðEb þMbÞjAj2; ð5Þ

where jAj2 ¼ jSj2 þ jPj2 and Eb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj2 þM2

b

q
. The MB

andMb are the masses of the mother and daughter baryons,
respectively. The first of the two parameters defined in
Eq. (3), −1 < αD < 1, can be determined from the angular
distribution of the daughter baryon when the mother baryon

TABLE I. Illustration of the expected statistical uncertainty for the CPV observables A½Λp$
CP , A½Ξ−$

CP , and B½Ξ−$
CP at

BESIII and the proposed SCTF electron-positron collider. The results of the published BESIII measurements are
given in the first row [31,32]. The uncertainties given in the two remaining rows are straightforward rescaling based
on the expected number of events. The SM prediction for A½Λp$

CP is ∼ð1–5Þ × 10−5, while for B½Ξ−$
CP , it amounts to

Oð10−4Þ [26].

σðA½Λp$
CP Þ σðA½Ξ−$

CP Þ σðB½Ξ−$
CP Þ Comment

BESIII 1.0 × 10−2a 1.3 × 10−2 3.5 × 10−2 1.3 × 109 J=ψ [31,32]
BESIII 3.6 × 10−3 4.8 × 10−3 1.3 × 10−2 1.0 × 1010 J=ψ (projection)
SCTF 2.0 × 10−4 2.6 × 10−4 6.8 × 10−4 3.4 × 1012 J=ψ (projection)

aThis result is a combination of the two BESIII measurements.
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Existing measurements
TABLE VI: default

process Experiment

A
⇤
CP �0.004± 0.012± 0.009 J/ ! ⌅⌅̄! ⇤⇤̄⇡⇡ BESIII (2022)

A
⇤
CP �0.0025± 0.0046± 0.0012 J/ ! ⇤⇤̄ BESIII (2022)

A
⇤
CP �0.081± 0.055± 0.059 J/ ! ⇤⇤̄ BES (2010)

A
⇤
CP 0.013± 0.022 pp̄ ! ⇤⇤̄ LEAR (1996)

A
⇤
CP 0.01± 0.10 J/ ! ⇤⇤̄ DM2 (1988)

A
⇤
CP �0.002± 0.004 PDG average

TABLE VII: default

process Experiment

(⇠P � ⇠S)
⌅

(1.2± 3.4± 0.8)⇥ 10
�2

rad J/ ! ⌅⌅̄! ⇤⇤̄⇡⇡ BESIII (2022)

A
⌅
CP (6± 13± 6)⇥ 10

�3
J/ ! ⌅⌅̄! ⇤⇤̄⇡⇡ BESIII (2022)

A
⌅
CP (�1.5± 5.1± 1.0)⇥ 10

�2
 (3686) ! ⌅⌅̄! ⇤⇤̄⇡⇡ BESIII (2022)

A
⇤
CP +A

⌅
CP (0.0± 5.1± 4.4)⇥ 10

�4
⌅! ⇤⇡ ! p⇡⇡ HyperCP (2004)

A
⌦!⇤K
CP �0.016± 0.092± 0.089 ⌦̄

+ ! ⇤̄K
+ ! p̄⇡

+
K

+
HyperCP (2006)

A
⌃+

CP 0.004± 0.037± 0.010 J/ / (2S) ! ⌃
+
⌃̄
�

BESIII (2020)

3

Λ → pπ−

Other modes

TABLE VI: default

process Experiment

A
⇤
CP �0.004± 0.012± 0.009 J/ ! ⌅⌅̄! ⇤⇤̄⇡⇡ BESIII (2022)

A
⇤
CP �0.0025± 0.0046± 0.0012 J/ ! ⇤⇤̄ BESIII (2022)

A
⇤
CP �0.081± 0.055± 0.059 J/ ! ⇤⇤̄ BES (2010)

A
⇤
CP 0.013± 0.022 pp̄ ! ⇤⇤̄ LEAR (1996)

A
⇤
CP 0.01± 0.10 J/ ! ⇤⇤̄ DM2 (1988)

A
⇤
CP �0.002± 0.004 PDG average

TABLE VII: default

process Experiment

B
⌅
CP ⇡ (⇠P � ⇠S)

⌅
(1.2± 3.4± 0.8)⇥ 10

�2
rad J/ ! ⌅⌅̄! ⇤⇤̄⇡⇡ BESIII (2022)

A
⌅
CP (0.6± 1.3± 0.6)⇥ 10

�2
J/ ! ⌅⌅̄! ⇤⇤̄⇡⇡ BESIII (2022)

A
⌅
CP (�1.5± 5.1± 1.0)⇥ 10

�2
 (3686) ! ⌅⌅̄! ⇤⇤̄⇡⇡ BESIII (2022)

A
⌅0

CP (�0.7± 8.2± 2.5)⇥ 10
�2

 (3686) ! ⌅⌅̄! ⇤⇤̄⇡⇡ BESIII (2023)

A
⇤
CP +A

⌅
CP (0.0± 5.1± 4.4)⇥ 10

�4
⌅! ⇤⇡ ! p⇡⇡ HyperCP (2004)

A
⌦!⇤K
CP �0.016± 0.092± 0.089 ⌦̄

+ ! ⇤̄K
+ ! p̄⇡

+
K

+
HyperCP (2006)

A
⌃+

CP 0.004± 0.037± 0.010 J/ / (2S) ! ⌃
+
⌃̄
� ! pp̄⇡

0
⇡
0

BESIII (2020)

A
⌃+

CP �0.080± 0.052± 0.028 J/ / (2S) ! ⌃
+
⌃̄
� ! nn̄⇡

+
⇡
�

BESIII (2023)

3
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Figure 3: The reaction e
+
e
� ! Y Y which decays either hadronically (BM , to the left) or semi-leptonically (BW

�,
to the right). Theplanes illustrate different reference frames, where those where particles are emitted back-to-back
represent the rest frame, or the helicity frame, of the decaying particle.

where ⌘ = (⌧ � R
2)/(⌧ +R

2). The relative phase �� of GE(q2) and GM (q2) governs the vector polarization and
tensor polarization (i.e. spin correlations) of the produced hyperon-antihyperon pair [4]. If the beams are unpolarized,
then a vector polarization of the final state hyperons is only allowed in the direction normal to the plane spanned by the
incoming beam and the outgoing hyperon:

P =

p
(1 � ⌘2) sin ✓ cos ✓

1 + ⌘ cos2 ✓
sin��. (4)

In addition, there are five non-zero spin correlations. In the case of an intermediate vector charmonium, the electromag-
netic form factors are replaced by the so-called psionic form factors G 

E
and G

 
M

[4]. The formalism is the same as for
an intermediate �

⇤, but by convention, the ⌘ in Eq. 3 is denoted ↵ and the phase �� .

If a spin 1/2-spin 3/2 hyperon-antihyperon pair is produced in an initial JP = 1� state, an additional Coulomb
quadrupole form factor GC(q2) [34] enters the parameterization. An equivalent description is to use three helicity
parameters as shown in Ref. [35]. In a similar way, the production of a hyperon-antihyperon pair which are both spin
3/2 can be parameterized by GE(q2), GM (q2), GC(q2) and the octupole form factor GO(q2), or equivalently by four
helicity amplitudes [35, 36].

4.2 Hadronic Hyperon Decays

The self-analysing hyperon decays, mentioned in the introduction, provide a powerful diagnostic tool to study

• Structure functions, such as electromagnetic form factors.
• The spin of the mother hyperon.
• Parity violating and parity conserving decay amplitudes.

In the following, we will look into two-body hadronic decays of spin 1/2 or spin 3/2 hyperons decaying into a baryon
and a pseudoscalar mesons.

4.2.1 Direct Decays

By direct decay, we consider the case when a hyperon Y either decays into a stable baryon B and a pseudoscalar
meson M , or the case when the hyperon decays into another hyperon but where the subsequent decay of the daughter
hyperon is not measured or where the daughter is a stable baryon. This process is schematically shown in Figure 3. The
production plane of the e

+
e
� ! Y Y process is shown in the middle and the antihyperon decaying into a two-body

hadronic state is shown to the left; to the mid-left in the centre-of-mass of the reaction and to the very left in the rest
system of the decaying antihyperon.

The decay of a spin 1/2 baryon is described by a parity conserving (P -wave) and a parity violating (S-wave) amplitude.
A spin 3/2 hyperon decay can be described in a similar way, but with the S-wave replaced by a D-wave. The real part

5

triple product correlations

• in the  CM frame  

• the polarisation of  is in the direction of   (parity and unpolarised electrons)

• the parameter  measures the correlation between the polarisation of  and the 
momentum of 

• the odd correlation 

• can be extracted from a counting asymmetry 

e+e− ⃗pȲ = − ⃗pY
Y ⃗pe × ⃗pY

αY Y
B

T− 𝒪 ≡ ⃗pe × ⃗pY ⋅ ( ⃗pB + ⃗pB̄) ∝ (αY + αȲ) ∼ AY
CP

Nev(𝒪 > 0) − Nev(𝒪 < 0)
Nev(𝒪 > 0) + Nev(𝒪 < 0)
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Replacing one or several light quarks in the nucleon with heavier strange or charm, gives deeper insights into these
interactions.

Various experimental observations, such as neutrino oscillations, the need for dark matter to explain cosmological
observations and the matter-antimatter asymmetry of the universe, raise the question of whether there is a more
fundamental theory beyond the SM that encompasses these phenomena. Intensive searches for physics beyond the SM
(BSM) are ongoing at the high energy frontier, in a quest to find hitherto unknown, heavy particles manifesting a new
fundamental theory. A complementary approach is the precision frontier: new aspects of particles whose existence is
established since long. By studying the properties of these particles, e.g. measuring quantities that should either be zero,
or that can be calculated with immense precision, physics beyond the SM would reveal itself by significant deviations
from these predictions.

Figure 1: The Y ! BM decay, with the
spin direction of Y along the y-axis.

Hyperons are well suited for precision physics through their weak, parity
violating decays, giving straightforward experimental access to their spin
properties. This is in contrast to e.g. protons, for which dedicated polarime-
ter detectors are required for this purpose. In hyperon decays, the daughter
particles are emitted according to the direction of the spin of the mother
hyperon. For example, consider a two-body decay Y ! BM , where Y is
a spin 1/2 hyperon, B a spin 1/2 baryon and M a pseudoscalar meson as
illustrated in Fig. 1. The angular distribution of B in the rest system of Y
with respect to some reference axis ~y is given by [1, 2]

W (cos ✓B) =
1

4⇡
(1 + ↵Py cos ✓B). (1)

The polarization Py = Py(cos ✓Y ) carries information about the production
mechanism, while the decay asymmetry ↵ only depends on the decay
process. The parameter ↵ is proportional to the real part of the product
of the interfering parity violating and parity conserving decay amplitudes
[3]. The imaginary part is accessible in sequential hyperon decays, i.e.
hyperons that decay weakly into other hyperons [4, 5]. Eq. 1 demonstrates
an example of how physical parameters, such as ↵ and Py , can be retrieved
from measurable quantities such as cos ✓B and cos ✓Y . This feature is
crucial in the work presented in this review.

2 Fundamental questions

2.1 Structure at the femtometer scale

The nature of the strong interaction manifests in the properties of the
nucleon, such as its mass and size. These are connected since a mass-scale
is a prerequisite to confine colour charges into colour singlets of finite size

[6]. The structure, i.e. the distribution and motion of the quarks inside hadrons, is crucial to understand the underlying
mechanisms. Recently, tremendous efforts in atomic and subatomic physics as well as hadron theory have led to rapid
progress in solving the so-called proton radius puzzle [7]. A coherent picture of the emergence of hadron properties
requires corresponding studies of similar but different quark systems, such as neutrons [8, 9] and hyperons. The latter
contains one or several heavy quarks such as strange and charm, which should have an impact on their inner structure,
including properties like the charge radius. Measured radii of pions [10] and kaons [11] indicate that this is indeed the
case.

Electromagnetic form factors (EMFFs) are structure functions that have the advantage that they are experimentally
accessible for both protons, neutrons and hyperons. Space-like electric GE and magnetic GM form factors, probed in
elastic electron-baryon (e�B ! e

�
B ) scattering, are related to the charge- and magnetisation densities, respectively

[12]. However, since the hyperons are unstable, they are unfeasible as beams or targets and as a consequence, their
space-like EMFFs are hard to access experimentally. Instead, the time-like EMFFs constitute the most viable structure
observables for hyperons [13]. These can be probed in either e+e� ! �

⇤ ! Y1 Ȳ2 reactions or in so-called Dalitz
decays Y1 ! Y2�

⇤
, �

⇤ ! e
+
e
�. The experimentally accessible time-like and the intuitive space-like EMFFs are

related via dispersion relations [14].

Space-like EMFFs are real functions of q2, whereas the time-like ones are complex. The electric and the magnetic form
factor of a spin 1/2 hyperon have a relative phase �� [15], reflecting fluctuations of the �

⇤ into e.g. a ⇡⇡ intermediate

2

W(cos θB) ∼ (1 + αYPy cos θB)

figures adapted from Karin Schönning et. al. arXiv:2302.13071 



hyperon amplitudes in the SM

• In principle, the calculation starts from the diagrams like these:

• which result in an effective weak Hamiltonian with WC and four-quark operators

•
 

•

• Then we need to compute the matrix elements of the four-quark operators  

• But this does not quite match the known amplitudes, long-distance effects get in the way…

ℒΔS=1
eff = − GF

2
VudV*us

10

∑
i=1 (zi − VtdV*ts

VudV*us
yi) Qi

Q2 = (s̄u)V−A(ūd)V−A, Q6 = (s̄idj)V−A ∑
q

(q̄jqi)V+A, Q8 = 3
2 (s̄idj)V−A ∑

q
eq(q̄jqi)V+A, ⋯

⟨pπ− Qi Λ⟩

This direct CP-violating effect arises in the weak part of the
transition amplitudes to pions due to the interference
between isospin I ¼ 0 and I ¼ 2 final states (jΔIj ¼ 1=2
and jΔIj ¼ 3=2 transitions, respectively). The CP-violation
mechanism in the SM requires loop diagrams where all
three quark families are involved, the so-called penguin
diagrams, like those shown in Fig. 1. Predictions for the
kaon decays have been a challenge for many years since
there are partially canceling contributions from subleading
types of the penguin diagrams, where the gluon line is
replaced by γ; Z0; see, e.g., Ref. [12] and references therein.
Recently, a satisfactory understanding was reached
using Lattice [13,14] and effective field theory [15,16]
approaches to QCD. This progress ensures that the kaon
decays continue to be an important precision test of the SM.
The subject of our paper is a complementary approach to

studyCP violation (CPV) in two-body nonleptonicΔS ¼ 1
transitions of hyperons [17–22]. For such weak two-body
decays, one also needs an interference pattern: this time
between parity-even and parity-odd decay amplitudes.
These emerge from the spin degrees of freedom of the
initial and final baryons. Since we will consider decays of a
spin-1=2 baryon B to a spin-1=2 baryon b and a pion, the
parity-even amplitude leads to a p-wave final state, while
the parity-odd amplitude leads to an s-wave final state. The
two amplitudes are denoted P and S, respectively. In the
following, we will often write the decay generically as
DðB → bπÞ. When we need to be more specific, we use
indices Λ and Ξ to denote Λ → pπ− and Ξ− → Λπ−,
respectively. The decay amplitude is

A ∼ Sσ0 þ Pσ · n̂; ð2Þ

where σ0 is the 2 × 2 unit matrix, σ ≔ ðσ1; σ2; σ3Þ are the
Pauli matrices, and n̂ ¼ q=jqj is the direction of the
b-baryon momentum q in the B-baryon rest frame. It is
important to note that these amplitudes depend on the initial
(weak) decay, which produces the two final particles, but
depend also on the (strong) final-state interaction. These S
and P amplitudes are Lorentz scalars, which can depend
only on the invariant mass of the two-body system. Yet, this
quantity is fixed for a two-body decay: if we disregard the
unmeasurable overall phase, the two complex amplitudes

S and P can be fully specified by the overall normalization
jSj2 þ jPj2 and the size and relative phase of the interfer-
ence term S%P. These are directly related to the partial
decay width and the following two parameters [23]:

αD ≔
2ReðS%PÞ
jSj2 þ jPj2

and βD ≔
2ImðS%PÞ
jSj2 þ jPj2

: ð3Þ

The relation of the parameters to the shape of the angular
distribution, including the polarization, of the baryon b will
be shown in Sec. II. In the CP-conserving limit, the
amplitudes S̄ and P̄ for the charge-conjugated (c.c.) decay
mode of the antibaryon D̄ðB̄ → b̄þ π̄Þ are S̄ ¼ −S and
P̄ ¼ P. Therefore, the decay parameters have the opposite
values: ᾱD ¼ −αD and β̄D ¼ −βD.
Two independent experimental CPV tests can be defined

using these parameters,

AD
CP ≔

αD þ ᾱD
αD − ᾱD

and BD
CP ≔

βD þ β̄D
αD − ᾱD

; ð4Þ

where AD
CPðBD

CPÞ ≠ 0 indicates CP violation in theD decay.
The AD

CP test requires measurement of the angular bðb̄Þ
distribution from polarized BðB̄Þ-baryon decay. The BD

CP
test probes time-reversal-odd transitions and can be poten-
tially much more sensitive, but it requires in addition a
measurement of the bðb̄Þ-baryon polarization. In the SM,
CPV effects in the hyperon decays are dominated by the
QCD-penguin contribution, Fig. 1(a).
In the 1960s, hyperon decays were a tool for discrete

symmetry tests on equal footing with the kaons. The last
dedicated program to observe CP violation in hyperons was
performed by the Fermilab experiments E756 [24] and
HyperCP [25] at the dawn of this century. In these experi-
ments, the sum of theACP observables forΞ− → Λπ− ð½Ξ−'Þ
and Λ → pπ− ð½Λp'Þ, A½Ξ−'

CP þ A½Λp'
CP , was studied. Here, the

SM prediction amounts to −0.5 × 10−4 ≤ A½Ξ−'
CP þ A½Λp'

CP ≤
0.5 × 10−4 [26]. The published result A½Ξ−'

CP þ A½Λp'
CP ¼

0ð7Þ × 10−4 [27] is currently considered to be the most
precise test of CP symmetry in the hyperon sector.

FIG. 1. Quark diagrams relevant for kaon and hyperon decays. Direct CP-violation effects in kaon and hyperon decays in the SM are
given by the (a) QCD-penguin operators and (b) electroweak penguin operators. This figure was created using a modified script from
Ref. [15].
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two amplitudes are denoted P and S, respectively. In the
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indices Λ and Ξ to denote Λ → pπ− and Ξ− → Λπ−,
respectively. The decay amplitude is
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where σ0 is the 2 × 2 unit matrix, σ ≔ ðσ1; σ2; σ3Þ are the
Pauli matrices, and n̂ ¼ q=jqj is the direction of the
b-baryon momentum q in the B-baryon rest frame. It is
important to note that these amplitudes depend on the initial
(weak) decay, which produces the two final particles, but
depend also on the (strong) final-state interaction. These S
and P amplitudes are Lorentz scalars, which can depend
only on the invariant mass of the two-body system. Yet, this
quantity is fixed for a two-body decay: if we disregard the
unmeasurable overall phase, the two complex amplitudes

S and P can be fully specified by the overall normalization
jSj2 þ jPj2 and the size and relative phase of the interfer-
ence term S%P. These are directly related to the partial
decay width and the following two parameters [23]:
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be shown in Sec. II. In the CP-conserving limit, the
amplitudes S̄ and P̄ for the charge-conjugated (c.c.) decay
mode of the antibaryon D̄ðB̄ → b̄þ π̄Þ are S̄ ¼ −S and
P̄ ¼ P. Therefore, the decay parameters have the opposite
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and BD
CP ≔
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where AD
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CPÞ ≠ 0 indicates CP violation in theD decay.
The AD

CP test requires measurement of the angular bðb̄Þ
distribution from polarized BðB̄Þ-baryon decay. The BD

CP
test probes time-reversal-odd transitions and can be poten-
tially much more sensitive, but it requires in addition a
measurement of the bðb̄Þ-baryon polarization. In the SM,
CPV effects in the hyperon decays are dominated by the
QCD-penguin contribution, Fig. 1(a).
In the 1960s, hyperon decays were a tool for discrete

symmetry tests on equal footing with the kaons. The last
dedicated program to observe CP violation in hyperons was
performed by the Fermilab experiments E756 [24] and
HyperCP [25] at the dawn of this century. In these experi-
ments, the sum of theACP observables forΞ− → Λπ− ð½Ξ−'Þ
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SM prediction amounts to −0.5 × 10−4 ≤ A½Ξ−'
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CP ≤
0.5 × 10−4 [26]. The published result A½Ξ−'
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CP ¼

0ð7Þ × 10−4 [27] is currently considered to be the most
precise test of CP symmetry in the hyperon sector.
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given by the (a) QCD-penguin operators and (b) electroweak penguin operators. This figure was created using a modified script from
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Fig. VIII–1 QCD Radiative corrections to the !S = 1 nonleptonic hamiltonian.

leading logarithmic contributions. The lowest-order diagrams renormalizing the
current product appear in Fig. VIII–1.

The process in Fig. VIII–1(a) corresponds to a left-handed, gauge-invariant
operator of dimension 4,

O(d=4) = d̄ /D(1 + γ5)s. (3.2)

This operator can be removed from consideration by a redefinition of the quark
fields (cf. Prob. IV–1). The remaining operators are of dimension 6. Simple W

exchange with no gluonic corrections gives rise in the short-distance expansion to
the local operator

OA ≡ d̄γµ (1 + γ5) uūγ µ (1 + γ5) s, (3.3)

with a coefficient CA = 2 in the normalization of Eq. (3.1). The gluonic correction
of Fig. VIII–1(b) generates an operator of the form

d̄γµ (1 + γ5) λau ūγ µ (1 + γ5) λas, (3.4)

where the {λa} are color SU(3) matrices. However, use of the Fierz rearrangement
property (see App. C) and the completeness property Eq. (II–2.8) of SU(3) matri-
ces allow this to be rewritten in color-singlet form

d̄γµ (1 + γ5) λau ūγ µ (1 + γ5) λas = −2
3
OA + 2OB,

where

OB ≡ ūγµ (1 + γ5) ud̄γ µ (1 + γ5) s. (3.5)

The strong radiative correction is seen to generate a new operator OB .

Perturbative analysis

Consider now the one-loop renormalizations of the four-fermion interaction
Fig. VIII–1(b). In calculating Feynman diagrams we typically encounter integrals
such as (neglecting quark masses)
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This operator can be removed from consideration by a redefinition of the quark
fields (cf. Prob. IV–1). The remaining operators are of dimension 6. Simple W

exchange with no gluonic corrections gives rise in the short-distance expansion to
the local operator

OA ≡ d̄γµ (1 + γ5) uūγ µ (1 + γ5) s, (3.3)

with a coefficient CA = 2 in the normalization of Eq. (3.1). The gluonic correction
of Fig. VIII–1(b) generates an operator of the form

d̄γµ (1 + γ5) λau ūγ µ (1 + γ5) λas, (3.4)

where the {λa} are color SU(3) matrices. However, use of the Fierz rearrangement
property (see App. C) and the completeness property Eq. (II–2.8) of SU(3) matri-
ces allow this to be rewritten in color-singlet form

d̄γµ (1 + γ5) λau ūγ µ (1 + γ5) λas = −2
3
OA + 2OB,

where

OB ≡ ūγµ (1 + γ5) ud̄γ µ (1 + γ5) s. (3.5)

The strong radiative correction is seen to generate a new operator OB .

Perturbative analysis

Consider now the one-loop renormalizations of the four-fermion interaction
Fig. VIII–1(b). In calculating Feynman diagrams we typically encounter integrals
such as (neglecting quark masses)



• Write an effective interaction in terms of the physical fields

• Strong interactions in low energy expansion:

•  from semileptonic hyperon decay and   from strong  decay
– corrections if decuplet is included
D, F 𝒞 TBϕ

∼ 30 %

From  ?χPT

ℒs = f2
π

4 Tr (∂μU∂μU†) + TrB(i /∂ − M)B + iTrBγμ [Vμ, B] + Tr (DBγαγ5{𝒜α, B}+FBγαγ5[𝒜α, B])
+ϵkln𝒞 [(Tnvw) α(𝒜wl)αBvk + Bkv(𝒜lw)α(Tnvw)α],

Σ = eiφ/f , where f is the pion-decay constant in the chiral-symmetry limit and

φ =
√
2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1√
2
π0 + 1√

6
η8 π+ K+

π− −1√
2
π0 + 1√

6
η8 K0

K− K̄0 −2√
6
η8

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

; (1)

the octet baryons in the matrix

B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− −1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 −2√
6
Λ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

; (2)

and the spin-32 decuplet baryons. Here we follow Jenkins and Manohar [3] and include the baryon-

decuplet fields explicitly in the Lagrangian. As they argue, the mass splitting between the octet and

decuplet baryons is small compared to the scale of chiral-symmetry breaking, and this enhances the

effects of the decuplet on the low-energy theory. The decuplet baryons are described by a Rarita-

Schwinger field T µ
abc, which satisfies the constraint γµT

µ
abc = 0 and is completely symmetric in its

SU(3) indices, a, b, c [3]. Its components are (with the Lorentz index suppressed)

T111 = ∆++ , T112 = 1√
3
∆+ , T122 = 1√

3
∆0 , T222 = ∆− ,

T113 = 1√
3
Σ∗+ , T123 = 1√

6
Σ∗0 , T223 = 1√

3
Σ∗− ,

T133 = 1√
3
Ξ∗0 , T233 = 1√

3
Ξ∗− , T333 = Ω− .

(3)

Under chiral SU(3)L × SU(3)R, these fields transform as

Σ → LΣR† , B → UBU † , T µ
abc → UadUbeUcfT

µ
def , (4)

where L,R ∈ SU(3)L,R and the matrix U is implicitly defined by the transformation

ξ ≡ eiφ/(2f) → LξU † = UξR† . (5)

We use the heavy-baryon formalism of Jenkins and Manohar [11] where the effective Lagrangian

is written in terms of velocity-dependent baryon fields, related to the ordinary baryon fields by

the transformation [12]

Bv(x) = eimB
̸ v v·x B(x) , T µ

v (x) = eimB
̸ v v·x T µ(x) , (6)

where mB is the baryon-octet mass in the chiral-symmetry limit.

2
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Due to nonzero quark masses, these mesons are not actually massless, but should
be light if the quark masses are not ‘too large’.

What should the K , η8 masses be? Unfortunately, QCD is unable to answer
this question, even if we were able to solve the theory precisely. This is because
the quark masses are free parameters in QCD, and thus must be determined from
experiment. This means that the π , K , and η8 masses can be used to determine the
quark masses rather than vice versa. The discussion is somewhat more subtle than
this simple statement would indicate. Quark masses need to be renormalized, and
hence to specify their values one has to specify the renormalization prescription and
the scale at which they are renormalized. Under changes of scale, the mass values
change, i.e., they ‘run.’ However, quark mass ratios are rather simpler. The QCD
renormalization is flavor-independent, at least to lowest order in the masses. In this
situation, mass ratios are independent of the renormalization. There can be some
residual scheme dependence through higher-order dependence of the renormaliza-
tion constants on the quark masses. However, to first order, we can be confident
that the mass ratio determined by the π , K , η8 masses is the same ratio as found
from the mass parameters of the QCD lagrangian.

The content of chiral SU(3) is contained in an effective lagrangian expressed in
terms of U = exp[i(λ · ϕ)/F ] and having the same form as Eq. (1.2). The matrix
field λ · ϕ contained in U has the explicit representation,

1√
2

8∑

a=1

λaϕa =

⎛

⎜⎜⎜⎝

1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K
0 − 2√

6
η8

⎞

⎟⎟⎟⎠
, (1.12)

as expressed in terms of the pseudoscalar meson fields. If we choose the parameters
in Eq. (1.2) to correspond to QCD without external sources, viz.,

s = m , p = 0 , DµU = ∂µU, (1.13)

the meson masses obtained by expanding to order ϕ2 are

m2
π = B0(mu + md) , m2

K± = B0(ms + mu),

m2
K0 = B0(ms + md) , m2

η8
= 1

3
B0(4ms + mu + md). (1.14)

Defining m2
K = 1

2(m
2
K± + m2

K0), we obtain from Eq. (1.14) the mass relations,

m̂

ms

= m2
π

2m2
K − m2

π

≃ 1
26

, (1.15a)

m2
η8

= 1
3

(
4m2

K − m2
π

)
, (1.15b)

π = 1
2

✐
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For the full SU(3) octet of baryons, the analog of ‘N ’ is

B = 1√
2

8∑

a=1

λaBa =

⎛

⎜⎜⎜⎝

"0√
2

+ #√
6

"+ p

"− −"0√
2

+ #√
6

n

$− $0 − 2#√
6

⎞

⎟⎟⎟⎠
, (3.2)

where the phases have been adjusted to match our quark model phase convention
of Eq. (XI–1.8). The SU(3) version of Eq. (3.1) becomes

LB = Tr
(
B̄ (i /D − m̄0)B − D

(
B̄γ µγ5{Aµ,B}

)
− F

(
B̄γ µγ5[Aµ,B]

))

− Z0

2
Tr

(
dm

(
B̄{ξmξ + ξ †mξ †, B}

)
+ fm

(
B̄

[
ξmξ + ξ †mξ †, B

]))

− Z1

2
Tr (B̄B) Tr (mU + U †m), (3.3)

where the covariant derivative is now DµB ≡ ∂µB + i[V µ,B], ξ is the SU(3)

generalization of the quantity in Eq. (3.1) with τ replaced by λ, m is the diagonal
SU(3) quark mass matrix,

m =
(
m̂, m̂, ms

)
diag = 1

3
(2m̂ + ms)1 + 1√

3
(m̂ − ms)λ8, (3.4)

and m̄0 is the degenerate baryon mass in the SU(3) chiral limit. Consistency of the
SU(2) and SU(3) lagrangians requires

D + F = ga, dm + fm = 1,

m0 = m̄0 + Z1ms − Z0ms(fm − dm). (3.5)

The description thus far is based on symmetry. It includes quark mass, but not
higher powers of derivatives.

Baryon mass splittings and quark masses

The various parameters (m̂,ms, Z0 etc.) appearing in the chiral lagrangians of
Eqs. (3.1), (3.3) can be determined from baryon mass and scattering data. In the
nonstrange sector, the nucleon mass is given in the notation of Eq. (3.1) as

mN = m0 + (Z0 + 2Z1)m̂. (3.6)

To isolate the effect of the nonstrange quark mass m̂ and of the constants Z0, Z1, it
will prove useful to define a quantity σ ,

σ = mN − m0 = m̂
⟨N |uu + dd|N⟩

2mN

= m̂ (Z0 + 2Z1). (3.7)

B =

ξ = eiπ/f , U = ξ2

Aμ = i(ξ∂μξ† − ξ†∂μξ)
̂κ = (λ6 + iλ7)/2



• Non-leptonic weak interactions 

•  from fits to weak non-leptonic hyperon decay (  or  waves) and  
waves of  decay:

–fit the S-waves  

–fit the P-waves 
–One-loop corrections are large and the discrepancy with experiment is consistent 

with the size of these corrections. At NLO there are too many parameters that 
need to be determined from experiment. 

• estimate from SD 

hD, hF, hC S P P
Ω → Bϕ

(hD, hF) = (−0.81, 1.89) GFm2
π+ fπ

(hD, hF) = (−2.07, 2.71) GFm2
π+ fπ

(hD, hF) ∼ (−0.87, 0.85) GFm2
π+ fπ

From  ?χPT

ℒSM
ΔS=1 ⊃ Tr (hD B{ξ† ̂κξ, B}+hF B [ξ† ̂κξ, B])+hC (Tkln)η (ξ† ̂κξ)no

(Tklo)η



sketch of the calculation of weak phases

• The imaginary part is short distance: in the SM mostly  

• compute  in the bag model, lattice could improve these numbers

• Use leading order  to compute S and P waves, large uncertainties

• Estimate of errors from one-loop terms in , captures the range of early 
estimates that used simple hadronic models

•

Q6
⟨B′ |𝒪 |B⟩

χPT
χPT

AΛ
CP ∼ (−3 to 3) × 10−5, AΞ

CP ∼ (0.5 to 6) × 10−5, BΞ
CP ∼ (−3.8 to − 0.3) × 10−4

B B′ 

Q6

π
<latexit sha1_base64="cLQivWeqZO4f7Lgkr8FxahHpZLU=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ66Ga9csWtujOQZeLlpAI56r3yV7cfszRCaZigWnc8NzF+RpXhTOCk1E01JpSN6AA7lkoaofaz2aUTcmKVPgljZUsaMlN/T2Q00nocBbYzomaoF72p+J/XSU147WdcJqlByeaLwlQQE5Pp26TPFTIjxpZQpri9lbAhVZQZG07JhuAtvrxMmmdV77J6cX9eqd3kcRThCI7hFDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8teDkM4fwB87nD57EjW8=</latexit>

{
This direct CP-violating effect arises in the weak part of the
transition amplitudes to pions due to the interference
between isospin I ¼ 0 and I ¼ 2 final states (jΔIj ¼ 1=2
and jΔIj ¼ 3=2 transitions, respectively). The CP-violation
mechanism in the SM requires loop diagrams where all
three quark families are involved, the so-called penguin
diagrams, like those shown in Fig. 1. Predictions for the
kaon decays have been a challenge for many years since
there are partially canceling contributions from subleading
types of the penguin diagrams, where the gluon line is
replaced by γ; Z0; see, e.g., Ref. [12] and references therein.
Recently, a satisfactory understanding was reached
using Lattice [13,14] and effective field theory [15,16]
approaches to QCD. This progress ensures that the kaon
decays continue to be an important precision test of the SM.
The subject of our paper is a complementary approach to

studyCP violation (CPV) in two-body nonleptonicΔS ¼ 1
transitions of hyperons [17–22]. For such weak two-body
decays, one also needs an interference pattern: this time
between parity-even and parity-odd decay amplitudes.
These emerge from the spin degrees of freedom of the
initial and final baryons. Since we will consider decays of a
spin-1=2 baryon B to a spin-1=2 baryon b and a pion, the
parity-even amplitude leads to a p-wave final state, while
the parity-odd amplitude leads to an s-wave final state. The
two amplitudes are denoted P and S, respectively. In the
following, we will often write the decay generically as
DðB → bπÞ. When we need to be more specific, we use
indices Λ and Ξ to denote Λ → pπ− and Ξ− → Λπ−,
respectively. The decay amplitude is

A ∼ Sσ0 þ Pσ · n̂; ð2Þ

where σ0 is the 2 × 2 unit matrix, σ ≔ ðσ1; σ2; σ3Þ are the
Pauli matrices, and n̂ ¼ q=jqj is the direction of the
b-baryon momentum q in the B-baryon rest frame. It is
important to note that these amplitudes depend on the initial
(weak) decay, which produces the two final particles, but
depend also on the (strong) final-state interaction. These S
and P amplitudes are Lorentz scalars, which can depend
only on the invariant mass of the two-body system. Yet, this
quantity is fixed for a two-body decay: if we disregard the
unmeasurable overall phase, the two complex amplitudes

S and P can be fully specified by the overall normalization
jSj2 þ jPj2 and the size and relative phase of the interfer-
ence term S%P. These are directly related to the partial
decay width and the following two parameters [23]:

αD ≔
2ReðS%PÞ
jSj2 þ jPj2

and βD ≔
2ImðS%PÞ
jSj2 þ jPj2

: ð3Þ

The relation of the parameters to the shape of the angular
distribution, including the polarization, of the baryon b will
be shown in Sec. II. In the CP-conserving limit, the
amplitudes S̄ and P̄ for the charge-conjugated (c.c.) decay
mode of the antibaryon D̄ðB̄ → b̄þ π̄Þ are S̄ ¼ −S and
P̄ ¼ P. Therefore, the decay parameters have the opposite
values: ᾱD ¼ −αD and β̄D ¼ −βD.
Two independent experimental CPV tests can be defined

using these parameters,

AD
CP ≔

αD þ ᾱD
αD − ᾱD

and BD
CP ≔

βD þ β̄D
αD − ᾱD

; ð4Þ

where AD
CPðBD

CPÞ ≠ 0 indicates CP violation in theD decay.
The AD

CP test requires measurement of the angular bðb̄Þ
distribution from polarized BðB̄Þ-baryon decay. The BD

CP
test probes time-reversal-odd transitions and can be poten-
tially much more sensitive, but it requires in addition a
measurement of the bðb̄Þ-baryon polarization. In the SM,
CPV effects in the hyperon decays are dominated by the
QCD-penguin contribution, Fig. 1(a).
In the 1960s, hyperon decays were a tool for discrete

symmetry tests on equal footing with the kaons. The last
dedicated program to observe CP violation in hyperons was
performed by the Fermilab experiments E756 [24] and
HyperCP [25] at the dawn of this century. In these experi-
ments, the sum of theACP observables forΞ− → Λπ− ð½Ξ−'Þ
and Λ → pπ− ð½Λp'Þ, A½Ξ−'

CP þ A½Λp'
CP , was studied. Here, the

SM prediction amounts to −0.5 × 10−4 ≤ A½Ξ−'
CP þ A½Λp'

CP ≤
0.5 × 10−4 [26]. The published result A½Ξ−'

CP þ A½Λp'
CP ¼

0ð7Þ × 10−4 [27] is currently considered to be the most
precise test of CP symmetry in the hyperon sector.

FIG. 1. Quark diagrams relevant for kaon and hyperon decays. Direct CP-violation effects in kaon and hyperon decays in the SM are
given by the (a) QCD-penguin operators and (b) electroweak penguin operators. This figure was created using a modified script from
Ref. [15].
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A2λ5η̄ ≈ 1.4 × 10−4

   contribution from
  to Im(C6) hD, hF, hC

TABLE I:

mode S P S3/S1 P3/P1 �
S
1 � �

P
1

⇤ ! p⇡
�

1.382± 0.008 0.624± 0.005 0.03± 0.01 �0.04± 0.02 7
� ± 2

�

⌅
� ! ⇤⇡

� �1.994± 0.009 0.392± 0.004 0.04± 0.01 0.01± 0.02 �4.6
� ± 1.8

�

TABLE II:

mode ⇠
S
1 � ⇠

P
1

⇤ ! p⇡
�

(�0.1± 1) A
2
�
5
⌘

⌅
� ! ⇤⇡

�
(1.5± 1.1) A

2
�
5
⌘

TABLE III: default

Number of J/ sensitivity to A
⌅
CP

BESIII (current) 1.3⇥ 10
9

1.3⇥ 10
�2

BESIII (future) 1⇥ 10
10

4.8⇥ 10
�3

tau-charm factory 3.4⇥ 10
12

2.6⇥ 10
�4

1

J.Tandean and G.V, PRD67, 056001 (2003), hep-ph/0211165



weak phases beyond the SM

• model dependent
• large uncertainty (same calculation as SM)
• Assume the real part of the amplitudes is still SM and include NP 

only as possible contributions to the imaginary parts
• since the NP introduces new phases into the non-leptonic 

 effective interaction at low-energy
–the interaction contributes to kaon decay as well
–the phases are constrained by the measurements of  and 

• From the current uncertainty in the calculations of these two 
quantities, we estimate the window for NP contributions

ΔS = 1

ϵ ϵ′ 



Beyond SM SMEFT

• Consider all dimension six  operators Buchmuller and Wyler, NPB 268 (1986) 621

• estimate all phases in vacuum saturation (very rough)
– consider only long-distance contributions to 

• Two operators are singled out as possibilities for enhanced CP violation in 
hyperon non-leptonic decay, , specifically:

1.
2.

• The second one appears in many models, it was used in the first estimates 
by Donoghue, He, Pakvasa as the “Weinberg model” with a more detailed 
study in a SUSY model by He, Murayama, Pakvasa, G.V. which 
emphasized the complementarity of the hyperon modes and the kaon 
modes

|ΔS | = 1

ϵ

Λ → pπ−

d̄RsLūRuL + h . c .
dL(R)σμνTasR(L)Ga

μν + h . c .



CP violation beyond SM - illustrative example

ℋeff(P even)

constraint from ε′

S (or D) waves

P waves

ℋeff(P odd)

Λ, Ξ, Ω p, Λ, Ξ

π

constraint from ε

K
π

π𝒪8 − 𝒪8′ 

𝒪8 − 𝒪8′ 

ℒNP ⊃ C8𝒪8+C8′ 
𝒪8′ 

, 𝒪8(8′ ) = 4GF

2
VtsV*td

gs

16π2 msdL(R)σμνTasR(L)Ga
μν

Complex coefficients

K0 K0

𝒪8 + 𝒪8′ |ΔS | = 1 SMtree

π0, η, η′ 
𝒪8 + 𝒪8′ 

→ (C8 − C8′ 
) →

→ (C8 + C8′ 
) →



Old susy result (1999)

• Back then  
and ``not inconsistent with SM’’

•  the SM 
depends on  and poorly known long-distance 
contributions

• Conservatively allowing the LD pole contribution 
in SUSY to reach  we found

•
• the current estimates are similar even though the 

status of  has changed

Re(ϵ′ /ϵ) = (2.12 ± 0.46) × 10−3

|ϵ | = (2.263 ± 0.023) × 10−3

BK

2.3 × 10−3

AΛ
CP ≲ 10−3

ϵ and ϵ′ 

we allow to vary in reasonable ranges. We constrain the
size of the coefficients of the gluonic dipole operators
with the observed value of ϵ′ and predict a range for
A(Λ0

−
) depending on whether the LR or the RL operator

dominates. We find that the size of A(Λ0
−
) can be within

reach of the E871 experiment. Particularly interesting
is the scenario c), which explains naturally the relation
λ =

√

md/ms. This scenario does not generate ϵ′, but it
can lead to an A(Λ0

−
) as large as 10−3.
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FIG. 1. The allowed regions on
(|(ϵ′/ϵ)SUSY |, |A(Λ0

−)SUSY |) parameter space for three cases:
a) only Im(δd12)LR contribution, which is the conservative
case (hatched horizontally), b) only Im(δd12)RL contribution
(hatched diagonally), and c) Im(δd12)LR = Im(δd12)RL case
which does not contribute to ϵ′ and can give a large |A(Λ0

−)|
below the shaded region (or vertically hatched region for
the central values of the matrix elements). The last case is

motivated by the relation λ =
√

md/ms. The vertical shaded
band is the world average [4] of ϵ′/ϵ. The region to the right
of the band is therefore not allowed.
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ϵ′ 

ϵ
BSM

≤ 1 × 10−3, ϵ BSM ≤ 2 × 10−4

 From 2019:  (Brod et. al. PRL 125.171803)

From 2019:  (Cirigliano et. al. JHEP02(2020)032)

ϵ = (2.16 ± 0.18) × 10−3

Re(ϵ′ /ϵ) = (1.3+0.6
−0.7) × 10−3
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how large can the asymmetries be BSM?

( ϵ′ 

ϵ )
exp

− ( ϵ′ 

ϵ )
SM

= (.4+.7
−.6) × 10−3, ϵexp − ϵSM = (0.7 ± 1.8) × 10−4

Largest asymmetries (absolute value) from gluon dipole operators constrained by ϵ, ϵ′ 



BSM asymmetries vs STCF

• STCF projected sensitivity with :  3.4 × 1012 J/ψ AΛ (AΞ) ∼ 2 (2.6) × 10−4
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SM vs BSM possible ranges

Craig Dukes University of VirginiaDPF 2004

Results from CP Violation Search

Weighting Technique:
• ∼10% total data sample
• selected from end of 1999 run
• 118.6 million Ξ−

• 41.9 million Ξ+

• no acceptance or efficiency corrections

AΞΛ = [0.0±5.1(stat)±4.4(syst)]×10−4

Check with HMC Technique:
• ∼ 5% of the total data sample
• prescaled selection of 1997 and 1999
• 15 million Ξ−

• 30 million Ξ+

AΞΛ = [−7±12(stat)±6.2(syst)]×10−4

⇒20× improvement on previous result. -0.03
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• use as an example 
                       

then             

   J. Tandean PRD 69, 076008, (2004), N Salone et.al. PRD 105, 116022 (2022) 

• Combined with 

• Results in
•
• theoretical uncertainty in SM, the largest values are shown

ℒNP ⊃ C8𝒪8 + C8′ 
𝒪8′ 

, 𝒪8(8′ ) = 4GF

2
VtsV*td

gs

16π2 msdL(R)σμνTasR(L)Ga
μν

(ξP − ξS) ∼ (C′ ( ϵ′ 

ϵ )
BSM

+ C ϵBSM)
ϵ′ 

ϵ
BSM

≲ 1 × 10−3, ϵ BSM ≲ 2 × 10−4

|AΛ
CP | ≲ 7 × 10−4, |AΞ

CP | ≲ 5.9 × 10−4, |BΞ
CP | ≲ 3.7 × 10−3
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TABLE I: default

Number of J/ sensitivity to A⌅
CP

BESIII (current) 1.3⇥ 109 1.3⇥ 10�2

BESIII (future) 1⇥ 1010 4.8⇥ 10�3

tau-charm factory 3.4⇥ 1012 2.6⇥ 10�4
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Summary and conclusions

• Hyperon decays can play an important role in probing BSM physics in the 
 sector, complementing kaon decays, but need much higher sensitivity 

• Hyperon decay modes allowed in the SM receive large long-distance 
contributions that are difficult to estimate reliably, the lattice community has 
started to look at some of the semileptonic modes but not yet at the non-
leptonic decay modes

• Recent BESIII measurements have significantly increased our knowledge of 
CP violating observables in hyperon decay and we look forward to their future 
improvements

• A super tau-charm factory with  leading to  
reconstructed hyperon decays has the potential to test CP violation at levels 
near those estimated for the SM and to cover much of the BSM window

s → d

1012 − 1013 J/ψ 109 − 1010


