Spectroscopy of heavy baryons

Xiang Liu xiangliu@lzu.edu.cn Lanzhou University

The 2024 International Workshop on Future Tau Charm Facilities

January 14-18, 2024

Outline

- Overview of experimental status
- Theoretical approaches for studying the spectroscopy of single heavy baryons
- Recent progresses on heavy baryons
- Summary

Overview of experimental status

New hadronic states from LHC

More and more heavy baryons were reported

Xiang Liu@ Lanzhou Univ.

Spectroscopy of heavy baryons

Overview of experimental status

	Λ_c/Σ_c				
	BNL PRL 34, 1125 $\Sigma_c(2455)$	Fermilab PRL 37, 882 $\Lambda_c(2286)$	SKAT JETPL 58, 247 $\Sigma_c(2520)$	ARGUS PLB 317, 227 $\Lambda_c(2625)$	CLEO PRL 74, 3331 $\Lambda_c(2595)$
•	1975	1976	19	93	1995
	CLEO PRL 86, 4479 $\Lambda_c(2880)$ $\Lambda_c(2765)$	Belle PRL 94, 122002 $\Sigma_c(2800)$	BaBar PRL 98, 012001 Belle PRL 98, 262001 $\Lambda_c(2940)$	LHCb JHEP 05, 030 $\Lambda_c(2860)$	Belle PRL 130, 031901 $\Lambda_c(2910)$
	2000	2004	2006	2017	2022
	$\Xi_{c}^{(\prime)}$ CERN PLB 122, 455 $\Xi_{c}(2470)$	CLEO PRL 75, 4364 $\Xi_c(2645)$	CLEO PRL 82, 492 $\Xi'_{c}(2570)$	CLEO PRL 83, 3390 $\Xi_c(2815)$	CLEO PRL 86, 4243 $\Xi_c(2790)$
•	1983	1995	1998	1999	2000
PF	Belle RL 97, 162001 $\Xi_c(3080)$ PRD $\Xi_c(2970)$ Ξ_c	BaBar PRD 77, 01 77, 031101 $\Xi_c(312)$ (2930) $\Xi_c(305)$	$\begin{array}{ccc} 2002 & Belle \\ EPJC 78, 252 \\ 3) & EPJC 78, 922 \\ 5) & \Xi_c(2930) \end{array}$		001) LHCb) arXiv: 2211.00812) $\Xi_c(2880)$
	2006	2007	2018	2020	2022
	Ω_c WA62 ZPC 28, 175 $\Omega_c(2700)$	BaBar PRL 97, 232001 $\Omega_c(2770)$	LHCt PRL 118, 1 $\Omega_c(3065)$ $\Omega_c(3050)$ $\Omega_c(3000)$	$\Omega_c(3188)$ a $\Omega_c(3119)$ $\Omega_c(3090)$	LHCb rXiv: 2302.04733 $\Omega_c(3185)$ $\Omega_c(3327)$
·	1985	2006	2017	7	2023 Year

Charm baryon

- More than 30 charm baryons have been discovered experimentally in the last 40 years
- More than half of them have been discovered in this century
- This experimental data may provide crucial information to construct charmed baryon family

See reviews:

Rep.Prog.Phys. 86 (2023) 026201 Rep.Prog.Phys. 80 (2017) 076201 Chin.J.Phys. 78 (2022) 324-362

Xiang Liu@ Lanzhou Univ.

Bottom baryon

More than 20 states have been announced

Rep.Prog.Phys. 86 (2023) 026201, Rep.Prog.Phys. 80 (2017) 076201, Chin.J.Phys. 78 (2022) 324-362

Xiang Liu@ Lanzhou Univ.

Spectroscopy of heavy baryons

Overview of experimental status

(Received 6 July 2017; revised manuscript received 2 August 2017; published 11 September 2017)

A highly significant structure is observed in the $\Lambda_c^+ K^- \pi^+ \pi^+$ mass spectrum, where the Λ_c^+ baryon is reconstructed in the decay mode $pK^-\pi^+$. The structure is consistent with originating from a weakly decaying particle, identified as the doubly charmed baryon Ξ_{cc}^{++} . The difference between the masses of the Ξ_{cc}^{++} and Λ_c^+ states is measured to be $1334.94 \pm 0.72(\text{stat.}) \pm 0.27(\text{syst.}) \text{ MeV}/c^2$, and the Ξ_{cc}^{++} mass is then determined to be $3621.40 \pm 0.72(\text{stat.}) \pm 0.27(\text{syst.}) \pm 0.14(\Lambda_c^+) \text{ MeV}/c^2$, where the last uncertainty is due to the limited knowledge of the Λ_c^+ mass. The state is observed in a sample of proton-proton collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.7 fb⁻¹, and confirmed in an additional sample of data collected at 8 TeV.

CERN'S DEVENTICLE

DOI: 10.1103/PhysRevLett.119.112001

Xiang Liu@ Lanzhou Univ.

Spectroscopy of heavy baryons

Typical few-body system

2

SU(3) flavor multiplets of charm baryons

Jacobi coordinates for the three-body system

SU(3) symmetry

$$3_f \otimes_f = \overline{3}_f \oplus 6_f$$

Rep.Prog.Phys. 80 (2017) 076201

$$\phi_{\Lambda_Q}^{\text{flavor}} = \frac{1}{\sqrt{2}} (ud - du)Q$$
$$\phi_{\Xi_Q}^{\text{flavor}} = \begin{cases} \frac{1}{\sqrt{2}} (us - su)Q\\ \frac{1}{\sqrt{2}} (ds - sd)Q \end{cases}$$

$$\begin{split} \phi_{\Sigma_Q}^{\text{flavor}} &= \begin{cases} uuQ \\ \frac{1}{\sqrt{2}}(ud+du)Q \\ ddQ \\ \\ \phi_{\Xi'_Q}^{\text{flavor}} &= \begin{cases} \frac{1}{\sqrt{2}}(us+su)Q \\ \frac{1}{\sqrt{2}}(ds+sd)Q \\ \frac{1}{\sqrt{2}}(ds+sd)Q \\ \\ \phi_{\Omega_Q}^{\text{flavor}} &= ssQ. \end{cases} \end{split}$$

Xiang Liu@ Lanzhou Univ.

Spectroscopy of heavy baryons

Diquark

Mass spectrum

Potential model

$$\hat{H} = m_{di} + m_Q + \frac{p_{di}^2}{2m_{di}} + \frac{p_Q^2}{2m_Q} + V_{di-Q},$$

$$V_{di-Q} = H^{\text{conf}} + H^{\text{hyp}} + H^{\text{so(cm)}} + H^{\text{so(tp)}}.$$

$$H^{\text{conf}} = -\frac{4\alpha_s}{3r} + br + C,$$

$$H^{\text{hyp}} = \frac{4\alpha_s}{3m_{di}m_Q} \left(\frac{8\pi}{3}\mathbf{s}_{di} \cdot \mathbf{s}_Q \tilde{\delta}(r) + \frac{1}{r^3}S(\mathbf{r}, \mathbf{s}_{di}, \mathbf{s}_Q)\right),$$

$$\tilde{\delta}(r) = \frac{\sigma^3}{\pi^{3/2}} e^{-\sigma^2 r^2}, \quad S(\mathbf{r}, \mathbf{s}_{di}, \mathbf{s}_Q) = \frac{3\mathbf{s}_{di} \cdot \mathbf{rs}_Q \cdot \mathbf{r}}{r^2} - \mathbf{s}_{di} \cdot \mathbf{s}_Q,$$

$$A\alpha = (-1, -1, 1)/(\mathbf{s}_{ii}, -\mathbf{s}_Q)$$

$$H^{\text{so(cm)}} = \frac{4\alpha_s}{3r^3} \left(\frac{1}{m_{\text{di}}} + \frac{1}{m_Q} \right) \left(\frac{\mathbf{s}_{\text{di}}}{m_{\text{di}}} + \frac{\mathbf{s}_Q}{m_Q} \right) \cdot \mathbf{L},$$
$$H^{\text{so(tp)}} = -\frac{1}{2r} \frac{\partial H^{\text{conf}}}{\partial r} \left(\frac{\mathbf{s}_{\text{di}}}{m_{\text{di}}^2} + \frac{\mathbf{s}_Q}{m_Q^2} \right) \cdot \mathbf{L}.$$

D. Ebert, K. G. Klimenko and V. L. Yudichev, Eur. Phys. J. C 53, 65-76 (2008)

D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D 84, 014025 (2011)

B. Chen, K. W. Wei and A. Zhang, Eur. Phys. J. A 51, 82 (2015)

B. Chen, K. W. Wei, X. Liu and T. Matsuki, Eur. Phys. J. C 77, no.3, 154 (2017)

Q. F. Lu, K. L. Wang, L. Y. Xiao and X. H. Zhong, Phys. Rev. D 96, no.11, 114006 (2017)

• • •

Xiang Liu@ Lanzhou Univ.

Mass spectrum

Potential model

Three-body potential

$$\hat{H} = \sum_{i} \left(m_{i} + \frac{p_{i}^{2}}{2m_{i}} \right) + \sum_{i < j} \left(V_{ij}^{\text{conf}} + V_{ij}^{\text{hyp}} + V_{ij}^{\text{so(cm)}} + V_{ij}^{\text{so(tp)}} \right).$$

$$V_{ij}^{\text{conf}} = -\frac{2}{3}\frac{\alpha_s}{r_{ij}} + \frac{b}{2}r_{ij} + \frac{1}{2}C,$$

$$V_{ij}^{\text{hyp}} = \frac{2\alpha_s}{3m_i m_j} \left[\frac{8\pi}{3} \tilde{\delta}(r_{ij}) \mathbf{s}_i \cdot \mathbf{s}_j + \frac{1}{r_{ij}^3} S(\mathbf{r}, \mathbf{s}_i, \mathbf{s}_j) \right],$$

$$\tilde{\delta}(r) = \frac{\sigma^3}{\pi^{3/2}} e^{-\sigma^2 r^2}, \quad S(\mathbf{r}, \mathbf{s}_i, \mathbf{s}_j) = \frac{3\mathbf{s}_i \cdot \mathbf{r}_{ij} \mathbf{s}_j \cdot \mathbf{r}_{ij}}{r_{ij}^2} - \mathbf{s}_i \cdot \mathbf{s}_j,$$

$$V_{ij}^{\text{so(cm)}} = \frac{2\alpha_s}{3r_{ij}^3} \left(\frac{\mathbf{r}_{ij} \times \mathbf{p}_i \cdot \mathbf{s}_i}{m_i^2} - \frac{\mathbf{r}_{ij} \times \mathbf{p}_j \cdot \mathbf{s}_j}{m_j^2} - \frac{\mathbf{r}_{ij} \times \mathbf{p}_j \cdot \mathbf{s}_i}{m_i^2} - \frac{\mathbf{r}_{ij} \times \mathbf{p}_j \cdot \mathbf{s}_i}{m_i m_j} \right),$$

$$V_{ij}^{\rm so(tp)} = -\frac{1}{2r_{ij}} \frac{\partial H_{ij}^{\rm conf}}{\partial r_{ij}} \left(\frac{\mathbf{r}_{ij} \times \mathbf{p}_i \cdot \mathbf{s}_i}{m_i^2} - \frac{\mathbf{r}_{ij} \times \mathbf{p}_j \cdot \mathbf{s}_j}{m_j^2} \right).$$

S. Capstick and N. Isgur, Phys. Rev. D 34, 2809-2835 (1986)

W. Roberts and M. Pervin, Int. J. Mod. Phys. A 23, 2817-2860 (2008)

T. Yoshida, E. Hiyama, A. Hosaka, M. Oka and K. Sadato, Phys. Rev. D 92, 114029 (2015)

G. Yang, J. Ping and J. Segovia, Few Body Syst. 59, 113 (2018)

S. Q. Luo, B. Chen, Z. W. Liu and X. Liu, Eur. Phys. J. C 80, no.4, 301 (2020)

...

G. L. Yu, Z. Y. Li, Z. G. Wang, J. Lu and M. Yan, Nucl. Phys. B 990, 116183 (2023)

Q. F. Song, Q. F. Lu and A. Hosaka, arXiv:2308.03261 [hep-ph].

Xiang Liu@ Lanzhou Univ.

Mass spectrum

Potential model

Gaussian expansion method

Jacobi coordinate

$$\vec{\lambda} = \vec{r}_3 - \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2}$$

 $\vec{\rho} = \vec{r}_2 - \vec{r}_1$

Gaussian base

$$\begin{split} \phi_{nlm}(\mathbf{r}) &= \phi_{nl}(r)Y_{lm}(\hat{\mathbf{r}}) \\ \phi_{nl}(r) &= N_{nl}r^{l}e^{-\nu_{n}r^{2}} \\ N_{nl} &= \sqrt{\frac{2^{l+2}(2\nu_{n})^{l+\frac{3}{2}}}{\sqrt{\pi}(2l+1)!!}} \\ \nu_{n} &= \frac{1}{r_{n}^{2}} \quad r_{n} &= r_{1}a^{n-1} \quad (n = 1 - n_{\max}) \end{split} \\ \Psi^{\text{total}} &= \phi^{\text{color}} \times \phi^{\text{flavor}} \times \phi^{\text{spin}} \times \phi^{\text{orbit}} \\ \phi^{\text{orbit}} &= \sum_{n_{\rho}n_{\lambda}} C_{n_{\rho}n_{\lambda}} \sum_{m_{\rho}m_{\lambda}} \langle l_{\rho}m_{\rho}; l_{\lambda}m_{\lambda}|LM \rangle \phi_{n_{\rho}l_{\rho}m_{\rho}}(\rho) \phi_{n_{\lambda}l_{\lambda}m_{\lambda}}(\lambda) \\ &= \sum_{n_{\rho}n_{\lambda}} C_{n_{\rho}n_{\lambda}} \sum_{m_{\rho}m_{\lambda}} \langle l_{\rho}m_{\rho}; l_{\lambda}m_{\lambda}|LM \rangle \phi_{n_{\rho}l_{\rho}m_{\rho}}(\rho) \phi_{n_{\lambda}l_{\lambda}m_{\lambda}}(\lambda) \\ &= \sum_{n_{\rho}n_{\lambda}} C_{n_{\rho}n_{\lambda}} \sum_{m_{\rho}m_{\lambda}} \langle l_{\rho}m_{\rho}; l_{\lambda}m_{\lambda}|LM \rangle \phi_{n_{\rho}l_{\rho}m_{\rho}}(\rho) \phi_{n_{\lambda}l_{\lambda}m_{\lambda}}(\lambda) \\ &= \sum_{n_{\rho}n_{\lambda}} C_{n_{\rho}n_{\lambda}} \sum_{m_{\rho}m_{\lambda}} \langle l_{\rho}m_{\rho}; l_{\lambda}m_{\lambda}|LM \rangle \phi_{n_{\rho}l_{\rho}m_{\rho}}(\rho) \phi_{n_{\lambda}l_{\lambda}m_{\lambda}}(\lambda) \\ &= \sum_{n_{\rho}n_{\lambda}} C_{n_{\rho}n_{\lambda}} \sum_{m_{\rho}m_{\lambda}} \langle l_{\rho}m_{\rho}; l_{\lambda}m_{\lambda}|LM \rangle \phi_{n_{\rho}l_{\rho}m_{\rho}}(\rho) \phi_{n_{\lambda}l_{\lambda}m_{\lambda}}(\lambda) \\ &= \sum_{n_{\rho}n_{\lambda}} C_{n_{\rho}n_{\lambda}} \sum_{m_{\rho}m_{\lambda}} \langle l_{\rho}m_{\rho}; l_{\lambda}m_{\lambda}|LM \rangle \phi_{n_{\rho}l_{\rho}m_{\rho}}(\rho) \phi_{n_{\lambda}l_{\lambda}m_{\lambda}}(\lambda) \\ &= \sum_{n_{\rho}n_{\lambda}} C_{n_{\rho}n_{\lambda}} \sum_{m_{\rho}m_{\lambda}} \langle l_{\rho}m_{\rho}; l_{\lambda}m_{\lambda}|LM \rangle \phi_{n_{\rho}l_{\rho}m_{\rho}}(\rho) \phi_{n_{\lambda}l_{\lambda}m_{\lambda}}(\lambda) \\ &= \sum_{n_{\rho}n_{\lambda}} C_{n_{\rho}n_{\lambda}} \sum_{m_{\rho}m_{\lambda}} \langle l_{\rho}m_{\rho}; l_{\lambda}m_{\lambda}|LM \rangle \phi_{n_{\rho}l_{\rho}m_{\rho}}(\rho) \phi_{n_{\lambda}l_{\lambda}m_{\lambda}}(\lambda) \\ &= \sum_{n_{\rho}n_{\lambda}} \sum_{m_{\rho}m_{\lambda}} \sum_{m_{\rho}m_{\lambda}} \langle l_{\rho}m_{\rho}; l_{\lambda}m_{\lambda}|LM \rangle \phi_{n_{\rho}l_{\rho}m_{\rho}}(\rho) \phi_{n_{\lambda}l_{\lambda}m_{\lambda}}(\lambda) \\ &= \sum_{n_{\rho}n_{\lambda}} \sum_{m_{\rho}m_{\lambda}} \sum_{m_{\rho}m_{\lambda}}$$

E. Hiyama, Y. Kino and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223-307 (2003)

Xiang Liu@ Lanzhou Univ.

Spectroscopy of heavy baryons

Mass spectrum

QCD sum rules

Lattice QCD

Regge trajectory

QCD sum rules	Regge trajectories	Lattice QCD	
 X. Liu, H. X. Chen, Y. R. Liu, A. Hosaka and S. L. Zhu, Phys. Rev. D 77, 014031 (2008) H. X. Chen, Q. Mao, A. Hosaka, X. Liu and S. L. Zhu, Phys. Rev. D 94, 114016 (2016) H. X. Chen, Q. Mao, W. Chen, A. Hosaka, X. Liu and S. L. Zhu, Phys. Rev. D 95, 094008 (2017) Z. G. Wang, F. Lu and Y. Liu, Eur. Phys. J. C 83, 689 (2023) 	 D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D 84, 014025 (2011) K. Chen, Y. Dong, X. Liu, Q. F. Lu and T. Matsuki, Eur. Phys. J. C 78, 20 (2018) H. Y. Cheng and C. W. Chiang, Phys. Rev. D 95, 094018 (2017) Z. Shah, K. Thakkar, A. K. Rai and P. C. Vinodkumar, Chin. Phys. C 40, 123102 (2016) 	M. Padmanath and N. Mathur, Phys. Rev. Lett. 119 , 042001 (2017) M. Padmanath, R. G. Edwards, N. Mathur and M. Peardon, Phys. Rev. D 91 , 094502 (2015) N. Mathur, R. Lewis and R. M. Woloshyn, Phys. Rev. D 66 , 014502 (2002) 	

Decay Strong decay Quark pair creation model

Decay modes

$$\hat{\mathcal{T}} = -3\gamma \sum_{m} \langle 1, m; 1, -m | 0, 0 \rangle \int d^{3} \mathbf{p}_{i} d^{3} \mathbf{p}_{j} \delta(\mathbf{p}_{i} + \mathbf{p}_{j}) \\ \times \mathcal{Y}_{1}^{m} \left(\frac{\mathbf{p}_{i} - \mathbf{p}_{j}}{2} \right) \omega_{0}^{(i,j)} \phi_{0}^{(i,j)} \chi_{-m}^{(i,j)} b_{i}^{\dagger}(\mathbf{p}_{i}) d_{j}^{\dagger}(\mathbf{p}_{j})$$

 0^{++} : match the quantum number of amplitude

L. Micu, Nucl. Phys. B10, 521 (1969)

Amplitude:

$$\mathcal{M}_{A \to BC}^{J_{BC}L}(p) = \langle BC, J_{BC}L, p | \hat{\mathcal{T}} | A \rangle$$

Partial width: $\Gamma_{A \to BC}^{J_{BC}L} = 2\pi \frac{E_B(p)E_C(p)p}{M_A} \left| M_{A \to BC}^{J_{BC}L}(p) \right|^2$

Xiang Liu@ Lanzhou Univ.

Spectroscopy of heavy baryons

Decay Radiative decay

Xiang Liu@ Lanzhou Univ.

Spectroscopy of heavy baryons

PHYSICAL REVIEW LETTERS 131, 131902 (2023)

Editors' Suggestion

Observation of New Ω_c^0 States Decaying to the $\Xi_c^+ K^-$ Final State

R. Aaij *et al.*^{*} (LHCb Collaboration)

esonance	m (MeV)	Γ (MeV)
$2_{c}(3000)^{0}$	3000.44 ± 0.07	3.83 ± 0.23
$a_c(3050)^0$	3050.18 ± 0.04	0.67 ± 0.17
$a_c(3065)^0$	3065.63 ± 0.06	3.79 ± 0.20
$(3090)^0$	3090.16 ± 0.11	8.48 ± 0.44
$2_c(3119)^0$	3118.98 ± 0.12	0.60 ± 0.63
$a_c(3185)^0$	3185.1 ± 1.7	50 ± 7
$a_c(3327)^0$	3327.1 ± 1.2	20 ± 5

Xiang Liu@ Lanzhou Univ.

Decoding the properties of $\Omega_c(3327)$: Mass+Strong decay

$\Omega_c(3327) \text{ is a good candidate for 1D} \\ \text{state of charm baryon family}$

S.Q. Luo and X. Liu, Phys. Rev. D 107, 074041 (2023)

TABLE IV. The partial and total decay widths of the λ -mode excited $\Omega_c(1D)$ state in units of MeV. The forbidden couplings are denoted by the symbol "×." The number "0.0" implies that the partial decay width is less than 0.1 MeV. Here, we do not consider the mixture between $\Omega_{c1}(1D, 3/2^+)$ and $\Omega_{c2}(1D, 3/2^+)$ or the mixture between $\Omega_{c2}(1D, 5/2^+)$ and $\Omega_{c3}(1D, 5/2^+)$. When presenting these decay behaviors, the masses of these six 1D states of Ω_c are from the experimental mass of $\Omega_c(3327)$.

Decay channels	$\Omega_{c1}(1D,1/2^+)$	$\Omega_{c1}(1D,3/2^+)$	$\Omega_{c2}(1D,3/2^+)$	$\Omega_{c2}(1D,5/2^+)$	$\Omega_{c3}(1D,5/2^+)$	$\Omega_{c3}(1D,7/2^+)$
$\Xi_c(2470)\bar{K}$	2.7	2.7	х	×	13.4	13.4
$\Xi_c(2790)\bar{K}$	125.0	0.5	1.1	0.4	3.6	0.0
$\Xi_c(2815)\bar{K}$	0.0	114.1	0.0	0.1	0.0	0.3
$\Xi_c'(2580)\bar{K}$	3.9	0.9	8.7	2.6	3.0	1.7
$\Xi_{c}^{*}(2645)\bar{K}$	2.7	6.7	5.2	15.8	2.2	3.0
$\Omega_c(2695)\eta$	0.4	0.1	1.0	0.0	0.0	0.0
$\Omega_c(2765)\eta$	0.0	0.0	0.0	0.1	0.0	0.0
ΞD	244.9	15.3	137.8	31.3	2.2	80.6
ΞD^*	5.6	16.3	3.8	10.2	0.0	0.0
Total	385.2	156.6	157.6	60.5	24.4	99.0
Exp.					$20 \pm 5^{+13}_{-1}$ [1]	

Xiang Liu@ Lanzhou Univ.

Why are we interested in the 1F state of the singly heavy baryon?

- Well established 1S states
- More and more candidates for 1P states
- Some candidates for 1D, 2S, 2P states
- 1F states are still missing
- Test phenomenological mode applied to depict low-lying states

Xiang Liu@ Lanzhou Univ.

TABLE III. A comparison of predicted masses for *F*-wave singly charmed baryons from various studies. Here, the listed masses are in units of MeV.

States	Our	Ref. [81]	Ref. [80]	States	Our	Ref. [81]	Ref. [82]	States	Our	Ref. [81]	Ref. [80]
$\overline{\Lambda_c(1F,5/2^-)}$	3075	3097	3104	$\Xi_c(1F, 5/2^-)$	3292	3278	3289				
$\Lambda_{c}(1F, 7/2^{-})$	3079	3078	3111	$\Xi_{c}(1F,7/2^{-})$	3295	3292	3294				
$\Sigma_{c2}(1F, 3/2^{-})$	3276	3288	3299	$\Xi_{c2}'(1F, 3/2^{-})$	3427	3418	3424	$\Omega_{c2}(1F, 3/2^{-})$	3540	3533	3525
$\Sigma_{c2}(1F, 5/2^{-})$	3283	3254	3304	$\Xi_{c2}^{\prime}(1F, 3/2^{-})$	3433	3394	3428	$\Omega_{c2}(1F, 5/2^{-})$	3547	3515	3528
$\Sigma_{c3}(1F, 5/2^{-})$	3247	3283	3299	$\Xi_{c3}'(1F, 3/2^{-})$	3408	3408	3424	$\Omega_{c3}(1F, 5/2^{-})$	3532	3522	3525
$\Sigma_{c3}(1F, 7/2^{-})$	3252	3227	3305	$\Xi_{c3}'(1F, 3/2^{-})$	3412	3373	3428	$\Omega_{c3}(1F,7/2^{-})$	3537	3498	3529
$\Sigma_{c4}(1F,7/2^{-})$	3207	3253	3299	$\Xi_{c4}'(1F, 3/2^{-})$	3382	3393	3423	$\Omega_{c4}(1F,7/2^{-})$	3521	3514	3524
$\Sigma_{c4}(1F,9/2^-)$	3209	3209	3305	$\Xi_{c4}'(1F, 3/2^{-})$	3383	3357	3428	$\Omega_{c4}(1F, 9/2^{-})$	3520	3485	3529

S.Q. Luo and X. Liu, Phys. Rev. D 108, 034002 (2023)

Xiang Liu@ Lanzhou Univ.

Spectroscopy of heavy baryons

Decay channels	M_f (MeV)	$\Lambda_c(1F, 5/2^-)$	$\Lambda_c(1F,7/2^-)$	Some typical OZI-allowed
$\overline{\Sigma_c(1S,3/2^+)\pi}$	2520	0.5	0.8	
$\Sigma_{c2}(1P, 3/2^{-})\pi$	2779	9.5	0.2	strong decays of \mathcal{I}_f states
$\Sigma_{c2}(1P, 5/2^{-})\pi$	2796	0.8	9.5	J
ND		9.9	11.8	
ND^*		21.6	40.2	$BR[\Lambda_c(1F,5/2^-) \to ND^*] = 49.9\%$
•••		1.0	0.8	$BR[\Lambda_{0}(1F,7/2^{-}) \rightarrow ND^{*}] = 63.5.9\%$
Total		43.3	63.3	
				Width is not as broad
Decay channels	M_f (MeV)	$\Xi_c(1F, 5/2^-)$	$\Xi_c(1F, 7/2^-)$	♦ WIGHT IS NOT SO DIOAG
$\Xi_{c2}'(1P, 3/2^{-})\pi$	2926	1.5	0.1	
$\Xi_{c2}'(1P,5/2^{-})\pi$	2945	0.2	1.6	$RR[\Xi (1F5/2^{-}) \rightarrow \Sigma D^{*}] = 54.7\%$
$\Sigma_{c}(1S, 1/2^{+})\bar{K}$	2455	0.7	0.7	$\int DR[\Box_{c}(\Pi, 572) + 2D] = 51.770$
$\Sigma_c(1S, 3/2^+)\bar{K}$	2520	1.2	1.7	
$\Sigma_{c2}(1P, 3/2^{-})\bar{K}$	2779	4.4	0.0	$BR[\Xi_c(1F,7/2^-) \to \Sigma D^*] = 60.2\%$
$\Sigma_{c2}(1P, 5/2^{-})\bar{K}$	2796	0.0	0.6	
ΛD		0.5	2.1	Coordeiner for these states
ΣD		10.0	22.9	Searching for these states
ΛD^*		4.0	5.2	can be accessible at
ΣD^*		28.3	54.3	experiment
		0.9	0.9	Слреннени
Total		51.7	90.1	SO Luc and X Liu Phys Roy D 108 03/002 (2)

Xiang Liu@ Lanzhou Univ.

Spectroscopy of heavy baryons

Some typical OZI-allowed strong decays of 6_f states

More decay channels are open, making decay more complicated

$\Sigma_c(1F)$	$\Xi_c'(1F)$	$\Omega_c(1F)$
$\Sigma_c(1P)\pi$	$\Sigma_c(1P)\bar{K}$	We suggest
$\Sigma_c(1D)\pi$	$\Lambda_c(1P)\bar{K}$	search for them via
$\Lambda_c \pi \pi$	$\Lambda_c \bar{K} \pi$	these decay modes
•••• 	•••	
ΔD	Σ^*D	Br $[\Omega_{c2}(1F, 3/2^{-}) \to \Xi^*D] \approx 30.8\%$
		Br $[\Omega_{c2}(1F, 3/2^{-}) \to \Xi D^{*}] \approx 42.2\%$
•••	•••	•••

S.Q. Luo and X. Liu, Phys. Rev. D 108, 034002 (2023)

Xiang Liu@ Lanzhou Univ.

Spectroscopy of heavy baryons

PHYSICAL REVIEW LETTERS 123, 152001 (2019)

Observation of New Resonances in the $\Lambda_b^0 \pi^+ \pi^-$ System

R. Aaij *et al.*^{*} (LHCb Collaboration)

(Received 6 August 2019; revised manuscript received 27 August 2019; published 11 October 2019)

We report the observation of a new structure in the $\Lambda_b^0 \pi^+ \pi^-$ spectrum using the full LHCb data set of pp collisions, corresponding to an integrated luminosity of 9 fb⁻¹, collected at $\sqrt{s} = 7$, 8, and 13 TeV. A study of the structure suggests its interpretation as a superposition of two almost degenerate narrow states. The masses and widths of these states are measured to be $m_{\Lambda_b(6146)^0} = 6146.17 \pm 0.33 \pm 0.22 \pm 0.16$ MeV, $m_{\Lambda_b(6152)^0} = 6152.51 \pm 0.26 \pm 0.22 \pm 0.16$ MeV, $\Gamma_{\Lambda_b(6146)^0} = 2.9 \pm 1.3 \pm 0.3$ MeV, $\Gamma_{\Lambda_b(6152)^0} = 2.1 \pm 0.8 \pm 0.3$ MeV, with a mass splitting of $\Delta m = 6.34 \pm 0.32 \pm 0.02$ MeV, where the first uncertainty is statistical, the second systematic. The third uncertainty for the mass measurements derives from the knowledge of the mass of the Λ_b^0 baryon. The measured masses and widths of these new excited states suggest their possible interpretation as a doublet of $\Lambda_b(1D)^0$ states.

LHCb ГНСр

Xiang Liu@ Lanzhou Univ.

Spectroscopy of heavy baryons

FIG. 2. The established Λ_c^+ and Λ_b^0 states and the newly observed $\Lambda_b(6146)^0$ and $\Lambda_b(6152)^0$.

TABLE IV. Partial widths of strong decays of the *D*-wave Ξ_b baryon states (in MeV). The superscript letters *p* and *f* represent the corresponding decays occuring via the *p*-wave and the *f*-wave, respectively.

Decay mode	$\Xi_b(6327) [3/2^+(1D)]$	$\Xi_b(6330)^0 \ [5/2^+(1D)]$
$\overline{\Xi_b'(5935)\pi}$	0.39^{p}	0.09^{f}
$\Sigma_b(5815)K$	1.73^{p}	0.00^{f}
$\Xi_{b}^{*}(5955)\pi$	$0.09^p, 0.15^f$	$0.51^p, 0.07^f$
$\Sigma_b^*(5835)K$	$0.02^p, 0.00^f$	$0.09^p, 0.00^f$
Total width	2.38	0.76

TABLE II. Partial widths of strong decays of $\Lambda_b(6146)^0$ and $\Lambda_b(6152)^0$ as the *D*-wave excited states (in MeV). The superscript letters *p* and *f* mean that the corresponding decays occur via the *p*-wave and *f*-wave, respectively.

Decay mode	$\Lambda_b(6146)^0 \ [3/2^+(1D)]$	$\Lambda_b(6152)^0 [5/2^+(1D)]$
$\frac{\Sigma_b(5815)\pi}{\Sigma^*(5825)\pi}$	3.25^{p}	0.22^{f}
$\Sigma_b(3833)\pi$ Total width	4.18	4.03 ^{<i>p</i>} , 0.14 ^{<i>j</i>} 4.39
Expt. [12]	$2.9\pm1.3\pm0.3$	$2.1\pm0.8\pm0.3$

PHYSICAL REVIEW LETTERS 128, 162001 (2022)

Observation of Two New Excited Ξ_b^0 States Decaying to $\Lambda_b^0 K^- \pi^+$

R. Aaij *et al.** (LHCb Collaboration)

(Received 13 October 2021; revised 9 February 2022; accepted 23 March 2022; published 21 April 2022)

Two narrow resonant states are observed in the $\Lambda_b^0 K^- \pi^+$ mass spectrum using a data sample of protonproton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb⁻¹. The minimal quark content of the $\Lambda_b^0 K^- \pi^+$ system indicates that these are excited Ξ_b^0 baryons. The masses of the $\Xi_b(6327)^0$ and $\Xi_b(6333)^0$ states are $m[\Xi_b(6327)^0] = 6327.28^{+0.23}_{-0.21} \pm 0.12 \pm 0.24$ and $m[\Xi_b(6333)^0] = 6332.69^{+0.17}_{-0.18} \pm 0.03 \pm 0.22$ MeV, respectively, with a mass splitting of $\Delta m = 5.41^{+0.26}_{-0.27} \pm 0.12$ MeV, where the uncertainties are statistical, systematic, and due to the Λ_b^0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of $\Gamma[\Xi_b(6327)^0] < 2.20(2.56)$ and $\Gamma[\Xi_b(6333)^0] < 1.60(1.92)$ MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of $1D \Xi_b^0$ resonances.

Confirmed by LHCb

Xiang Liu@ Lanzhou Univ.

Spectroscopy of heavy baryons

THE EUROPEAN Eur. Phys. J. C (2020) 80:301 https://doi.org/10.1140/epjc/s10052-020-7874-1 Check for PHYSICAL JOURNAL C updates **Regular Article - Theoretical Physics** 0.040.00Resolving the low mass puzzle of $\Lambda_c(2940)^+$ $\Delta M(M)$ (GeV) -0.04 Si-Qiang Luo^{1,3,a}, Bing Chen^{2,3,b}, Zhan-Wei Liu^{1,3,c}, Xiang Liu^{1,3,d} -0.08 $\frac{1}{2}^{-}$ $\frac{3}{2}^{-}$ 1^{+} 0^{+} 2.54.0-0.12Mass (GeV) 2.903.0 2.40.04 *DK* 3.9 $\bar{K}N$ D^*N $D\bar{D}^*$ $\Lambda_{c}(2940)^{+}$ X(3872)1.40.00 $\Lambda(1405)^{0}$ $2.3 - D_{s0}^* (2317)^{\pm}$ 2.9 $\Delta M(M)$ (GeV) -0.04 light heavy-light heavy heavy baryon quarkonium baryon meson -0.08

Introducing unquenched effect to solve the mass puzzle

$$M - M_0 - \Delta M(M) = 0,$$

$$\Delta M(M) = \operatorname{Re} \int_0^\infty \mathrm{d}q \ q^2 \frac{\left| \mathcal{M}^{\Lambda_c^{\operatorname{bare}}(2P,3/2^-) \to D^*N}(q) \right|^2}{M - E_{D^*N}(\mathbf{q})}$$

Fig. 2 The dependence of functions $M - M_0$ and $\Delta M(M)$ on M for $\Lambda_c(2P, 3/2^-)$ (up) and $\Lambda_c(2P, 1/2^-)$ (down). Here, the $M_{\rm phy}$ values correspond to the red points of the intersections of two lines are physical masses of the $\Lambda_c(3/2^-, 2P)$ (up) and $\Lambda_c(1/2^-, 2P)$ (down) states. The gap between the two subgraphs represents that the physical mass of $\Lambda_c(2P, 1/2^-)$ is 41 MeV higher than that of $\Lambda_c(2P, 3/2^-)$

Xiang Liu@ Lanzhou Univ.

Spectroscopy of heavy baryons

FIG. 1. The similarity between $D_{s0}^*(2317)$ and $\Omega_{c0}(1P, 1/2^-)$. The predicted bare mass of D_s meson is taken from the GI model [12,13]. The dashed lines represent DK threshold (left) and $\Xi_c \bar{K}$ threshold (right).

$$\begin{pmatrix} M^{j_{\ell}=0} & \tilde{V}^{\text{spin}} & \int p^2 dp \langle \Omega_{c0} | \hat{H}_I | \Xi_c \bar{K} \rangle & 0 \\ \tilde{V}^{\text{spin}} & M^{j_{\ell}=1} & 0 & \int p^2 dp \langle \Omega_{c1} | \hat{H}_I | \Xi'_c \bar{K} \rangle \\ \langle \Xi_c \bar{K} | \hat{H}_I | \Omega_{c0} \rangle & 0 & H_{\Xi_c \bar{K}} & 0 \\ 0 & \langle \Xi'_c \bar{K} | \hat{H}_I | \Omega_{c1} \rangle & 0 & H_{\Xi'_c \bar{K}} \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_{\Xi_c \bar{K}} \\ c_{\Xi'_c \bar{K}} \\ c_{\Xi'_c \bar{K}} \end{pmatrix} = M \begin{pmatrix} c_0 \\ c_1 \\ c_{\Xi_c \bar{K}} \\ c_{\Xi'_c \bar{K}} \\ c_{\Xi'_c \bar{K}} \end{pmatrix}$$

The mass of the $\Omega_{c0}^d(1P1/2^-)$ is predicted to be **2945 MeV**, which is below the $\Xi_c \overline{K}$ threshold due to the nontrivial coupled-channel effect.

S.Q. Luo, B. Chen, X. Liu, T. Matsuki, Phys. Rev. D.103, 074027 (2021)

Xiang Liu@ Lanzhou Univ.

Spectroscopy of heavy baryons

Universal behavior of mass gaps existing in the single heavy baryon family

Table 1	The measured masses of 1S, 2S, 1P, 1D Λ_c^+ and Ξ_c^+ bary	ons
[<mark>60</mark>] and	the mass gaps of corresponding states (in MeV)	

$nL(J^P)$	States	Masses	Mass gap	
$1S(1/2^+)$	$\Lambda_c(2286)^+/\Xi_c(2470)^+$	2286.5/2467.9	181.4	
$1P(1/2^{-})$	$\Lambda_c(2595)^+/\Xi_c(2790)^+$	2592.3/2792.4	200.1	
$1P(3/2^{-})$	$\Lambda_c(2625)^+/\Xi_c(2815)^+$	2628.1/2816.7	188.6	
$2S(1/2^+)$	$\Lambda_c(2765)^+/\Xi_c(2970)^+$	2766.6/2966.3	199.7	
$1D(3/2^+)$	$\Lambda_c(2860)^+/\Xi_c(3055)^+$	2856.1/3055.9	199.8	
$1D(5/2^+)$	$\Lambda_c(2880)^+/\Xi_c(3080)^+$	2881.6/3077.2	195.6	
System Number of strange guark				

Λ_c, Σ_c	0
Ξ_c, Ξ_c'	1
$\Omega_{_{\mathcal{C}}}$	2

Table 3 The observed Σ_Q , Ξ'_Q , and Ω_Q baryons [49,60] and the corresponding mass gaps involved in these states (in MeV). In the last column, there are two values for each line, where the first value is the mass gap of the first and the second states listed in the second column, and the second value denotes the mass difference of the second and the third states. Here, $\Omega_b^-(\cdots)$ denotes the absent $1S \ \Omega_b^-(3/2^+)$ state in the experiment

$nL(J^P)$	States	Mass gap
$1S(1/2^+)$	$\Sigma_c(2455)^{++}/\Xi_c'(2570)^+/\Omega_c(2695)^0$	124.4/116.8
	$\Sigma_b(5815)^+/\Xi_b'(5935)^-/\Omega_b(6046)^-$	124.4/111.1
$1S(3/2^+)$	$\Sigma_c^*(2520)^{++}/\Xi_c^*(2645)^+/\Omega_c(2765)^0$	127.2/120.3
	$\Sigma_b^*(5835)^+/\Xi_b^*(5955)^-/\Omega_b^-(\cdots)$	125.0/ · · ·
$1P(\frac{3}{2}^{-} \text{ or } \frac{5}{2}^{-})$	$\Sigma_c(2800)^{++}/\Xi_c'(2939)^0/\Omega_c(3065)^0$	137.6/127.0
	$\Sigma_b(6097)^-/\Xi_b'(6227)^-/\Omega_b(6350)^-$	128.9/123.0

B. Chen, S.Q. Luo, X. Liu, Eur. Phys. J. C 81 (2021) 474

Xiang Liu@ Lanzhou Univ.

Table 4 The measured mass splittings of the 1*P* and 1*D* states of Λ_c and Ξ_c baryons due to the spin-orbit interaction. The corresponding spin-parity quantum numbers of these states can be found in Table 1

Λ_Q states	Splitting	Ξ_Q states	Splitting
$\Lambda_c(2595)^+/\Lambda_c(2625)^+$	35.8	$\Xi_c(2790)^+/\Xi_c(2815)^+$	24.3
$\frac{\Lambda_c(2860)^+ / \Lambda_c(2880)^+}{2}$	25.5	$\Xi_c(3055)^+/\Xi_c(3080)^+$	21.3

For the *nL* excited states of Λ_Q and Ξ_Q , the two states with J = L - 1and J = L + 1 are generated

$$m_{\Lambda_c(L+\frac{1}{2})} - m_{\Lambda_c(L-\frac{1}{2})} \approx m_{\Xi_c(L+\frac{1}{2})} - m_{\Xi_c(L-\frac{1}{2})}$$

B. Chen, S.Q. Luo, X. Liu, Eur. Phys. J. C 81 (2021) 474

Xiang Liu@ Lanzhou Univ.

Spectroscopy of heavy baryons

We may predict the mass of Ξ_b excitation

 $m_{\Xi_b^{\text{excited}}} = m_{\Xi_b^{\text{ground}}} + (m_{\Lambda_b^{\text{excited}}} - m_{\Lambda_b^{\text{ground}}})$

 $m_{\Xi_b(2S,1/2^+)} = 6257 \text{ MeV}$ $m_{\Xi_b(1P,1/2^-)} = 6097 \text{ MeV}$ $m_{\Xi_b(1P,3/2^-)} = 6105 \text{ MeV}$ $m_{\Xi_b(1D,3/2^+)} = 6331 \text{ MeV}$ $m_{\Xi_b(1D,5/2^+)} = 6337 \text{ MeV}$

- CMS [1] and LHCb [2] confirmed our prediction for the mass of $\Xi_b(1P)$
- LHCb [3] confirmed our result for the mass of $\Xi_b(1D)$ state

[1] [CMS] Phys. Rev. Lett. 126, 252003 (2021)
 [2] [LHCb] Phys. Rev. Lett. 131, 171901 (2023)
 [3] [LHCb] Phys. Rev. Lett. 128, 162001 (2022)

B. Chen, S.Q. Luo, X. Liu, Eur. Phys. J. C 81 (2021) 474

Xiang Liu@ Lanzhou Univ.

Spectroscopy of heavy baryons

Application

 So far, there are about 56 single heavy baryon states discovered by experiments.

 $\Lambda_{c}^{+}(8), \Xi_{c}^{0,+}(7), \Sigma_{c}(4), \Xi_{c}'(6), \Omega_{c}(9) \qquad \Lambda_{b}^{0}(6), \Xi_{b}^{0,-}(5), \Sigma_{b}(3), \Xi_{b}'(3), \Omega_{b}(5)$

Charm baryon family

A + (IP)	S-wave	<i>P</i> -w	vave	D-w	vave	<i>F</i> -w	ave	
$\Lambda_c(f)$	1/2+	1/2-	3/2-	3/2+	5/2+	5/2-	7/2-	
<i>n</i> =1	$\Lambda_{c}(2286)^{+}$	$\Lambda_{c}(2595)^{+}$	$\Lambda_{c}(2625)^{+}$	$\Lambda_{c}(2860)^{+}$	$\Lambda_{c}(2880)^{+}$			
<i>n</i> =2	$\Lambda_c(2760)^+$	$\Lambda_{c}(2910)^{+}$	$\Lambda_{c}(2940)^{+}$				·-	
<i>n</i> =3							-	

S-wave		ave						
$\mathbf{L}_{c}(\mathbf{r})$	1/2+	3/2+	1/2-	1/2-	3/2-	3/2-	5/2-	
<i>n</i> =1	$\Sigma_{c}(2455)$	$\Sigma_{c}^{*}(2520)$		Σ _c (2850)		$\Sigma_{c}(2800)$		
<i>n</i> =2								
					D-w	vave		
			1/2+	1/2+ 3/2+ 3/2+ 5/2+ 5/2+				
		<i>n</i> =1						

O(IP)	S-wave							
$M_c(f^{-})$	1/2+	3/2+	1/2-	1/2-	3/2-	3/2-	5/2-	
<i>n</i> =1	$\Omega_c(2695)$	$\Omega_{c}^{*}(2770)$	$\Omega_c(3000)$	$Ω_c(3090)$	$\Omega_c(3050)$	$\Omega_c(3120)$	$\Omega_c(3065)$	
<i>n</i> =2	Ω _c (3188)							
					D-w	ave		
			1/2+ 3/2+ 3/2+ 5/2+ 5/2+				7/2+	
		<i>n</i> =1					Ω _c (3327)	

$=0,\pm(IP)$	S-wave	P-w	vave	D-w	<i>F</i> -wave		
$\mathbf{L}_{c}(\mathbf{U}^{r})$	1/2+	1/2-	3/2-	3/2+	5/2+	5/2-	7/2-
<i>n</i> =1	$\Xi_c(2470)^{0,+}$	$\Xi_c(2790)^{0,+}$	$\Xi_c(2815)^{0,+}$	$\Xi_c(3055)^{0,+}$	$\Xi_c(3080)^{0,+}$		-
<i>n</i> =2	$\Xi_c(2970)^{0,+}$		$\Xi_c(3123)^+$				-
<i>n</i> =3							-

$\overline{\mathbf{r}}'(\mathbf{I}^{P})$	S-wave			<i>P</i> -wave					
$\mathbf{a}_{c}(\mathbf{y})$	1/2+	3/2+	1/2-	1/2-	3/2-	3/2-	5/2-		
<i>n</i> =1	$\Xi_{c}^{\prime}(2580)$	$\Xi_{c}^{*}(2645)$	$\Xi_{c}^{\prime}(2880)$	$\Xi_{c}^{\prime}(2965)$		$\Xi_{c}^{\prime}(2923)$	$\Xi_{c}^{\prime}(2939)$		
<i>n</i> =2									
			D-wave						
			1/2+	3/2+	3/2+	5/2+	5/2+	7/2+	
		<i>n</i> =1							

 $\Lambda_c(2910)^+$: This state was reported by the Belle collaboration in the \overline{B}^0 decay process. It could be a $\frac{1}{2}^-(1P)$ state.

- $\Xi_c(2970)^{0,+}$: The J^P quantum number has been measured by Belle.
- $\Xi_c(3123)^+$: This state was only seen by BABAR.
- $\Sigma_c(2850)^0$: This state was only reported by BABAR.
- $\Omega_c(3327)^0$: It might be the first *D*-wave heavy baryon with bad diquark.

Xiang Liu@ Lanzhou Univ.

Spectroscopy of heavy baryons

Summary

Bottom baryon family

$\mathbf{A}^{0}(\mathbf{I}^{P})$	S-wave	P-w	vave	<i>D</i> -w	/ave	F-wave	
$\Lambda_b(f^2)$	1/2+	1/2-	3/2-	3/2+	5/2+	5/2-	7/2-
<i>n</i> =1	$\Lambda_b(5620)^0$	$\Lambda_{b}(5912)^{0}$	$\Lambda_b(5920)^0$	$\Lambda_{b}(6146)^{0}$	$\Lambda_{b}(6152)^{0}$		
<i>n</i> =2	$\Lambda_{b}(6070)^{0}$						
n=3							

\mathbf{r} (IP)	S-w	ave		P-wave					
$\mathbf{z}_{b}(\mathbf{r})$	1/2+	3/2+	1/2-	1/2-	3/2-	3/2-	5/2-		
<i>n</i> =1	$\Sigma_{b}(5815)$	$\Sigma_{b}^{*}(5835)$				$\Sigma_{b}(6097)$			
<i>n</i> =2									
				D-wave					
			1/2+	1/2+ 3/2+ 3/2+ 5/2+ 5/2+					
		<i>n</i> =1							

=0,-(IP)	S-wave	P-w	vave	D-wave		<i>F</i> -wave	
$\mathbf{a}_{b}(\mathbf{b})$	1/2+	1/2-	3/2-	3/2+	5/2+	5/2-	7/2-
<i>n</i> =1	$\Xi_b(5800)^{0,-}$	$\Xi_b(6087)^0$	$\Xi_b(6095)^0$	$\Xi_b(6327)^0$	$\Xi_b(6333)^0$		
<i>n</i> =2							
n=3						-	

$\nabla (I^P)$	S-w	vave		P-wave					
≏ b())	1/2+	3/2+	1/2-	1/2-	3/2-	3/2-	5/2-		
n=1	$\Xi_{b}^{\prime}(5935)$	$\Xi_{b}^{*}(5945)$				$\Xi_b'(6227)$			
<i>n</i> =2									
				D-wave					
			1/2+	3/2+	3/2+	5/2+	5/2+	7/2+	
		<i>n</i> =1							

(IP)	S-wa	ave		<i>P</i> -wave				
$\Sigma_b(f^*)$	1/2+	3/2+	1/2-	1/2-	3/2-	3/2-	5/2-	
<i>n</i> =1	$\Omega_b(6046)$			Ω _b (6350)	Ω _b (6340)	$Ω_b(6316)$	$\Omega_b(6330)$	
<i>n</i> =2								
				D-wave				
			1/2 ⁺ 3/2 ⁺ 3/2 ⁺ 5/2 ⁺ 5/2 ⁺					7/2+
		<i>n</i> =1						

The 1S, 2S, 1P, and 1D Λ_b^0 states may have been established by experiments. $\Xi_b(6087)^0/\Xi_b(6095)^0$: Two 1P candidates with $J^P = 1/2^-$ and $3/2^-$ were observed by LHCb

Xiang Liu@ Lanzhou Univ.

Summary

• The potential at Super Tau Charm Facilities for exploring charm baryons

BESIII arXiv:2312.08414

Measurements of Born Cross Sections for $e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c (2595)^- + c.c.$ and $e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c (2625)^- + c.c.$ at $\sqrt{s} = 4918.0$ and 4950.9 MeV

Super Tau Charm Facilities: A good platform for investigating higher states of charm baryon family!

Xiang Liu@ Lanzhou Univ.

Spectroscopy of heavy baryons

Thank you for your attention!

