ON ELEMENTARY AND COMPOSITE PARTICLES: THE CASE OF EXOTIC HADRONS.

AD POLOSA, SAPIENZA UNIVERSITY OF ROME

- □ If interpreted as a molecule, the X(3872) is thought to be a $D^0 \overline{D}^{*0}$ bound state, with $J^{PC} = 1^{++}$ and $B \leq 100$ keV. Such a small value of B makes the X an outlier wrt to other X, Y, Zstates.
- There must be a tuning of the strong interactions in the $D\bar{D}^*$ system ("molecule") making *a* large (and positive) so that $B = 1/(2ma^2) \sim 0$.
- \Box Most of the states are found within 10-20 MeV from meson-meson thresholds most with central values above threshold but within $\Gamma.$

THE RADIATIVE DECAYS OF X(3872)

$$\mathscr{R} \equiv \frac{\mathscr{B}(X \to \gamma \,\psi(2S))}{\mathscr{B}(X \to \gamma \,\psi(1S))} \simeq 6 \pm 4 \quad (\text{PDG})$$

The phase space ratio $\Phi(2S)/\Phi(1S) \simeq 0.26$ would favor a small \mathscr{R} – which is still possible with the numbers given above.

We assume that X has no significant charmonium component and we distinguish between a **compact** $c\bar{c}q\bar{q}$ and a **molecular** $D\bar{D}^*$ interpretation.

We find that \mathscr{R} predicted in the compact case is (at least) 30 times larger, $\mathscr{R} \gtrsim 1$, than that predicted for a molecule, $\simeq 0.04$.

B. Grinstein, L. Maiani, A.D. Polosa, to appear soon.

- The universal wavefunction used in the molecular picture amplifies small distances enhancing the J/ψ wrt $\psi(2S)$ the latter has a larger spatial extent than the former.
- □ The diquark in the compact tetraquarks tends to be larger than a D or a D
 * meson since the binding force is weaker.

 We also find R to be a rapidly increasing function of the size of the D^(*) mesons.
- \Box The large size $R \sim 10$ fm of the molecule has a minor role.

B. Grinstein, L. Maiani, A.D. Polosa, to appear soon.

The universal wavefunction in the molecular picture amplifies small distances enhancing the J/ψ wrt $\psi(2S)$.

Reduced wavefunctions u(r) = rR(r)

B. Grinstein, L. Maiani, A.D.P., to appear soon.

By **universal** w.f., we mean it does not depend on the details of the potential. For small **B** it is expected to be broader than the potential range, so a $\lambda \delta^3(\mathbf{r})$ potential might be used to find it

$$\psi_{\text{mol.}}(r) = \left(\frac{2mB}{4\pi^2}\right)^{1/4} \frac{\exp(-r\sqrt{2mB})}{r}$$

E. Braaten and M. Kusunoki, PRD69, 074005 (2004)

Corresponds to the E = -B bound state wf of the $\lambda \, \delta^3(r)$ potential with the (renormalized) coupling

$$\lambda = \frac{2\pi}{m\sqrt{2mB}}$$

R. Jackiw, `Diverse topics in Theoretical and Mathematical Physics`, World Scientific

 \square We find \mathscr{R} to be a rapidly increasing function of the size of $D^{(*)}$.

B. Grinstein, L. Maiani, A.D.P., to appear soon. Isgur, Scora, Grinstein, Wise (ISGW-model) \Box The diquark in the compact tetraquarks tends to be larger than a D or a $ar{D}^*$ meson since the binding force is weaker.

B. Grinstein, L. Maiani, A.D.P., to appear soon.

THE RADIATIVE DECAYS OF X(3872)

\Box The large size $R_0 \sim 10$ fm of the molecule has a minor role. We find in any case $\mathscr{R}_{compact} > \mathscr{R}_{mol.}$ with $\mathscr{R}_{compact} > 1$.

$$R_0 = 1/\sqrt{2mB}$$

B. Grinstein, L. Maiani, A.D.P., to appear soon.

RELATIVE MOMENTA IN MOLECULES

 $\langle N \rangle$

$$V(r) = \lambda \frac{\delta(r)}{4\pi r^2} \Rightarrow \langle V \rangle_{\psi_{\text{mol.}}} = 0$$
$$-B = \langle H \rangle = \langle T \rangle + \langle V \rangle = \langle T \rangle = \frac{\langle k^2 \rangle}{2m}$$
$$\langle k^2 \rangle = -2mB$$

as can also be computed directly by $\psi_{\text{mol.}}$ This corresponds to the pole in the shallow bound state scattering amplitude $k = i\sqrt{2mB}$ (pole in E + B). Here $|k| = \sqrt{2mB} \simeq 14$ MeV

RELATIVE MOMENTA IN MOLECULES

Braaten and Artoisenet, PRD81103 (2010) 114018

Bignamini, Grinstein, Piccinini, ADP, Sabelli, PRL103 (2009) 162001

THE X BY A $c\bar{c}$ CORE

Esposito, Guerrieri, Maiani, Piccinini, Pilloni, ADP, Riquer, Phys. Rev. D 92 (2015) 3, 034028

The typical conclusion is that the hadronization into X proceeds via the production of a $c\bar{c}$ pair (e.g. recoiling a gluon)

□ In the compact picture we have in mind here a $(c\bar{c})_8(q\bar{q})_8$ state is formed and its dynamics could be described in the Born-Oppenheimer approximation (fast light quarks and slow heavy quarks). This explains the use we did before of a ψ_{BO} .

 \Box According to others the $c\bar{c}$ core combines with light quarks evolving in a $D\bar{D}^*$ loosely bound molecule.

From scattering theory it is known that the scattering amplitude of the molecule constituents has a pole at a shallow level E = -Bwith B > 0 (if E = -B is on the non-physical sheet one speaks of *virtual state*) with

$$f = -\frac{A_0^2}{2m} \frac{1}{E+B}$$

with the *reduced* normalized wf (the universal wf discussed above) of the corresponding stationary state

$$\chi = A_0 \exp(-r\sqrt{2mB})$$

$D\bar{D}^*$ SCATTERING

Indeed using (suggested from the $\delta^3(r)$ potential)

$$\frac{A_0^2}{2m} = \frac{\sqrt{2mB}}{m}$$

$$f(\alpha \rightarrow \beta) = -\frac{A_0^2}{2m} \frac{1}{E+B} = -\frac{\sqrt{2mB}}{m} \frac{1}{E+B}$$

This is obtained by A_0 in

$$\chi = A_0 \exp(-r\sqrt{2mB})$$

which, including Y_0^0 , gives the ψ found before in $\lambda\delta^3(r)$

$$\psi_{\text{mol.}}(r) = \left(\frac{2mB}{4\pi^2}\right)^{1/4} \frac{\exp(-r\sqrt{2mB})}{r}$$

THE POLAR FORMULA FOR THE $D\bar{D}^*$ SCATTERING

Introduce the coupling to X

Neglecting terms of order B^2 and E^2 ($E = k^2/2m$) one finds in the case of the X

$$f(\alpha \to \beta) = -\frac{1}{8\pi m_X} \frac{g^2}{(p_D + p_{D^*})^2 + m_X^2 - i\epsilon} \simeq -\frac{1}{16\pi m_X^2} \frac{g^2}{E + B}$$

ADP Phys. Lett. B746, 248 (2015)

LANDAU ARGUMENT

The potential scattering of two slow particles ($kR \ll 1$) described by an attractive potential U, with range R, featuring a shallow bound state at -B has a **universal** scattering amplitude

$$f(ab \to ab) = -\frac{1}{\sqrt{2m}} \frac{\sqrt{B} - i\sqrt{E}}{E + B}$$

obtained by $\cot \delta_0 = -\sqrt{B/E}$. This is independent on the details of V and affected only by the value of **B**. A comparison with the pole formula

$$f(\alpha \rightarrow \beta) \simeq -\frac{1}{16\pi m_X^2} \frac{g^2}{E+B}$$

can be done at $k = i\sqrt{2mB}$ where the numerator in the first is $2\sqrt{B}$

recap of this in ADP Phys. Lett. B746, 248 (2015)

This leads to

$$g^2 = \frac{16\pi m_X^2}{m} \sqrt{2mB}$$

$$f(\alpha \rightarrow \beta) = -\frac{1}{16\pi m_X^2} \frac{g^2}{E+B} = -\frac{\sqrt{2mB}}{m} \frac{1}{E+B}$$

Which is the same formula found before: the independency on the form of the potential.

L.D. Landau, JETP 39, 1865 (1960)

with

The previous formula for g^2 is valid only if the X is purely molecular, or Z=0

$$g^{2} = \frac{16\pi m_{X}^{2}}{m} \sqrt{2mB} = 8mm_{X}^{2} \times (g_{W})_{Z=0}$$

$$g_W^2 = \frac{2\pi\sqrt{2mB}}{m^2}(1-Z)$$

and
$$|X\rangle = \sqrt{Z} |\mathfrak{X}\rangle + \int_{k} C_{k} \frac{|D\bar{D}^{*}(k)\rangle}{|\alpha\rangle}$$

S. Weinberg Phys. Rev. 137, B672 (1965)

THE POLAR FORMULA

Neglecting terms of order B^2 and E^2 ($E = k^2/2m$) one finds in the case of the X

$$f(\alpha \to \beta) = -\frac{1}{8\pi m_X} \frac{g^2}{(p_D + p_{D^*})^2 + m_X^2 - i\epsilon} \simeq -\frac{1}{16\pi m_X^2} \frac{g^2}{E + B}$$

From this we have that

$$\frac{A_0^2}{2m} = \frac{g^2}{16\pi m_X^2} = \frac{mg_W^2}{2\pi}$$

Finding the residue at the pole of the amplitude in eff. range exp.

$$\frac{1}{A_0^2} = \frac{1}{2\sqrt{2mB}} - \frac{1}{2}r_0$$

r_0 and a formulae

Solving the previous formula for r_0

$$r_0 = -\frac{Z}{1-Z}R + O\left(\frac{1}{\Lambda}\right)$$

$$R = \frac{1}{\varkappa} = \frac{1}{\sqrt{2mB}}$$

The (positive!) scattering length is obtained using the expression of r_0 given above into $\left(-\varkappa_0 + \frac{1}{2}r_0k^2 - ik\right)_{k=i\varkappa} = 0$

$$a = \frac{2(1-Z)}{2-Z}R + O\left(\frac{1}{\Lambda}\right)$$

(scattering length > 0)

S. Weinberg Phys. Rev. 137, B672 (1965)

THE Λ SCALE

In the case of the deuteron d

$$\Lambda = m_{\pi} \Rightarrow \frac{1}{\Lambda} \simeq 1 \text{ fm}$$

because the pion can be integrated out given that

$$m_n - m_p \ll m_\pi$$

In the case of the X, pion interactions between D and $ar{D}*$ (u-channel)

Scattering in the presence of shallow bound states generated by *purely attractive potentials* in NRQM are characterized by

$r_0 \ge 0$

even if there is a repulsive core, but in a very narrow region around the origin. Therefore the 1 fm estimated above is +1 fm

$$r_0 \simeq -\frac{Z}{1-Z}R + 1 \text{ fm} = r_0^{\text{exp.}} = +1.74 \text{ fm}$$

So we conclude that $Z \simeq 0$. The deuteron is a molecule! Only a "large" (wrt 1 fm) and negative r_0 would have been the token of the elementary deuteron.

Esposito, Maiani, Pilloni, ADP, Riquer, <u>2108.11413</u>, *Phys. Rev. D*105 (2022) 3, L031503

DATA ON X: LHCB ANALYSIS

arXiv:2005.13419

For small kinetic energies

$$f(X \to J/\psi \pi \pi) = -\frac{(2N/g)}{(2/g)(E - m_X^0) - \sqrt{2\mu_+\delta} + E\sqrt{\mu_+/2\delta} + ik}$$

$$\frac{1}{a} = \frac{2m_X^0}{g} + \sqrt{2\mu_+\delta} \simeq -6.92 \text{ MeV positive } a$$

$$r_0 = -\frac{2}{\mu g} - \sqrt{\frac{2\mu_+}{2\mu^2\delta}} \simeq -5.34 \text{ fm negative } r_0$$

using $E = k^2/2\mu$, μ being the reduced mass of the neutral $D\bar{D}^*$ pair, and taking g (LHCb) and m_X^0 (stable determination) from the experimental analysis. Since g can be larger, $r_0 \leq -2$ fm.

DETERMINATION OF Z

Neglect for the moment $O(1/\Lambda)$ corrections

$$r_0 = -\frac{Z}{1-Z}R = -5.34 \text{ fm}$$
$$a = \frac{2(1-Z)}{2-Z}R = \frac{197}{6.92} \text{ fm}$$

Gives $Z = 0.15 \neq 0!$ and B = 20 keV

Including ±5 fm makes quite a difference depending on the sign. In the case of -5 fm we might have Z = 0 even with $r_0^{\exp} = -5.32$ fm! In the case of +5 fm, a negative experimental r_0 is the proof of the compact state.

However we shall see that in the molecular case $O(1/\Lambda) \rightarrow -0.2$ MeV

$(-r_0)$ ACCORDING TO SOME ESTIMATES

A: Baru et al., 2110.07484 B: Esposito et al., 2108.11413 C: LHCb, 2109.01056 D: Maiani & Pilloni GGI-Lects E: Mikhasenko, 2203.04622

H. Xu, N. Yu and Z. Zhang 2401.00411: $r_0 \approx -14$ fm combining LHCb and Belle data (for the **X**)

M. Padmanath and S. Prelovsek, Phys. Rev. Lett. 2202.10110

Applying the lattice Lüscher method, the authors study the $D\bar{D}^*$ scattering amplitude and make a determination of the scattering length and of the effective range for \mathcal{T}_{cc}

a = -1.04(29) fm $r_0 = +0.96^{+0.18}_{-0.20} \text{ fm}$

The mass of the pion is $m_{\pi} = 280$ MeV, to keep the D^* stable. This result, for the moment, is compatible with a *virtual state* because of the negative a – like the singlet deuteron. As for LHCb (2109.01056 p.12)

> a = +7.16 fm-11.9 $\leq r_0 \leq 0 \text{ fm}$

r_0 IN THE MOLECULAR PICTURE

$$H_{DD^*} = \frac{p_{D^*}^2}{2m_{D^*}} + \frac{p_D^2}{2m_D} - \lambda_0 \,\delta^3(\mathbf{r})$$

A perturbation to the $\delta^3(r)$ potential derives from

Esposito, Glioti, Germani, ADP, Rattazzi, Tarquini, PLB847, 138285 (2023).

Potential = FT of the propagator in NR approximation

$$\int \frac{q_i q_j e^{i\mathbf{q}\cdot\mathbf{r}}}{q^2 + m_\pi^2 - i\epsilon} d^3 q \xrightarrow{\text{NR}} \int \frac{q_i q_j e^{i\mathbf{q}\cdot\mathbf{r}}}{\mathbf{q}^2 - \mu^2 - i\epsilon} d^3 q \approx \int \frac{q_i q_j e^{i\mathbf{q}\cdot\mathbf{r}}}{\mathbf{q}^2 - i\epsilon} d^3 q$$
$$\int \frac{q_i q_j e^{i\mathbf{q}\cdot\mathbf{r}}}{\mathbf{q}^2 - i\epsilon} d^3 q = -\frac{(2\pi)^3}{4\pi} \left(\frac{3\hat{r}_i \hat{r}_j}{r^3} - \frac{\delta_{ij}}{r^3} - \frac{4\pi}{3}\delta^3(\mathbf{r})\right)$$

r_0 in the molecular picture

$$H_{DD^*} = \frac{p_{D^*}^2}{2m_{D^*}} + \frac{p_D^2}{2m_D} - \lambda_0 \,\delta^3(\mathbf{r})$$

A perturbation to the $\delta^3(r)$ potential derives from

Esposito, Glioti, Germani, ADP, Rattazzi, Tarquini, PLB847, 138285 (2023).

In *S*-wave we have to include the condition $\langle \hat{r}_i \hat{r}_j \rangle = \frac{1}{3} \delta_{ij}$ which, for $\mu = 0$, leaves only an extra $\delta^3(\mathbf{r})$ potential term.

But $\mu^2 = (m_{D^*} - m_D)^2 - m_{\pi}^2 \simeq 44$ MeV, and this requires an extra, complex potential term.

THE COMPLEX POTENTIAL

Esposito, Glioti, Germani, ADP, Rattazzi, Tarquini, PLB847, 138285 (2023).

Keep μ finite! Are the corrections to r_0 of the size $O(1/m_{\pi})$ or $O(1/\mu)$?

$$V_{w} = -\frac{g^{2}}{2f_{\pi}^{2}} \int \frac{q_{i}q_{j}e^{i\mathbf{q}\cdot\mathbf{r}}}{\mathbf{q}^{2} - \mu^{2} - i\epsilon} \frac{d^{3}q}{(2\pi)^{3}} = -\frac{g^{2}}{\underline{6f_{\pi}^{2}}} \left(\delta^{3}(r) + \mu^{2}\frac{e^{i\mu r}}{4\pi r}\right)\delta_{ij}$$

$$\beta$$

The contraction with polarizations $e_i^{(\lambda)} \bar{e}_j^{(\lambda')}$ gives $\delta_{\lambda\lambda'}$. As for the $\delta^3(\mathbf{r})$ potential from π alone, it has not the right weight to make the bound state at E = -B. But combined with the strong one, an overall λ can be defined to make it.

So we divide **V** into

$$V = V_s + V_w = -\left(\frac{\lambda_0 + 4\pi\beta}{\lambda}\right)\delta^3(\mathbf{r}) - \alpha\mu^2 \frac{e^{i\mu r}}{r}$$

To compute any amplitude, all orders in V_s are needed, and possibly only the first order in V_w .

Can we find r_0 as a result of the correction to f due to the complex potential?

DISTORTED WAVE BORN APPROXIMATION

$$f = \frac{1}{k \cot \delta(k) - ik} = f_s + f_w = \frac{1}{-\frac{1}{a} - ik} + f_w$$

$$f_w = -\frac{2m}{4k^2} \int V_w(r) \chi_s^2(r) dr$$

Where $\chi_s(r)$ are scattering w.f. of the $\delta^3(r)$ potential, and m is the invariant DD^* mass. Thus r_0 is determined by the k^2 coefficient in the double expansion around k = 0 and $\alpha = 0$ of the expression

$$f^{-1} = \left(\frac{1}{-\frac{1}{a} - ik} - \frac{2m}{4k^2} \int V_w(r) \chi_s^2(r) dr\right)^{-1}$$

CALCULATION OF r_0 (DWBA)

$$r_0 = 2m\alpha \left(\frac{2}{\mu^2 a^2} + \frac{8i}{3\mu a} - 1\right)$$

Esposito, Glioti, Germani, ADP, Rattazzi, Tarquini, PLB847, 138285 (2023).

 $-0.20~{
m fm}\lesssim~{
m Re}\,r_0\lesssim-0.15~{
m fm}$

 $0 \, {\rm fm} \lesssim \, {\rm Im} \, r_0 \lesssim 0.17 \, {\rm fm}$

$$\alpha = \frac{g^2}{24\pi f_\pi^2} = \frac{5 \times 10^{-4}}{\mu^2}$$

These results agree, analytically, with what found by Braaten et al. using EFT. It turns out that the real part of r_0 is just a tiny (negative!) fraction of a Fermi. This confirms the fact that the Weinberg criterion can be extended to the X(3872) too.

Braaten, Galilean invariant XEFT, Phys. Rev. D 103, 036014 (2021), arXiv:2010.05801 [hep-ph]

	•	ㅁ › 《쿱 › 《클 › 《릴 › _ 릴	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Tarquini (Sapienza)	Struttura di X(3872)	18/07/2022	12 / 25

- It would be useful to have new comparative studies on the r_0 of the X(3872) and of the \mathcal{T}_{QQ} particles, and to agree on the way to extract information from data (not easy).
- It would be of great relevance to learn more, on the experimental side, about deuteron production at high p_T .
- Some states are produced promptly in *pp* collisions, some are not.
 There is no clear reason why!
- Are there loosely bound molecules $B\bar{B}^*$? Can we formulate more stringient bounds on X^{\pm} particles?
- Derive Weinberg criterium in a modern language.
- More basically: are we on the right questions?