ON ELEMENTARY AND COMPOSITE PARTICLES: THE CASE OF EXOTIC HADRONS.

AD POLOSA, SAPIENZA UNIVERSITY OF ROME

- If interpreted as a molecule, the $X(3872)$ is thought to be a $D^0\bar{D}^{*0}$ bound state, with $J^{PC} = 1^{++}$ and $B \lesssim 100$ keV. Such a small value of B makes the X an outlier wrt to other X, Y, Z states.
- There must be a tuning of the strong interactions in the $D\bar{D}^*$ system ("molecule") making a large (and positive) so that $B = 1/(2ma^2) \sim 0$.
- **Most of the states are found within 10-20 MeV from meson-meson** thresholds – most with central values above threshold but within Γ .

THE RADIATIVE DECAYS OF *X*(3872)

$$
\mathcal{R} = \frac{\mathcal{B}(X \to \gamma \psi(2S))}{\mathcal{B}(X \to \gamma \psi(1S))} \simeq 6 \pm 4 \quad (\text{PDG})
$$

The phase space ratio $\Phi(2S)/\Phi(1S) \simeq 0.26$ would favor a small $\,mathscr{R}$ — which is still possible with the numbers given above.

We assume that X has no significant charmonium component and we distinguish between a compact $c\bar{c}q\bar{q}$ and a molecular $D\bar{D}^*$ interpretation.

We find that $\mathscr R$ predicted in the compact case is (at least) 30 times larger, $\mathscr{R} \gtrsim 1$, than that predicted for a molecule, $\simeq 0.04$.

B. Grinstein, L. Maiani, A.D. Polosa, to appear soon.

- The universal wavefunction used in the molecular picture amplifies small distances enhancing the J/ψ wrt $\psi(2S)$ – the latter has a larger spatial extent than the former.
- The diquark in the compact tetraquarks tends to be larger than a D or a \bar{D}^* meson since the binding force is weaker. We also find $\mathscr R$ to be a rapidly increasing function of the size of the $D^{(*)}$ mesons.

The large size $R \sim 10$ fm of the molecule has a minor role.

B. Grinstein, L. Maiani, A.D. Polosa, to appear soon.

The universal wavefunction in the molecular picture amplifies small distances enhancing the *J*/*ψ* wrt *ψ*(2*S*).

Reduced wavefunctions $u(r) = rR(r)$

B. Grinstein, L. Maiani, A.D.P., to appear soon.

By **universal** w.f., we mean it does not depend on the details of the potential. For small B it is expected to be broader than the potential n range, so a $\lambda \, \delta^3(\bm{r})$ potential might be used to find it

$$
\psi_{\text{mol.}}(r) = \left(\frac{2m}{4\pi^2}\right)^{1/4} \frac{\exp(-r\sqrt{2mB})}{r}
$$

E. Braaten and M. Kusunoki, PRD69, 074005 (2004)

Corresponds to the $E = -B$ bound state wf of the $\lambda \delta^3(\bm{r})$ potential with the (renormalized) coupling

$$
\lambda = \frac{2\pi}{m\sqrt{2mB}}
$$

R. Jackiw, `Diverse topics in Theoretical and Mathematical Physics`, World Scientific

 \Box We find $\mathscr R$ to be a rapidly increasing function of the size of $D^{(*)}$.

B. Grinstein, L. Maiani, A.D.P., to appear soon. Isgur, Scora, Grinstein, Wise (ISGW-model)

The diquark in the compact tetraquarks tends to be larger than a D or a \bar{D}^* meson since the binding force is weaker.

B. Grinstein, L. Maiani, A.D.P., to appear soon.

THE RADIATIVE DECAYS OF *X*(3872)

The large size $R_0 \sim 10$ fm of the molecule has a minor role. We find in any case $\mathscr{R}_{\text{compact}} > \mathscr{R}_{\text{mol.}}$ with $\mathscr{R}_{\text{compact}} > 1.$

$$
R_0 = 1/\sqrt{2mB}
$$

B. Grinstein, L. Maiani, A.D.P., to appear soon.

RELATIVE MOMENTA IN MOLECULES

$$
V(r) = \lambda \frac{\delta(r)}{4\pi r^2} \Rightarrow \langle V \rangle_{\psi_{\text{mol.}}} = 0
$$

$$
-B = \langle H \rangle = \langle T \rangle + \langle V \rangle = \langle T \rangle = \frac{\langle k^2 \rangle}{2m}
$$

$$
\langle k^2 \rangle = -2mB
$$

as can also be computed directly by $\psi_{\rm mol.}$ This corresponds to the pole in the shallow bound state scattering amplitude $k = i \sqrt{2mB}$ (pole in $E+B$). Here $\lfloor k \rfloor = \sqrt{2mB} \simeq 14$ MeV

RELATIVE MOMENTA IN MOLECULES

Braaten and Artoisenet, PRD81103 (2010) 114018

Bignamini, Grinstein, Piccinini, ADP, Sabelli, PRL103 (2009) 162001

THE *X* BY A *cc*¯ CORE

Esposito, Guerrieri, Maiani, Piccinini, Pilloni, ADP, Riquer, *Phys. Rev. D* 92 (2015) 3, 034028

The typical conclusion is that the hadronization into X proceeds via the production of a $c\bar{c}$ pair (e.g. recoiling a gluon)

In the compact picture we have in mind here a $(c\bar{c})_8(q\bar{q})_8$ state is formed and its dynamics could be described in the Born-Oppenheimer approximation (fast light quarks and slow heavy quarks). This explains the use we did before of a $\psi_{\rm BO}$.

According to others the $c\bar{c}$ core combines with light quarks evolving in a $D\bar{D}^*$ loosely bound molecule.

From scattering theory it is known that the scattering amplitude of the molecule constituents has a pole at a shallow level $E = -\, B$ with $B > 0$ (if $E = -B$ is on the non-physical sheet one speaks of *virtual state*) with

$$
f = -\frac{A_0^2}{2m} \frac{1}{E + B}
$$

with the *reduced* normalized wf (the universal wf discussed above) of the corresponding stationary state

$$
\chi = A_0 \exp(-r\sqrt{2mB})
$$

$D\bar{D}^*$ *SCATTERING*

Indeed using (suggested from the $\delta^3(r)$ potential)

$$
\frac{A_0^2}{2m} = \frac{\sqrt{2mB}}{m}
$$

$$
f(\alpha \to \beta) = -\frac{A_0^2}{2m} \frac{1}{E+B} = -\frac{\sqrt{2mB}}{m} \frac{1}{E+B}
$$

This is obtained by A_0 in

$$
\chi = A_0 \exp(-r\sqrt{2mB})
$$

which, including Y^0_0 , gives the ψ found before in $\lambda \delta^3(r)$

$$
\psi_{\text{mol.}}(r) = \left(\frac{2mB}{4\pi^2}\right)^{1/4} \frac{\exp(-r\sqrt{2mB})}{r}
$$

THE POLAR FORMULA FOR THE $D\bar{D}^*$ SCATTERING

Introduce the coupling to *X*

Neglecting terms of order B^2 and E^2 $(E = k^2/2m)$ one finds in the case of the *X*

$$
f(\alpha \to \beta) = -\frac{1}{8\pi m_X} \frac{g^2}{(p_D + p_{D^*})^2 + m_X^2 - i\epsilon} \simeq -\frac{1}{16\pi m_X^2} \frac{g^2}{E + B}
$$

ADP Phys. Lett. B746, 248 (2015)

LANDAU ARGUMENT

The potential scattering of two slow particles $(kR \ll 1)$ described by an attractive potential U , with range R , featuring a shallow bound state at -*B* has a universal scattering amplitude

$$
f(ab \to ab) = -\frac{1}{\sqrt{2m}} \frac{\sqrt{B} - i\sqrt{E}}{E + B}
$$

obtained by $\cot \delta_0 = -\sqrt{B/E}$. This is independent on the details of V and affected only by the value of B . A comparison with the pole formula

$$
f(\alpha \to \beta) \simeq -\frac{1}{16\pi m_X^2} \frac{g^2}{E+B}
$$

can be done at $k = i\sqrt{2m}$ where the numerator in the first is $2\sqrt{B}$

recap of this in ADP Phys. Lett. B746, 248 (2015)

This leads to

$$
g^2 = \frac{16\pi m_X^2}{m} \sqrt{2mB}
$$

$$
f(\alpha \to \beta) = -\frac{1}{16\pi m_X^2} \frac{g^2}{E + B} = -\frac{\sqrt{2mB}}{m} \frac{1}{E + B}
$$

Which is the same formula found before: the independency on the form of the potential.

L.D. Landau, JETP 39, 1865 (1960)

The previous formula for g^2 is valid only if the X is purely molecular, or $Z=0$

$$
g^{2} = \frac{16\pi m_{X}^{2}}{m} \sqrt{2mB} = 8mm_{X}^{2} \times (g_{W})_{Z=0}
$$

with
$$
g_W^2 = \frac{2\pi\sqrt{2mB}}{m^2}(1-Z)
$$

and
$$
|X\rangle = \sqrt{Z} | \mathfrak{X} \rangle + \int_{k} C_{k} |D\bar{D}^{*}(k)\rangle
$$

S. Weinberg Phys. Rev. 137, B672 (1965)

THE POLAR FORMULA

Neglecting terms of order B^2 and E^2 $(E = k^2/2m)$ one finds in the case of the *X*

$$
f(\alpha \to \beta) = -\frac{1}{8\pi m_X} \frac{g^2}{(p_D + p_{D^*})^2 + m_X^2 - i\epsilon} \simeq -\frac{1}{16\pi m_X^2} \frac{g^2}{E + B}
$$

From this we have that

$$
\frac{A_0^2}{2m} = \frac{g^2}{16\pi m_X^2} = \frac{mg_W^2}{2\pi}
$$

Finding the residue at the pole of the amplitude in eff. range exp.

$$
\frac{1}{A_0^2} = \frac{1}{2\sqrt{2mB}} - \frac{1}{2}r_0
$$

*r*⁰ AND *a* FORMULAE

Solving the previous formula for *r*⁰

$$
r_0 = -\frac{Z}{1 - Z}R + O\left(\frac{1}{\Lambda}\right)
$$

$$
R = \frac{1}{\varkappa} = \frac{1}{\sqrt{2mB}}
$$

The (positive!) scattering length is obtained using the expression of r_0 given above into $\left(-x_0 + \frac{1}{2}\right)$ 2 $r_0 k^2 - ik$ $\int_{k=ix}$ $= 0$

$$
a = \frac{2(1 - Z)}{2 - Z}R + O\left(\frac{1}{\Lambda}\right)
$$

 $(scattering length > 0)$

S. Weinberg Phys. Rev. 137, B672 (1965)

THE Λ SCALE

In the case of the deuteron *d*

$$
\Lambda = m_{\pi} \Rightarrow \frac{1}{\Lambda} \simeq 1 \text{ fm}
$$

because the pion can be integrated out given that

$$
m_n - m_p \ll m_\pi
$$

In the case of the X , pion interactions between D and \bar{D}^* (u-channel)

$$
\Lambda^{2} = m_{\pi}^{2} - (m_{D^{*}} - m_{D})^{2} \simeq (44 \text{ MeV})^{2}
$$

$$
q_{0}^{2}
$$

giving

$$
\frac{1}{\Lambda} \simeq 4.5 \text{ fm}
$$

Scattering in the presence of shallow bound states generated by *purely attractive potentials* in NRQM are characterized by

$r_0 \geq 0$

even if there is a repulsive core, but in a *very* narrow region around the origin. Therefore the 1 fm estimated above is +1 fm

$$
r_0 \simeq -\frac{Z}{1 - Z}R + 1 \text{ fm} = r_0^{\text{exp.}} = +1.74 \text{ fm}
$$

So we conclude that $Z \simeq 0$. The deuteron is a molecule! Only a "large" (wrt 1 fm) and negative r_0 would have been the token of the elementary deuteron.

Esposito, Maiani, Pilloni, ADP, Riquer, [2108.11413,](https://arxiv.org/abs/2108.11413) *Phys. Rev. D*105 (2022) 3, L031503

DATA ON X: LHCB ANALYSIS

arXiv:2005.13419

For small kinetic energies

$$
f(X \to J/\psi \pi \pi) = -\frac{(2N/g)}{(2/g)(E - m_X^0) - \sqrt{2\mu_+ \delta} + E\sqrt{\mu_+ / 2\delta} + ik}
$$

$$
-\frac{1}{a} = \frac{2m_X^0}{g} + \sqrt{2\mu_+ \delta} \simeq -6.92 \text{ MeV positive } a
$$

$$
r_0 = -\frac{2}{\mu g} - \sqrt{\frac{2\mu_+}{2\mu^2 \delta}} \simeq -5.34 \text{ fm}
$$
 negative r_0

 u sing $E = k^2/2\mu$, μ being the reduced mass of the neutral $D\bar{D}^*$ pair, and taking g (LHCb) and m_χ^0 (stable determination) from the experimental analysis. Since g can be larger, $r_0 \le -2$ fm.

DETERMINATION OF *Z*

Neglect for the moment *O*(1/Λ) corrections

$$
r_0 = -\frac{Z}{1 - Z}R = -5.34 \text{ fm}
$$

$$
a = \frac{2(1 - Z)}{2 - Z}R = 197/6.92 \text{ fm}
$$

Gives $Z = 0.15 \neq 0!$ and $B = 20$ keV

Including ± 5 fm makes quite a difference depending on the sign. In the case of -5 fm we might have $Z = 0$ even with $r_0^{\exp} = -5.32$ fm! In the case of $+5$ fm, a negative experimental r_0 is the proof of the compact state. 0 $=-5.32$ fm

However we shall see that in the molecular case $O(1/\Lambda) \to -0.2$ MeV

(−*r*0) ACCORDING TO SOME ESTIMATES

A: Baru et al., 2110.07484 B: Esposito et al., 2108.11413 C: LHCb, 2109.01056 D: Maiani & Pilloni GGI-Lects E: Mikhasenko, 2203.04622

H. Xu, N. Yu and Z. Zhang 2401.00411: $r_0 \approx -14$ fm combining LHCb and Belle data (for the X)

M. Padmanath and S. Prelovsek, Phys. Rev. Lett. 2202.10110

Applying the lattice Lüscher method, the authors study the $D\bar{D}^*$ scattering amplitude and make a determination of the scattering length and of the effective range for \mathscr{T}_{cc}

> $a = -1.04(29)$ fm $r_0 = + 0.96^{+0.18}_{-0.20}$ fm

The mass of the pion is $m_\pi=280$ MeV, to keep the D^* stable. This result, for the moment, is compatible with a *virtual state* because of the negative a – like the singlet deuteron. As for LHCb (2109.01056 p.12)

> $a = +7.16$ fm $-11.9 \le r_0 \le 0$ fm

*r*₀ IN THE MOLECULAR PICTURE

$$
H_{DD^*} = \frac{p_{D^*}^2}{2m_{D^*}} + \frac{p_D^2}{2m_D} - \lambda_0 \delta^3(r)
$$

A perturbation to the $\delta^3(r)$ potential derives from

Esposito, Glioti, Germani, ADP, Rattazzi, Tarquini, PLB847, 138285 (2023).

Potential = FT of the propagator in NR approximation

$$
\int \frac{q_i q_j e^{i\mathbf{q} \cdot \mathbf{r}}}{q^2 + m_\pi^2 - i\epsilon} d^3q \xrightarrow[\text{NR}]{\text{NR}} \int \frac{q_i q_j e^{i\mathbf{q} \cdot \mathbf{r}}}{q^2 - \mu^2 - i\epsilon} d^3q \approx \int \frac{q_i q_j e^{i\mathbf{q} \cdot \mathbf{r}}}{q^2 - i\epsilon} d^3q
$$
\n
$$
\int \frac{q_i q_j e^{i\mathbf{q} \cdot \mathbf{r}}}{q^2 - i\epsilon} d^3q = -\frac{(2\pi)^3}{4\pi} \left(\frac{3\hat{r}_i \hat{r}_j}{r^3} - \frac{\delta_{ij}}{r^3} - \frac{4\pi}{3} \delta^3(\mathbf{r}) \right)
$$

*r*₀ IN THE MOLECULAR PICTURE

$$
H_{DD^*} = \frac{p_{D^*}^2}{2m_{D^*}} + \frac{p_D^2}{2m_D} - \lambda_0 \delta^3(r)
$$

A perturbation to the $\delta^3(r)$ potential derives from

Esposito, Glioti, Germani, ADP, Rattazzi, Tarquini, PLB847, 138285 (2023).

In S-wave we have to include the condition $\langle \hat{r}_i \hat{r}_j \rangle = 0$ which, for $\mu = 0$, leaves only an extra $\delta^3(\bm{r})$ potential term. ̂ ̂ 1 3 *δij*

But $\mu^2 = (m_{D^*} - m_D)^2 - m_{\pi}^2 \simeq 44$ MeV, and this requires an extra, complex potential term.

THE COMPLEX POTENTIAL

Esposito, Glioti, Germani, ADP, Rattazzi, Tarquini, PLB847, 138285 (2023).

Keep μ finite! Are the corrections to r_0 of the size $O(1/m_\pi)$ or $O(1/\mu)$?

$$
V_{w} = -\frac{g^{2}}{2f_{\pi}^{2}} \int \frac{q_{i}q_{j}e^{i\mathbf{q}\cdot\mathbf{r}}}{\mathbf{q}^{2}-\mu^{2}-i\epsilon} \frac{d^{3}q}{(2\pi)^{3}} = -\frac{g^{2}}{6f_{\pi}^{2}} \left(\delta^{3}(r) + \mu^{2}\frac{e^{i\mu r}}{4\pi r}\right)\delta_{ij}
$$

The contraction with polarizations $e^{(\lambda)}_i \bar{e}^{(\lambda')}_j$ gives $\delta_{\lambda \lambda'}$. As for the $\delta^3(r)$ potential from π alone, it has not the right weight to make the bound state at $E = -B$. But combined with the strong one, an overall λ can be defined to make it.

So we divide *V* into

$$
V = V_s + V_w = -\left(\lambda_0 + 4\pi\beta\right)\delta^3(r) - \alpha\mu^2 \frac{e^{i\mu r}}{r}
$$

To compute any amplitude, all orders in V_s are needed, and possibly only the first order in V_w .

Can we find r_0 as a result of the correction to f due to the complex potential?

DISTORTED WAVE BORN APPROXIMATION

$$
f = \frac{1}{k \cot \delta(k) - ik} = f_s + f_w = \frac{1}{-\frac{1}{a} - ik} + f_w
$$

$$
f_w = -\frac{2m}{4k^2} \int V_w(r) \chi_s^2(r) dr
$$

Where $\chi_{_S}\!(r)$ are scattering w.f. of the $\delta^3(r)$ potential, and m is the invariant DD^* mass. Thus r_0 is determined by the k^2 coefficient in the *double expansion around* $k = 0$ and $\alpha = 0$ of the expression

$$
f^{-1} = \left(\frac{1}{-\frac{1}{a} - ik} - \frac{2m}{4k^2} \int_{-\infty}^{\infty} V_w(r) \chi_s^2(r) dr\right)^{-1}
$$

$CALCULATION OF r₀ (DWBA)$

$$
r_0 = 2m\alpha \left(\frac{2}{\mu^2 a^2} + \frac{8i}{3\mu a} - 1\right)
$$

Esposito, Glioti, Germani, ADP, Rattazzi, Tarquini, PLB847, 138285 (2023).

 -0.20 fm \lesssim Re $r_0 \lesssim -0.15$ fm

 $0 \text{ fm} \lesssim \text{Im} \, r_0 \lesssim 0.17 \text{ fm}$

$$
\alpha = \frac{g^2}{24\pi f_\pi^2} = \frac{5 \times 10^{-4}}{\mu^2}
$$

These results agree, analytically, with what found by Braaten et al. using EFT. It turns out that the real part of r_0 is just a tiny (negative!) fraction of a Fermi. This confirms the fact that the Weinberg criterion can be extended to the $X(3872)$ too.

Braaten, Galilean invariant XEFT, Phys. Rev. D 103, 036014 (2021), arXiv:2010.05801 [hep-ph]

- \bullet It would be useful to have new comparative studies on the r_0 of the X(3872) and of the \mathscr{T}_{QQ} particles, and to agree on the way to extract information from data (not easy).
- It would be of great relevance to learn more, on the experimental side, about deuteron production at high p_T .
- Some states are produced promptly in **pp** collisions, some are not. There is no clear reason why!
- Are there loosely bound molecules $B\bar{B}^{*}$? Can we formulate more stringient bounds on X^{\pm} particles?
- Derive Weinberg criterium in a modern language.
- More basically: are we on the right questions?