

Precision studies at BESIII in charm and new physics search Pei-Rong Li (李培荣) Lanzhou University On behalf of the BESIII Collaboration

The 2024 International Workshop on Future Tau Charm Facilities

January 14-18, 2024

BEPCII & BESIII

First HEP collider in China (1988) c.m.s energy: $2 \sim 5 \text{ GeV}$ Max luminosity: $1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ Non-perturbative $\tau - charm$ region $\tau^{\pm} \ D/D_s \ \Lambda_c^{\pm} \dots$

 J/ψ : 2.97 fb⁻¹(10B) ψ (3686): 4.07 fb⁻¹(2.7B) ψ (3770): 20 fb⁻¹ 4.6~4.95GeV: 6.4 fb⁻¹

2024/1/15

Renaissance on the charmed heavy baryon

- Before 2014, the charmed baryons have been produced and studied at many experiments, notably fixed-target experiments (such as FOCUS and SELEX) and e⁺e⁻ Bfactories (ARGUS, CLEO, BABAR, and BELLE).
- Large uncertainties in experiment=>Retarder development in theory.
- arge uncertainties in experiment=>Retarder evelopment in theory. fterwards, more extensive measurements on charmed aryons are performed at BESIII, BELLE and LHCb. The absolute BF measurements of $\Lambda_c^+ \rightarrow pK^-\pi^+$ at BESIII and BELL Afterwards, more extensive measurements on charmed baryons are performed at BESIII, BELLE and LHCb.

 - The observation of the DCS mode $\Lambda_c^+ \rightarrow pK^+\pi^-$ at BELLE.
 - The observation of the doubly charmed baryon Ξ_{cc}^{++} at LHCb.
- These experimental progresses have revoked the activities in the theoretical efforts.

The charmed baryon family

Singly charmed baryons
Established ground states:

$$\Lambda_{c}^{+}, \Sigma_{c}, \Xi_{c}^{(\prime)}, \Omega_{c}$$

• Excited states are being explored

- Doubly charmed baryons(±⁺⁺_{cc}) observed in recent year.
- No observations of triply charmed baryons.
- Λ⁺_c decay only weakly, many experimental progress since 2014.
 Σ_c: B(Σ_c → Λ⁺_cπ)~100%, B(Σ_c → Λ⁺_cγ)?
 Ξ_c : decay only weakly; no absolute BF measured, most relative to Ξ⁻ π⁺(π⁺).
 Ω_c:decay only weakly; no absolute BF measured.

Λ_{c}^{+} : The lightest charmed baryon spectroscopy

- Most of the charmed baryons will eventually decay to Λ_c^+ .
- The Λ_c^+ is one of important tagging hadrons in c-quark counting in the productions at high energy experiment.
- Naïve quark model picture: a heavy quark (*c*) with an unexcited spin-zero diquark (*u-d*). Diquark correlation is enhanced by weak Color Magnetic Interaction with a heavy quark(HQET).
- Λ_c^+ may reveal more information of strong- and weak-interactions in charm region, complementary to D/Ds

Λ_c^+ weak decay picture in theory

• Contrary to charmed meson, W-exchange contribution is important.(No color suppress and helicity suppress)

- Phenomenology aim at explain data and predict important observables.
- Calculate what they can(HQET, factorization)+parametrize what they cannot + some non-perturbations **extracted from data**=> explain and predict.

Production near threshold and tag technique

- E_{cms} -2M_{Ac}=26MeV only!
- $\Lambda_c^+ \Lambda_c^-$ produced in pairs with no additional accompany hadrons. $e^+e^- \rightarrow \gamma^* \rightarrow \Lambda_c^+ \Lambda_c^-$
- Clean backgrounds and well constrained kinematics.
- Typically, two ways to study Λ_c^+ decays:
 - Single Tag(ST): detect only one of the Λ_c⁺Λ_c⁻.
 =>Relative higher backgrounds
 =>Higher efficiencies
 =>Full reconstruction only
 - Double Tag(DT): detect both of Λ⁺_cΛ⁻_c
 =>Lower backgrounds.
 =>Technique for missing particle.
 =>Systematic in tag side are mostly cancelled.

New data samples in 2020 and 2021

Two major changes in BEPCII machine:

- max beam energy: 2.30→2.35(2020)→ 2.48 GeV(2021)
- **top-up injection:** data taking efficiency increased by 20~30%

	CPC46.113003 (2022)
Sample	$E_{\rm cms}/{ m MeV}$	$\mathscr{L}_{\mathrm{Bhabha}}/\mathrm{pb}^{-1}$
4610	4611.86±0.12±0.30	$103.65 \pm 0.05 \pm 0.55$
4620	$4628.00 \pm 0.06 \pm 0.32$	521.53±0.11±2.76
4640	$4640.91 {\pm} 0.06 {\pm} 0.38$	$551.65 \pm 0.12 \pm 2.92$
4660	$4661.24{\pm}0.06{\pm}0.29$	$529.43 \pm 0.12 \pm 2.81$
4680	$4681.92{\pm}0.08{\pm}0.29$	$1667.39 \pm 0.21 \pm 8.84$
4700	4698.82±0.10±0.36	535.54±0.12±2.84
4740	4739.70±0.20±0.30	$163.87 \pm 0.07 \pm 0.87$
4750	4750.05±0.12±0.29	366.55±0.10±1.94
4780	$4780.54{\pm}0.12{\pm}0.30$	511.47±0.12±2.71
4840	$4843.07 {\pm} 0.20 {\pm} 0.31$	525.16±0.12±2.78
4920	$4918.02 \pm 0.34 \pm 0.34$	207.82±0.08±1.10
4950	4950.93±0.36±0.38	$159.28 \pm 0.07 \pm 0.84$

Available data for charmed baryons

✓ 0.567 fb⁻¹ at 4.6 GeV (35 days in 2014)

✓ 3.9 fb⁻¹ scan at 4.61, 4.63, 4.64, 4.66, 4.68, 4.7 GeV (186 days in 2020)

- ✓ 1.93 fb⁻¹ scan at 4.74, 4.75, 4.78, 4.84, 4.92, 4.95 GeV (99 days in 2021)
- 8x Λ_c data that those at 4.6GeV.(~0.77M $\Lambda_c^+\overline{\Lambda}_c^-$)
- accessible to $\Sigma_c / \Xi_c / \Lambda_c^*$ prod. & decays

Production measurement near threshold

• $e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-$ cross section are measured at twelve energy points from 4.612-4.951GeV.

$$\sigma_{\pm} = \frac{N_{\rm ST}^{\pm}}{\varepsilon_{\rm ST}^{\pm} f_{\rm ISR} f_{\rm VP} \mathcal{L}_{\rm int} N_{\rm DT}} \sum_{n=1}^{9} \left(\frac{N_{\rm ST}^{\mp,n} \varepsilon_{\rm DT}^{n}}{\varepsilon_{\rm ST}^{\mp,n}} \right),$$

- Indicate no enhancement around Y(4630) resonance.
 =>Conflict with Belle.
- $|G_{\rm E}/G_{\rm M}|$ ratio are derived by fitting to angular distribution.

The oscillations on $|G_{\rm E}/G_{\rm M}|$ ratio is significantly observed

PhysRevLett.131.191901(2023)

Recent studies on the Λ_c^+ measurments at BESIII

- Λ_{c}^{+} leptonic decays $\square \Lambda_{c}^{+} \rightarrow \Lambda e^{+} v_{e}, \Lambda \mu^{+} v_{\mu}$ \checkmark : PRL 129.231803 (2022). PRD 108.L031105 (2023). $\square \Lambda_{c}^{+} \rightarrow pK^{-}e^{+} v_{e}$: PRD 106.112010 (2022). $\square \Lambda_{c}^{+} \rightarrow Xe^{+} v_{e}$: PRD 107.052005 (2023). $\square \Lambda_{c}^{+} \rightarrow \Lambda \pi^{+} \pi^{-}e^{+} v_{e}, pK_{s}^{0} \pi^{-}e^{+} v_{e} \checkmark$ PLB 843.137993 (2023).
- Λ_c^+ hadronic decays(two body)

 - $\Box \Lambda_{c}^{+} \to \Sigma^{0} \mathrm{K}^{+}, \Sigma^{+} K_{\mathrm{s}}^{0}$ $\Box \Lambda_{c}^{+} \to \Xi^{0} \mathrm{K}^{+}$
- Λ_{c}^{+} hadronic decays(multi-body) $\square \Lambda_{c}^{+} \rightarrow n\pi^{+}\pi^{0}, n\pi^{+}\pi^{-}\pi^{+}, nK^{-}\pi^{+}\pi^{+}$ $\square \Lambda_{c}^{+} \rightarrow nK_{s}^{0}\pi^{+}, nK_{s}^{0}K^{+}$ $\square \Lambda_{c}^{-} \rightarrow \bar{n}X$ $\square \Lambda_{c}^{+} \rightarrow \Lambda\pi^{+}\pi^{0}$

- : PRL 128.142001 (2022). : PRD 106.072002 (2022). : JHEP 11.137 (2023).
- : arXiv2311.06883.
- : PRD 106.L111101 (2022).
- : PRD 106.052003 (2022).
- : arXiv2309.02774(PRL accepted)
- : CPC 47.023001 (2023).
- : arXiv2311.17131.
- : PRD 108.L031101 (2023).
- : JHEP 12.033 (2022).
- : arXiv2311.12903.
- : arXiv2309.05484.
- : arXiv2311.02347.

Form factors of $\Lambda_c^+ \to \Lambda e^+ \nu_e$

PRL 129,231803(2022)

• BF is updated to be $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (3.56 \pm 0.11_{stat} \pm 0.07_{syst})\% = >$ precision improved.

- Helicity amplitude deduced form factors can be extracted with 4D fitting to data.
- The differential decay rate is roughly consistent with LQCD calculation while discrepancies can be noticed on FFs show different kinematic behaviors.
- |Vcs| element from charmed baryons is measured to be $0.936 \pm 0.017_{\mathcal{B}} \pm 0.024_{LQCD} \pm 0.007_{\tau_{Ac}}$ which is consistent with the value obtained in charmed mesons decay.

Form factors of $\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu$

- BF is updated to be $\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_{\mu}) = (3.48 \pm 0.14_{stat} \pm 0.10_{syst})\% =>3$ times more precise than prior results.
- Lepton flavor universality are reported $(0.98 \pm 0.05_{stat} \pm 0.03_{syst}) =>$ compatible with Standard Model(0,97).
- Form-factors parameters for $\Lambda_c^+ \to \Lambda l^+ \nu_l$ are determined to test and calibrate for LQCD.

 $\rightarrow \Lambda \pi^+ \pi^- e^+ \nu_e, \ p K_s^0 \pi^- e^+ \nu_e$

The BFs for $\Lambda_c^+ \to \Lambda^* e^+ \nu_e$ predicted by different theoretical models, in units of 10^{-4} .

Λ^* state	CQM [8]	NRQM [9]	LFQM [10]	LQCD [11]
Λ(1520)	10.00	5.94		5.12 ± 0.82
Λ(1600)	4.00	1.26	(0.7 ± 0.2)	<u>1</u>
Λ(1890)		3.16×10^{-2}		
Λ(1820)		1.32×10^{-2}		

PLB 843.137993 (2023)

- 4.5fb⁻¹ e⁺e⁻ annihilation data are used to search $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^- e^+ \nu_e$, $pK_s^0 \pi^- e^+ \nu_e$
- No significant signal is observed and hence the upper limits on BFs are set to be $\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e) <$ 3.9×10^{-4} and $\mathcal{B}(\Lambda_c^+ \to p K_s^0 \pi^- e^+ \nu_e) <$ 3.3×10^{-4} at 90% CL.
- $\mathcal{B}(\Lambda_c^+ \to \Lambda(1520)e^+\nu_e) < 4.3 \times 10^{-3}$ and $\mathcal{B}(\Lambda_c^+ \to \Lambda(1600)e^+\nu_e) <$ 9.0×10⁻³ at 90% CL assuming all $\Lambda \pi^+ \pi^-$ combinations come from Λ^* .
- Limited sensitivity to identify different theoretical calculations.

2024/1/15

First observation of $\Lambda_c^+ \rightarrow n\pi^+$

• First singly Cabibbo-suppressed Λ_c^+ decay involved neutron was observed (7.3 σ).

- Absolute BF is measured to be $\mathcal{B}(\Lambda_c^+ \to n\pi^+) = (6.6 \pm 1.2_{stat} \pm 0.4_{syst}) \times 10^{-4}$. =>Consistent with SU(3) flavor asymmetry prediction[PLB790,225(2019),] =>twice larger than the dynamical calculation based on pole model and CA[PRD97,074028(2018)]
- $\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+) = (1.31 \pm 0.08_{stat} \pm 0.05_{syst}) \times 10^{-2} = >$ Consistent with previous BESIII results
- $\mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+) = (1.22 \pm 0.08_{stat} \pm 0.07_{syst}) \times 10^{-2} =>$ Consistent with previous BESIII results
- $R = \frac{\mathcal{B}(\Lambda_c^+ \to n\pi^+)}{\mathcal{B}(\Lambda_c^+ \to p\pi^0)} > 7.2@90\%C.L. (\mathcal{B}(\Lambda_c^+ \to p\pi^0) < 8.0 \times 10^{-5} @90\%C.L.$ from Belle) =>Disagrees with SU(3) flavor asymmetry and dynamical calculation (2-4.7) while in consistent with SU(3) plus topological-diagram approach(9.6).

Decay asymmetry for pure W-exchange process $\Lambda_c^+ \rightarrow \Xi^0 K^+$

arXiv2309.02774(PRL accepted)

		-			
Theory or experiment	$\mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)$	$lpha_{\Xi^0K^+}$	A	B	$\delta_p - \delta_s$
	$(\times 10^{-3})$		$(\times 10^{-2}G_F \text{ GeV}^2)$	$(\times 10^{-2}G_F \text{ GeV}^2)$	(rad)
Körner (1992), CCQM [7]	2.6	0	-	-	-
Xu (1992), Pole [8]	1.0	0	0	7.94	-
Źencaykowski (1994), Pole [9]	3.6	0	-	-	-
Ivanov (1998), CCQM $[10]$	3.1	0	-	-	-
Sharma (1999), CA [11]	1.3	0	-	-	-
Geng (2019) , SU (3) [12]	5.7 ± 0.9	$0.94\substack{+0.06 \\ -0.11}$	2.7 ± 0.6	16.1 ± 2.6	-
Zou (2020), CA [5]	7.1	0.90	4.48	12.10	-
Zhong (2022), $SU(3)^a$ [13]	$3.8\substack{+0.4\\-0.5}$	$0.91\substack{+0.03 \\ -0.04}$	3.2 ± 0.2	$8.7\substack{+0.6 \\ -0.8}$	-
Zhong (2022), $SU(3)^{b}$ [13]	$5.0\substack{+0.6\\-0.9}$	0.99 ± 0.01	$3.3\substack{+0.5 \\ -0.7}$	$12.3^{+1.2}_{-1.8}$	-
BESIII (2018) [14]	$5.90 \pm 0.86 \pm 0.39$	-	-	-	-
PDG Fit (2022) [3]	5.5 ± 0.7	-	-	-	-

- $\Lambda_c^+ \rightarrow \Xi^0 K^+$ is pure W-exchange process which have significant contributions in charmed baryon decay.
- Nonfactorizable W-exchange diagram cannot be calculated using theoretical approaches.
- Long-standing puzzle on how large the S-wave amplitude.
- Experimental measurement of decay asymmetry is crucial and urgent.

FIG. 1. Feynman diagrams for $\Lambda_c^+\to \Xi^0 K^+$

Decay asymmetry for pure W-exchange process $\Lambda_c^+ \rightarrow \Xi^0 K^+$

$$\alpha_{BP} = \frac{2\text{Re}(s^*p)}{|s|^2 + |p|^2}, \quad \beta_{BP} = \frac{2\text{Im}(s^*p)}{|s|^2 + |p|^2}, \quad \gamma_{BP} = \frac{|s|^2 - |p|^2}{|s|^2 + |p|^2},$$

Level	Decay	Helicity angle	Helicity amplitude
0	$e^+e^- ightarrow \Lambda_c^+(\lambda_1) ar\Lambda_c^-(\lambda_2)$	$(heta_0)$	A_{λ_1,λ_2}
1	$\Lambda_c^+ o \Xi^0(\lambda_3) K^+$	$_{(heta_1,\phi_1)}$	B_{λ_3}
2	$\Xi^0 o \Lambda(\lambda_4) \pi^0$	$_{(heta_2,\phi_2)}$	C_{λ_4}
3	$\Lambda o p(\lambda_5) \pi^-$	$_{(heta_3,\phi_3)}$	D_{λ_5}

 $d\Gamma$

 $d\cos\theta_0 \ d\cos\theta_1 \ d\cos\theta_2 \ d\cos\theta_3 \ d\phi_1 \ d\phi_2 \ d\phi_3$

 $\propto 1 + \alpha_0 \cos^2 \theta_0$

- + $(1 + \alpha_0 \cos^2 \theta_0) \alpha_{\Xi^0 K^+} \alpha_{\Lambda \pi^0} \cos \theta_2$
- + $(1 + \alpha_0 \cos^2 \theta_0) \alpha_{\Xi^0 K^+} \alpha_{p\pi^-} \cos \theta_2 \cos \theta_3$
- + $(1 + \alpha_0 \cos^2 \theta_0) \alpha_{\Lambda \pi^0} \alpha_{p \pi^-} \cos \theta_3$

 $-\left(1+\alpha_0\cos^2\theta_0\right)\,\alpha_{\Xi^0K^+}\sqrt{1-\alpha_{\Lambda\pi^0}^2}\,\alpha_{p\pi^-}\sin\theta_2\sin\theta_3\cos(\Delta_{\Lambda\pi^0}+\phi_3)$

 $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\alpha_{\Xi^0K^+}\sin\theta_1\sin\phi_1$

$$+\sqrt{1-\alpha_0^2\,\sin\Delta_0\sin\theta_0\cos\theta_0\alpha_{\Lambda\pi^0}\sin\theta_1\sin\phi_1\cos\theta_2}$$

+
$$\sqrt{1 - \alpha_0^2 \sin \Delta_0 \sin \theta_0 \cos \theta_0 \alpha_{\Xi^0 K^+} \alpha_{\Lambda \pi^0} \alpha_{p \pi^-} \sin \theta_1 \sin \phi_1 \cos \theta_3}$$

 $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\alpha_{p\pi}-\sin\theta_1\sin\phi_1\cos\theta_2\cos\theta_3$

 $+\sqrt{1-\alpha_0^2}\,\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0K^+}^2}\,\,\alpha_{\Lambda\pi^0}\cos\theta_1\sin\phi_1\sin\theta_2\cos(\Delta_{\Xi^0K^+}+\phi_2)$

$$+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0K^+}^2}\alpha_{p\pi^-}\cos\theta_1\sin\phi_1\sin\theta_2\cos(\Delta_{\Xi^0K^+}+\phi_2)\cos\theta_3$$

$$+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0K^+}^2}\alpha_{p\pi^-}\cos\phi_1\sin\theta_2\sin(\Delta_{\Xi^0K^+}+\phi_2)\cos\theta_3$$

- $-\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\pm^0K^+}^2}\sqrt{1-\alpha_{\Lambda\pi^0}^2}\alpha_{p\pi^-}\cos\theta_1\sin\phi_1\sin(\Delta_{\pm^0K^+}+\phi_2)\sin\theta_3\sin(\Delta_{\Lambda\pi^0}+\phi_3)$
- $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0K^+}^2}\sqrt{1-\alpha_{\Lambda\pi^0}^2}\alpha_{p\pi^-}\cos\theta_1\sin\phi_1\cos\theta_2\cos(\Delta_{\Xi^0K^+}+\phi_2)\sin\theta_3\cos(\Delta_{\Lambda\pi^0}+\phi_3)$
- $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0K^+}^2}\sqrt{1-\alpha_{\Lambda\pi^0}^2}\ \alpha_{p\pi^-}\cos\phi_1\cos(\Delta_{\Xi^0K^+}+\phi_2)\sin\theta_3\sin(\Delta_{\Lambda\pi^0}+\phi_3)$
- $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0K^+}^2}\sqrt{1-\alpha_{\Lambda\pi^0}^2}\ \alpha_{p\pi^-}\cos\phi_1\cos\theta_2\sin(\Delta_{\Xi^0K^+}+\phi_2)\sin\theta_3\cos(\Delta_{\Lambda\pi^0}+\phi_3)$

arXiv2309.02774(PRL accepted)

• The joint angular distribution for $\Lambda_c^+ \rightarrow \Xi^0 K^+$ is derived based on helicity amplitude.

2024/1/15

THE 2024 INTERNATIONAL WORKSHOP ON FUTURE TAU CHARM FACTORY

Decay asymmetry for pure W-exchange process $\Lambda_c^+ \rightarrow \Xi^0 K^+$

arXiv2309.02774(PRL accepted)

- From the fit, we obtain $\alpha_{\Xi^0K^+} = 0.01 \pm 0.16_{stat} \pm 0.03_{syst}$ and $\beta_{\Xi^0K^+} = -0.64 \pm 0.69_{stat} \pm 0.13_{syst}$ and $\gamma_{\Xi^0K^+} = -0.77 \pm 0.58_{stat} \pm 0.11_{syst}$
- $\alpha_{\Xi^0K^+}$ is in good agreement with zero=>strong identification for theoretical predictions.

$$\begin{split} \Gamma &= \frac{\mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)}{\tau_{\Lambda_c^+}} = \frac{|\vec{p}_c|}{8\pi} \Big[\frac{(m_{\Lambda_c^+} + m_{\Xi^0})^2 - m_{K^+}^2}{m_{\Lambda_c^+}^2} |A|^2 + \frac{(m_{\Lambda_c^+} - m_{\Xi^0})^2 - m_{K^+}^2}{m_{\Lambda_c^+}^2} |B|^2 \Big] \\ \alpha_{\Xi^0 K^+} &= \frac{2\kappa |A| |B| \cos(\delta_p - \delta_s)}{|A|^2 + \kappa^2 |B|^2}, \\ \Delta_{\Xi^0 K^+} &= \arctan \frac{2\kappa |A| |B| \sin(\delta_p - \delta_s)}{|A|^2 - \kappa^2 |B|^2}, \end{split}$$

- Especially, $\cos(\delta_p \delta_s)$ is measured to close to zero.=>not considered in previous literature.
- Fills the long-standing puzzle on how to model $\alpha_{\Xi^0K^+}$ and $\mathcal{B}(\Lambda_c^+ \to \Xi^0K^+)$ simultaneously.

BF measurement of $\overline{\Lambda}_{c}^{-} \rightarrow \overline{n}X$

- The deposited energy in EMC is used to identify \overline{n} .
- Data-driven technique to model $\overline{m{n}}$ behavior in the detector.
- Absolute BFs are measured to be $\mathcal{B}(\bar{\Lambda}_c^- \to \bar{n}X) = (33.5 \pm 0.7_{stat} \pm 1.2_{syst})\%$, precision up to 4%.
- All known exclusive process with neutron in final state is about 25%=>more space to be explored.
- Asymmetry between $\mathcal{B}(\Lambda_{c}^{+} \rightarrow nX)$ and $\mathcal{B}(\Lambda_{c}^{+} \rightarrow pX)$ is observed.

PWA for $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$

JHEP 12.033 (2022).

- About 10K events survived which purity is larger than 80%.
- PWA based on helicity amplitude is performed.
- Interference mostly exist between $\Lambda \rho(770)$ and $\Sigma(1385)^{0/+}\pi^{+/0}$.

PWA for $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$

$\frac{1}{2}^+(\Lambda_c^+$	$(1) \rightarrow \frac{3}{2}^{+}(\Sigma(1385)^{+})$	$)+0^{-}(\pi^{0})$	$\frac{1}{2}^+(\Lambda_c^+)$ -	$\rightarrow \frac{3}{2}^+ (\Sigma(1385))$	$)^{0}) + 0^{-}(\pi^{+})$	
Amplitude	Magnitude	Phase ϕ (rad)	Amplitude	Magnitude	Phase ϕ (rad)	
$g_{1,rac{3}{2}}^{\Sigma(1385)^+}$	1.0 (fixed)	0.0 (fixed)	$g_{1,rac{3}{2}}^{\Sigma(1385)^0}$	1.0 (fixed)	0.0 (fixed)	α
$g_{2,\frac{3}{2}}^{\Sigma(1385)^+}$	1.29 ± 0.25	2.82 ± 0.18	$g_{2,rac{3}{2}}^{\Sigma(1385)^0}$	1.70 ± 0.38	2.70 ± 0.22	
$\frac{1}{2}^+(\Lambda_c^+$	$T \to \frac{3}{2}^{-}(\Sigma(1670)^{+})$	$0 + 0^{-}(\pi^{0})$	$\frac{1}{2}^+(\Lambda_c^+)$ -	$\rightarrow \frac{3}{2}^{-}(\Sigma(1670))$	$)^{0}) + 0^{-}(\pi^{+})$	
Amplitude	Magnitude	Phase ϕ (rad)	Amplitude	Magnitude	Phase ϕ (rad)	
$g_{1,rac{3}{2}}^{\Sigma(1670)^+}$	1.0 (fixed)	0.0 (fixed)	$g_{1,rac{3}{2}}^{\Sigma(1670)^0}$	1.0 (fixed)	0.0 (fixed)	
$g_{2,rac{3}{2}}^{\Sigma(ilde{1}670)^+}$	1.39 ± 0.42	0.85 ± 0.26	$g_{2,rac{3}{2}}^{\Sigma(1670)^0}$	0.74 ± 0.18	0.29 ± 0.24	
$\frac{1}{2}^+(\Lambda_c^+$	$T \to \frac{1}{2}^{-}(\Sigma(1750)^{+})$	$0 + 0^{-}(\pi^{0})$	$rac{1}{2}^+(\Lambda_c^+)$ -	$\rightarrow \frac{1}{2}^{-}(\Sigma(1750))$	$)^{0}) + 0^{-}(\pi^{+})$	
Amplitude	Magnitude	Phase ϕ (rad)	Amplitude	Magnitude	Phase ϕ (rad)	
$g_{0,\frac{1}{2}}^{\Sigma(1750)^+}$	1.0 (fixed)	0.0 (fixed)	$g_{0,\frac{1}{2}}^{\Sigma(1750)^0}$	1.0 (fixed)	0.0 (fixed)	
$g_{1,rac{1}{2}}^{\Sigma(1750)^+}$	0.45 ± 0.10	-2.28 ± 0.22	$g_{1,rac{1}{2}}^{\Sigma(1750)^0}$	0.38 ± 0.10	-2.03 ± 0.20	
$\frac{1}{2}^+(\Lambda$	${}^{+}_{c}) \rightarrow \frac{1}{2}^{+}(\Lambda) + 1^{-}(\Lambda)$	$\rho(770)^+)$	$\frac{1}{2}^+(\Lambda_c^+)$	$) \rightarrow \frac{1}{2}^{+}(\Lambda) +$	$1^{-}(NR_{1^{-}})$	
Amplitude	Magnitude	Phase ϕ (rad)	Amplitude	Magnitude	Phase ϕ (rad)	
$g^{ ho}_{0,rac{1}{2}}$	1.0 (fixed)	0.0 (fixed)	$g_{0,rac{1}{2}}^{N\!R}$	1.0 (fixed)	0.0 (fixed)	
$g_{1,rac{1}{2}}^{ ho}$ -	0.48 ± 0.12	-1.69 ± 0.12	$g_{1,rac{1}{2}}^{N\!R}$	0.94 ± 0.12	-0.49 ± 0.16	
$g_{1,\frac{3}{2}}^{ ho}$	0.90 ± 0.10	0.48 ± 0.13	$g_{1,rac{3}{2}}^{N\! ilde{R}}$	0.21 ± 0.09	-2.84 ± 0.53	
$g_{2,rac{3}{2}}^{ ho}$	0.55 ± 0.08	-0.04 ± 0.18	$g_{2,rac{3}{2}}^{N\! ilde{R}}$	0.33 ± 0.14	-1.92 ± 0.30	
1/2	$^+(\Lambda) \rightarrow \frac{1}{2}^+(p) + 0^-$	$-(\pi^{-})$				
Amplitude	Magnitude	Phase ϕ (rad)				
$g^{\Lambda}_{0,rac{1}{2}}$	1.0 (fixed)	0.0 (fixed)				
$g_{1,rac{1}{2}}^{\Lambda}$	$0.435376~({\rm fixed})$	0.0 (fixed)				

$$= \frac{|H_{\frac{1}{2},1}^{\rho}|^{2} - |H_{-\frac{1}{2},-1}^{\rho}|^{2} + |H_{\frac{1}{2},0}^{\rho}|^{2} - |H_{-\frac{1}{2},0}^{\rho}|^{2}}{|H_{\frac{1}{2},1}^{\rho}|^{2} + |H_{-\frac{1}{2},-1}^{\rho}|^{2} + |H_{\frac{1}{2},0}^{\rho}|^{2} + |H_{-\frac{1}{2},0}^{\rho}|^{2}} = \frac{\sqrt{\frac{1}{9}} \cdot 2 \cdot \Re\left(g_{0,\frac{1}{2}}^{\rho} \cdot \bar{g}_{1,\frac{1}{2}}^{\rho} - g_{1,\frac{3}{2}}^{\rho} \cdot \bar{g}_{2,\frac{3}{2}}^{\rho}\right) - \sqrt{\frac{8}{9}} \cdot 2 \cdot \Re\left(g_{0,\frac{1}{2}}^{\rho} \cdot \bar{g}_{1,\frac{3}{2}}^{\rho} + g_{1,\frac{1}{2}}^{\rho} \cdot \bar{g}_{2,\frac{3}{2}}^{\rho}\right)}{|g_{0,\frac{1}{2}}^{\rho}|^{2} + |g_{1,\frac{1}{2}}^{\rho}|^{2} + |g_{1,\frac{3}{2}}^{\rho}|^{2} + |g_{2,\frac{3}{2}}^{\rho}|^{2}}.$$

 $\alpha_{\Sigma(1385)\pi} = \frac{|H_{0,\frac{1}{2}}^{\Sigma(1385)}|^2 - |H_{0,-\frac{1}{2}}^{\Sigma(1385)}|^2}{|H_{0,\frac{1}{2}}^{\Sigma(1385)}|^2 + |H_{0,-\frac{1}{2}}^{\Sigma(1385)}|^2} = \frac{2\Re\left(g_{1,\frac{3}{2}}^{\Sigma(1385)} \cdot \bar{g}_{2,\frac{3}{2}}^{\Sigma(1385)}\right)}{|g_{1,\frac{3}{2}}^{\Sigma(1385)}|^2 + |g_{2,\frac{3}{2}}^{\Sigma(1385)}|^2}.$

 Decay asymmetry parameters can be obtained by the fit results of the partial wave amplitudes.

PWA for $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$

JHEP 12.033 (2022).

$$\frac{\mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)}{\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^0)} = (57.2 \pm 4.2 \pm 4.9)\%,$$

$$\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0) \cdot \mathcal{B}(\Sigma(1385)^+ \to \Lambda \pi^+)}{\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^0)} = (7.18 \pm 0.60 \pm 0.64)\%,$$
$$\mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+) \cdot \mathcal{B}(\Sigma(1385)^0 \to \Lambda \pi^0)$$

$$\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^6 \pi^+) \cdot \mathcal{B}(\Sigma(1385)^6 \to \Lambda \pi^6)}{\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^0)} = (7.92 \pm 0.72 \pm 0.80)\%.$$

$$\begin{split} \mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+) &= (4.06 \pm 0.30 \pm 0.35 \pm 0.23)\%, \\ \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0) &= (5.86 \pm 0.49 \pm 0.52 \pm 0.35) \times 10^{-3}, \\ \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+) &= (6.47 \pm 0.59 \pm 0.66 \pm 0.38) \times 10^{-3}, \\ \alpha_{\Lambda\rho(770)^+} &= -0.763 \pm 0.053 \pm 0.039, \\ \alpha_{\Sigma(1385)^+ \pi^0} &= -0.917 \pm 0.069 \pm 0.046, \\ \alpha_{\Sigma(1385)^0 \pi^+} &= -0.789 \pm 0.098 \pm 0.056. \end{split}$$

Table 9. The comparison among this work, various theoretical calculations and PDG results. Here, the uncertainties of this work are the combined uncertainties. "—" means unavailable.

	Theoretical c	This work	PDG	
$10^2 \times \mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)$	4.81 ± 0.58 [13]	4.0 [14, 15]	4.06 ± 0.52	< 6
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	5.86 ± 0.80	
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	6.47 ± 0.96	
$lpha_{\Lambda ho(770)^+}$	-0.27 ± 0.04 [13]	-0.32 [14, 15]	-0.763 ± 0.066	
$lpha_{\Sigma(1385)^+\pi^0}$	$-0.91^{+0.45}_{-0.10}$ [17]		-0.917 ± 0.083	
$lpha_{\Sigma(1385)^0\pi^+}$	$-0.91\substack{+0.4\\-0.5}$	${}^{45}_{10}$ [17]	-0.79 ± 0.11	

- NO theoretical models is able to explain both BFs and decay asymmetries simultaneously.
- Fruitful results are extracted which provide crucial input to extend the understanding of dynamics of charmed baryon hadronic decays.

2024/1/15

Recent studies on the charmed mesons at BESIII

- $D^{\pm}, D^{0}, D_{s}^{+}$ purely leptonic decays $\Box D_{s}^{*+} \rightarrow e^{+}\nu_{e}$ $\Box D_{s}^{+} \rightarrow \mu^{+}\nu_{\mu}$ $\Box D_{s}^{+} \rightarrow \tau^{+}\nu_{\tau}, \tau^{+} \rightarrow \mu^{+}\nu_{\mu}\bar{\nu}_{\tau}$ $\Box D_{s}^{+} \rightarrow \tau^{+}\nu_{\tau}, \tau^{+} \rightarrow \pi^{+}\bar{\nu}_{\tau}$
- $D^{\pm}, D^{0}, D_{s}^{+}$ semi-leptonic decays $\square D_{s}^{+} \rightarrow K_{1}(1270)/b_{1}(1235)e^{+}v_{e}$ $\square D_{s}^{+} \rightarrow \eta(\eta')e^{+}v_{e}$
- $D^{\pm}, D^{0}, D^{+}_{s}$ hadronic decays $\square D^{+} \rightarrow K^{0}_{s}\pi^{+}\pi^{0}\pi^{0}$ $\square D^{+}_{s} \rightarrow \omega\pi^{+}\eta$
- $D^{\pm}, D^{0}, D_{s}^{+}$ inclusive decays $\square D^{+/0} \rightarrow K_{s}^{0}X$ $\square D^{+/0} \rightarrow \pi^{+}\pi^{+}\pi^{-}X$ $\square D_{s}^{+} \rightarrow \pi^{+}\pi^{+}\pi^{-}X$
- Strong phase in D^{\pm} , D^{0} , D_{s}^{+} decays $\square D^{0} \rightarrow K_{s}^{0}\pi^{+}\pi^{-}\pi^{0}$ $\square D^{0} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}$
- Others

□ Determination of spin and parity of D_s^* : PLB 846, 138245 (2023). □ $D_s^* \rightarrow \gamma D_s$: PRD 107, 032011 (2023).

2024/1/15

- : PRL 131, 141802 (2023).
- : PRD 108, 112001 (2023).
- : JHEP 09 (2023) 124.
- : PRD 108, 092014 (2023).
- : PRD 108, 112002 (2023). : PRD 108, 092003 (2023).
- : JHEP 09 (2023) 077. : PRD 107, 052010 (2023).
- : PRD 107, 112005 (2023).
 : PRD 107, 032002 (2023).
 : PRD 108, 032001 (2023).
- : PRD 108, 032003 (2023). ↓ : PRD 107, 032009 (2023).

Purely leptonic decays of charmed meson

- First experimental study of the purely leptonic decay $D_s^{*+} \rightarrow e^+ \nu_e$ [PRL 131, 141802 (2023)]
- Theoretical predicted to be $(3.4 \pm 1.4) \times 10^{-5}$ in Full Lattice QCD (PRL 112, 212002).
- Helpful to determine the decay constant $f_{D_s^{*+}}$, important to calibrate the LQCD calculation.
- Test lepton flavor university.

Purely leptonic decays of charmed meson

- ➢ First experimental study of the purely leptonic decay $D_s^{*+} \rightarrow e^+ v_e$ [PRL 131, 141802 (2023)]
- $\succ \text{ For signal side:} \qquad M_{\text{miss}}^2 = (E_{\text{cm}} E_{\text{tag}} E_{D_s^{*+}})^2 (-\overrightarrow{p}_{\text{tag}} \overrightarrow{p}_{D_s^{*+}})^2$

2024/1/15

THE 2024 INTERNATIONAL WORKSHOP ON FUTURE TAU CHARM FACTORY

Semi-leptonic decays of charmed meson

- Search for the semileptonic decays $D_s^+ \to K_1(1270)^0 e^+ v_e$ and $D_s^+ \to b_1(1235)^0 e^+ v_e$. [PRD 108, 112002 (2023)]
- Theoretical predicted to be 10^{-4} level. (EPJC 77, 587(2017)).
- First measurement of D_s decays to axial-vector mesons.
- Provide important input for study of photon helicity in $b \rightarrow s\gamma$. \mathbf{D}_s^*

(a)

 M_{rec} (GeV/ c^2)

Semi-leptonic decays of charmed meson

Search for the semileptonic decays $D_s^+ \to K_1(1270)^0 e^+ v_e$ and $D_s^+ \to b_1(1235)^0 e^+ v_e$.
[PRD 108, 112002 (2023)]

$$\succ \text{ For signal side:} \quad U_{\text{miss}} = (E_{\text{cm}} - E_{\text{tag}} - E_{\gamma\pi^0} - E_{D_s^+}) - (-\overrightarrow{p}_{\text{tag}} - \overrightarrow{p}_{\gamma\pi^0} - \overrightarrow{p}_{D_s^+})$$

First search for $D_s^+ \rightarrow K_1^0(1270)e^+\nu_e$ and $D_s^+ \rightarrow b_1(1235)^0e^+\nu_e$, upper limit is set.

2024/1/15

Hadronic decays of charmed meson

- Amplitude analysis and BF measurement of $D^+ \rightarrow K_S^0 \pi^+ \pi^0 \pi^0$ \succ [PLB 838, 137698 (2023)]
- First amplitude analysis for $D^+ \rightarrow K_S^0 \pi^+ \pi^0 \pi^0$.

Dominated by $D \rightarrow AP$, $D \rightarrow VV$ decays, the former can help to study substructures, the latter is useful in polarization measurement. / (20 MeV/c² ents / (20 MeV/c2

Cabibbo-favored decay, with 2.9% BF, can be used as a "tag" mode.

> Double tag:
$$D^+ \rightarrow K_S^0 \pi^+ \pi^0 \pi^0 vs D^- \rightarrow K^+ \pi^- \pi^-$$

THE 2024 INTERNATIONAL WORKSHOP ON FUTURE TAU CHARM FACTORY

 $\stackrel{0.6}{M_{\pi^+\pi^0_{-1}}} \stackrel{0.8}{(\text{GeV}/c^2)}$

 $M_{K_8^0 \pi_{1,2}^0}^{1}$ (GeV/c²)

20 MeV/c²

Hadronic decays of charmed meson

→ Amplitude analysis and BF measurement of $D^+ \rightarrow K_S^0 \pi^+ \pi^0 \pi^0$ [PLB 838, 137698 (2023)]

Amplitude analysis results:

Amplitude	Phase ϕ_n (rad)	FF (%)	Significance (σ)
$D^+ \to K^0_S a_1(1260)^+ [S] (\to \rho^+ \pi^0)$	0.0 (fixed)	$30.0 \pm 3.6 \pm 4.2$	>10
$D^+ \to K_S^0 a_1(1260)^+ (\to f_0(500)\pi^+)$	$4.78 \pm 0.22 \pm 0.20$	$3.5 \pm 1.1 \pm 1.9$	6.9
$D^+ \to \bar{K}_1(1400)^0[S](\to \bar{K}^{*0}\pi^0)\pi^+$	$-3.01 \pm 0.12 \pm 0.16$	$6.0 \pm 1.2 \pm 0.3$	9.6
$D^+ \to \bar{K}_1(1400)^0[D](\to \bar{K}^{*0}\pi^0)\pi^+$	$4.29 \pm 0.16 \pm 0.20$	$2.4 \pm 0.6 \pm 0.2$	6.7
$D^+ \to \bar{K}_1(1400)^0 (\to \bar{K}^{*0} \pi^0) \pi^+$		$8.0\pm1.2\pm0.4$	
$D^+[S] \to \bar{K}^{*0} \rho^+$	$-3.33 \pm 0.10 \pm 0.17$	$31.8 \pm 2.7 \pm 1.3$	>10
$D^+[P] \to \bar{K}^{*0} \rho^+$	$-1.68 \pm 0.17 \pm 0.16$	$1.7 \pm 0.6 \pm 0.1$	5.0
$D^+ \to \bar{K}^{*0} \rho^+$	_	$33.6 \pm 2.7 \pm 1.4$	
$D^+[S] \to \bar{K}^{*0}(\pi^+\pi^0)_V$	$-5.60 \pm 0.13 \pm 0.16$	$9.1 \pm 2.0 \pm 1.0$	9.4
$D^+ \to K^0_S(\rho^+ \pi^0)_P$	$0.76 \pm 0.11 \pm 0.24$	$16.5 \pm 1.6 \pm 0.3$	>10

BF results:

BF measurement:

$$\mathcal{B}_{\rm sig} = \frac{N_{\rm total}^{\rm DT}}{\mathcal{B}_{\rm sub} \sum_{\alpha} N_{\alpha}^{\rm ST} \epsilon_{\alpha, \rm sig}^{\rm DT} / \epsilon_{\alpha}^{\rm ST}} \quad N_{\rm total}^{\rm DT} = N_{K_{S}^{0}, \rm sig}^{\rm DT} - \frac{1}{2} N_{K_{S}^{0}, \rm side}^{\rm DT}$$

2024/1/15

THE 2024 INTERNATIONAL WORKSHOP ON FUTURE TAU CHARM FACTORY

Inclusive decays of charmed meson

- ▶ Improved measurement of the BF of $D^{+/0} \rightarrow K_S^0 X$ [PRD 107, 112005 (2023)]
- Deeply explore the D decay mechanisms.
- Provides guide to search for more unobserved decay modes.
- Help tune D0 and D+ decay modes in inclusive MC samples.

THE 2024 INTERNATIONAL WORKSHOP ON FUTURE TAU CHARM FACTORY

Strong phase in D^{\pm} , D^{0} , D_{s}^{+} decays

Strong phase in D^{\pm} , D^{0} , D_{s}^{+} decays

▶ Determination of the CP-even fraction of $D^0 \rightarrow K_S^0 \pi^+ \pi^- \pi^0$ [PRD 108, 032003 (2023)]

Determination of F_+ :

- With CP tags: $N^{\pm} = \mathcal{B}(S)\varepsilon(S)\left[1 \eta_{CP}^{\mp}\left(2F_{+}^{S} 1\right)\right]$ $F_{+} = \frac{N^{\pm}}{N^{\pm} + N^{\pm}}$
- With $\pi^+\pi^-\pi^0$ tag: $\frac{N^{\pi^+\pi^-\pi^0}}{\langle N^+ \rangle} = \frac{\left[1 \left(2F_+^S 1\right)\left(2F_+^{\pi^+\pi^-\pi^0} 1\right)\right]}{2F_+^S}$ $F_+^S = \frac{\langle N^+ \rangle F_+^{\pi^+\pi^-\pi^0}}{N^{\pi^+\pi^-\pi^0} \langle N^+ \rangle + 2\langle N^+ \rangle F_+^{\pi^+\pi^-\pi^0}}$
- With $K_S^0 \pi^+ \pi^- \pi^0$ tag: $N^S = 2B_S \varepsilon(S) F_+^S (1 F_+^S)$ $F_+^S = \frac{N^S}{N^{N-1}}$
- With $K_S^0 \pi^+ \pi^-$ and $K_L^0 \pi^+ \pi^-$ tags: Divided into 8 bins of δ_D .

 F_{+}

2024/1/15

INTERNATIONAL WORKSHOP ON FUTURE TAU CHARM FACTORY THF 2024

Spin and parity of D_s^* meson

Determination of spin and parity for D_s^* meson. [PLB 846, 138245 (2023)]

 D^0 -recoil

2.

2

1.98

2

 $M(D^{0}\pi^{0})(GeV/c^{2})$

There is no decisive experimental results of spin and parity have been reported for the ground 1S states $D^*_{(s)}$. In PDG, the status of J^P for D^{*0} and D^{*+} are assigned to be 1⁻ while they need to be confirmed experimentally.

Decay chains:

 D_s -recoil

 $D_s^* D_s$

•
$$e^+e^- \rightarrow D_s^{*+}D_s^-, D_s^{*+} \rightarrow \gamma D_s^+, D_s^+ \rightarrow K_s^0 K^+$$

•
$$e^+e^- \rightarrow D^{*0}D^0, D^{*0} \rightarrow \pi^0 D^0, D^0 \rightarrow K^-\pi^+, \pi^0 \rightarrow \gamma\gamma$$

D_s^{*}-tag

2.15

 $RM(D_s^+)(GeV/c^2)$

 $e^+e^- \rightarrow D^{*+}D^-, D^{*+} \rightarrow \pi^0 D^+, D^+ \rightarrow K^-\pi^+\pi^+, \pi^0 \rightarrow \gamma\gamma$

2024/1/15

 $W(D^+_{1})$ (GeV/c²) $W(D^+_{1})$ (GeV/c²) $W(D^+_{1})$

2.08

2.06

2.04

2.05

2.1

THE 2024 INTERNATIONAL WORKSHOP ON FUTURE TAU CHARM FACTORY

Spin and parity of D_s^* meson

- > Determination of spin and parity for D_s^* meson. [PLB 846, 138245 (2023)]
- $J^{P} = 1^{-} \text{ for } D_{s}^{*\pm}$: $\mathcal{W}^{(1-)} \sim (3 + \cos 2\theta_{1}) - 4\cos 2\phi_{1} \sin \theta_{0} \sin \theta_{1}$ • $J^{P} = 2^{+} \text{ for } D_{s}^{*\pm}$: $\mathcal{W}^{(2+)} \sim (3 + \cos 2\theta_{0})(2 + \cos 2\theta_{1} + \cos 4\theta_{1}) - 4(1 + 2\cos 2\theta_{1})\cos 2\phi_{1} \sin^{2} \theta_{0} \sin^{2} \theta_{1}$
- $J^P = 3^- \text{ for } D_s^{*\pm}$: $\mathcal{W}^{(3-)} \sim (398 + 271\cos 2\theta_1 + 130\cos 4\theta_1 + 255\cos 6\theta_1)$ $- 16(163 + 380\cos 2\theta_0 + 255\cos 4\theta_0)(163 + 380\cos 2\theta_1 + 225\cos 4\theta_1)\cos 2\phi_1 \sin^2 \theta_0 \sin^2 \theta_1$

J ^P	$e^+e^- ightarrow D_s^{*\pm} D_s^{\mp}$	$D_s^{*\pm} o \gamma D_s^{\pm}$	$D_s^{*\pm} o \pi^0 D_s^{\pm}$
0-	O (Yes)	O (Yes)	× (No)
0+	×	×	0
1+	О	0	×
1-	O[P]	O[P]	O[P]
1+	О	0	×
2-	0	0	×
2 ⁺	O[D]	O[D]	O[D]
3-	O[E]	O[E]	O[E]
3+	О	0	×

▶ Test three possible J^P numbers for $D_s^{*\pm}$

 $\langle \sin^2 \theta_1 \rangle \sim \phi_1$

Spin and parity of D_s^* meson

- > Determination of spin and parity for D_s^* meson. [PLB 846, 138245 (2023)]
- Fit result $\langle \sin^2 \theta_1 \rangle$ v.s. ϕ_1 :

- \succ $\langle \sin^2 \theta_1 \rangle v. s. \phi_1$ illustrate the different behavior.
- > Data obviously favor the 1^- assignment over the 2^+ and 3^- .
- Estimation of statistical significance:

<i>S</i> =	= √2	$(\ln \mathcal{L}_m)$	$ax(H_1$) — ln	$\mathcal{L}_{max}(H_0)$)
1- 0+				TP O-	$P = 1 - 2 - \lambda$	1

 $2|\ln(\mathcal{L}^{J^{P}=2^{+}}/\mathcal{L}^{J^{P}=1})$ significance process significance $2 \ln(\mathcal{L})$ D_{s}^{*+} $>32\sigma$ 2104.36 $>32\sigma$ 1101.67 D^{*0} 29251.08 $>32\sigma$ 30989.46 $>32\sigma$ D^{*+} 25672.06 $>32\sigma$ 31718.66 $>32\sigma$

The J^P is determined 1⁻ with large than 32σ significance against 2⁺ and 3⁻ hypotheses.

2024/1/15

Recent studies on new physics at BESIII

2024/1/15

Recent studies on new physics at BESIII

•	Symmetry violation	
	$\Box \Xi^{0} \to K^{\pm} e^{\mp} (\text{BNV, LNV}) \qquad : \text{PRD}$	108, 012006 (2023).
	$\Box \overline{\Lambda} - \Lambda$ oscillations with $\Delta B = 2$ (BNV) \checkmark : PRL 1	31, 121801 (2023).
	$\square D^{\pm} \to n(\bar{n})e^{\pm} (\text{BNV, LNV}) : \text{PRD}$	106, 112009 (2022).
	$\square D^0 \to pe^-(\bar{p}e^+) \text{ (BNV, LNV)} \qquad : \text{PRD}$	105, 032006 (2022).
	$\Box J/\psi \to e\mu \text{ (LFV)} \checkmark \text{ : Sci. C}$	hina-Phys. Mech. Astron. 66, 221011 (2023).
•	Rare decays	
	\Box Search for a massless dark photon in $\Lambda_c^+ \to p\gamma^+$	(FCNC) 🗸 : PRD 106.072008 (2022).
	\Box Search for $\psi(3686) \rightarrow \Lambda_c^+ \overline{\Sigma}^- + c.c.$ (Charmoni	um weak) 🗸 : CPC 47, 013002(2023).
	□ Search for $J/\psi \rightarrow \overline{D}^0(D^-)M$ (Charmonium w	eak) : arXiv:2310.07277.
	D Search for $J/\psi \to D^-\mu^+\nu_\mu + c.c.$ (Charmonium	n weak) : arXiv:2307.02165.
•	Exotic searches	
	Search for invisible decays of a dark photon	✓ : PLB 839, 137785 (2023).
	Search for invisible decays of Λ baryon	: PRD 105 L071101 (2022).
	$\Box J/\psi \rightarrow \gamma A^0, A^0 \rightarrow \mu^+\mu^-$ (Light Higgs)	: PRD 105, 012008 (2022).
	\Box Search for axion-like particles using $\psi(2S)$ dat	a 🗸 : PLB 838, 137698 (2023).

Baryon Number Violation (BNV)

 $\blacktriangleright \overline{\Lambda} - \Lambda$ oscillations with $\Delta B = 2$ [PRL 131, 121801 (2023)]

The time integrated oscillation rate:

$$J/\psi \to pK^{-}\bar{\Lambda} \xrightarrow{\text{oscillating}} pK^{-}\Lambda$$

$$\mathcal{P}(\Lambda) = \frac{\int_{0}^{\infty} \sin^{2}(\delta m_{\Lambda\bar{\Lambda}}t)e^{-t/\tau_{\Lambda}}dt}{\int_{0}^{\infty} e^{-t/\tau_{\Lambda}}dt} \qquad \mathcal{P}(\Lambda) = \frac{\mathcal{B}(J/\psi \to pK^{-}\Lambda)}{\mathcal{B}(J/\psi \to pK^{-}\bar{\Lambda})} = \frac{N_{\text{WS}}^{obs}/\epsilon_{\text{WS}}}{N_{\text{RS}}^{obs}/\epsilon_{\text{RS}}}$$

$$(M_{1}) = \frac{\int_{0}^{\infty} e^{-t/\tau_{\Lambda}}dt}{\int_{0}^{\infty} e^{-t/\tau_{\Lambda}}dt} \qquad \mathcal{P}(\Lambda) = \frac{\mathcal{B}(J/\psi \to pK^{-}\Lambda)}{\mathcal{B}(J/\psi \to pK^{-}\bar{\Lambda})} = \frac{N_{\text{WS}}^{obs}/\epsilon_{\text{WS}}}{N_{\text{RS}}^{obs}/\epsilon_{\text{RS}}}$$

$$(M_{1}) = \frac{\int_{0}^{\infty} e^{-t/\tau_{\Lambda}}dt}{\int_{0}^{\infty} e^{-t/\tau_{\Lambda}}dt} \qquad \mathcal{P}(\Lambda) = \frac{\mathcal{P}(\Lambda) = \frac{\mathcal{P}(\Lambda)}{\mathcal{P}(\Lambda) \to pK^{-}\bar{\Lambda}} = \frac{N_{\text{WS}}^{obs}/\epsilon_{\text{WS}}}{N_{\text{RS}}^{obs}/\epsilon_{\text{RS}}}$$

$$(M_{1}) = \frac{\mathcal{P}(\Lambda) = \frac{\mathcal{P}(\Lambda)}{\mathcal{P}(\Lambda) \to pK^{-}\bar{\Lambda}} = \frac{\mathcal{P}(\Lambda)}{\mathcal{P}(\Lambda) \to pK^{-}\bar{\Lambda}} = \frac{\mathcal{P}(\Lambda)}{\mathcal{P}(\Lambda) \to pK^{-}\bar{\Lambda}}$$

$$(M_{1}) = \frac{\mathcal{P}(\Lambda) = \mathcal{P}(\Lambda)}{\mathcal{P}(\Lambda) \to pK^{-}(p\pi^{-})} = \frac{\mathcal{P}(\Lambda)}{\mathcal{P}(\Lambda) \to pK^{-}(p\pi^{-})}$$

Baryon Number Violation (BNV)

 $\blacktriangleright \overline{\Lambda} - \Lambda$ oscillations with $\Delta B = 2$ [PRL 131, 121801 (2023)]

Fit for $m(p\pi^{-})$ of WS and RS:

• Upper limit on oscillation rate (90% CL)

$$P(\Lambda) = \frac{\mathrm{B}(J/\psi \to pK^{-}\Lambda)}{\mathrm{B}(J/\psi \to pK^{-}\bar{\Lambda})} < 4.4 \times 10^{-6}$$

Oscillation parameter (90% CL)

$$\delta m_{\Lambda\bar{\Lambda}} < 3.8 \times 10^{-18} \text{ GeV}$$

• Based on this constraint, the oscillation parameter is calculated to be $\delta m_{\Lambda\bar\Lambda} < 3.8 \times 10^{-18}~{\rm GeV}$ at 90% CL corresponding to an oscillation time lower limit of $\tau_{OSC} > 1.7 \times 10^{-7}~{\rm s}$. This result is comparable with the predicted one in prospect of PRD81,051901 with only about one-tenth data sample.

Lepton Flavor Violation (LFV)

 \succ *J*/ψ → *e*μ [Sci. China-Phys. Mech. Astron. 66, 221011 (2023)]

LFV decay is forbidden in SM, any LFV signals will indicate new physics!

Different models may enhance
 LFV effects up to a detectable
 level, such as leptoquark,
 compositeness, supersymmetry,
 heavy Z' and anomalous boson
 coupling model.

◆ The cLFV decays of vector mesons $V \rightarrow l_i l_j$ are also predicted in various of extension models of SM:

$$\mathcal{B}(J/\psi
ightarrow e\mu)$$
 to $10^{-16} \sim 10^{-9}$ @ 90% C.L.
 $\mathcal{B}(J/\psi
ightarrow e(\mu) au)$ to $10^{-10} \sim 10^{-8}$ @ 90% C.L

Phys. Rev. D 63, 016003, Phys. Rev. D 63, 016006 Phys. Rev. D 83, 115015 Phys. Lett. A 27, 1250172 Phys. Rev. D 94, 074023, Phys. Rev. D 97, 056027

Lepton Flavor Violation (LFV)

 \blacktriangleright $J/\psi \rightarrow e\mu$ [Sci. China-Phys. Mech. Astron. 66, 221011 (2023)]

Special selection criteria to identify *e* and μ :

- Background subtraction using inclusive MC of J/ψ .
- The signal region is defined with $\frac{|\Sigma \vec{p}|}{\sqrt{s}} \le 0.02$ and $0.95 \leq \frac{E_{vis}}{\sqrt{s}} \leq 1.04.$
- J/ψ MC events $\rightarrow J/\psi$ decay background (N_{bka1}) $\langle \psi(3770), \chi_{c1}(1P) \rangle$ and 3.080*GeV* data \rightarrow Continuum background (N_{bka2}) The normalized background is estimated to be $N_{bka1}^{norm} = 24.8 \pm 1.5$ and $N_{bka2}^{norm} = 12.0 \pm 3.7$.

Lepton Flavor Violation (LFV)

- \succ *J*/ψ → *e*μ [Sci. China-Phys. Mech. Astron. 66, 221011 (2023)]
- By analyzing the full data, 29 candidate events are observed, consistent with background estimation.

$$\mathcal{B}(J/\psi \to e\mu) < 4.5 \times 10^{-9} @ 90\%$$
 C.L.

Compared with theoretical predictions, the parameter space of some models, such as BLMSSM model can be excluded.

FCNC decays

\succ Search for a massless dark photon in Λ⁺_c → $p\gamma'$ [PRD 106, 072008 (2022)]

- A spin-one boson associated with a new Abelian gauge symmetry U(1)_D
- FCNC process is highly suppressed by the GIM mechanism in the charm sector
 less than 10⁻⁹ in SM, Phys. Rev. D 98, 030001 (2018)
- A massless dark photon could induce FCNC process through higher dimensional operators, allowing $\mathcal{B}(\Lambda_c^+ \to p\gamma')$ up to 1.6×10^{-5} Phys. Rev. D 102, 115029 (2020)

10 hadronic decay modes

- No significant signal observed, $\mathcal{B}(\Lambda_c^+ o p\gamma') < 8.0 imes 10^{-5}$ at 90% CL
- Currently consistent with the theoretical UL prediction: 1.6×10^{-5} PRD 102, 115029 (2020)

2024/1/15

THE 2024 INTERNATIONAL WORKSHOP ON FUTURE TAU CHARM FACTORY

Charmonium weak decays

Search for $\psi(3686) \rightarrow \Lambda_c^+ \overline{\Sigma}^- + c. c.$ [CPC 47, 013002(2023)]

> Searches for purely baryonic weak $\psi(3686)$ decays involving Λ_c^+ have not been performed.

▶ In the SM theory, $\mathcal{B}(\psi(3686) \rightarrow \Lambda_c^+ \overline{\Sigma}^- + c.c.)$ should be $10^{-9} \sim 10^{-11}$.

 \blacktriangleright New physics mechanisms beyond the SM may enhance the BF significantly. $\psi^{(3686)}$

 $\succ \psi(3686) \rightarrow \Lambda_c^+ \bar{\Sigma}^-, \Lambda_c^+ \rightarrow p K^- \pi^+, \bar{\Sigma}^- \rightarrow \bar{p} \pi^0$

> Two main backgrounds: • $\psi(3686) \rightarrow K^*(892)^- p\bar{\Lambda}, \ \bar{\Lambda} \rightarrow \pi^+ \bar{p} \iff M(\pi^+ \bar{p})$

• $\psi(3686) \rightarrow \overline{K}^{*0}(892)p\overline{\Sigma}^-, \ \overline{K}^{*0}(892) \rightarrow \pi^+ K^- \longleftarrow M(K^-\pi^+)$

 $\mathcal{FB}(\psi(3686) \rightarrow \Lambda_c^+ \overline{\Sigma}^- + c.c.) < 1.4 \times 10^{-5} @90\% \text{ C. L.}$

Dark photon

- Search for invisible decays of a dark photon [PLB 839, 137785 (2023)]
- A spin-one boson associated with a new Abelian gauge symmetry U(1)_D (spontaneously broken, massive kind).
- Proposed as a force carrier connected to dark matter.
- The dark photon couples weakly to a SM photon through kinetic mixing with a mixing parameter $\epsilon \sim 10^{-3}$.
- The dark photon(γ') would predominately decay into a pair of DM particles. ($\gamma' \rightarrow x\bar{x}$)
- Search for the dark photon in the radiative annihilation process $e^+e^- \rightarrow \gamma \gamma'$, followed by an invisible decay of γ' .

2024/1/15

THE 2024 INTERNATIONAL WORKSHOP ON FUTURE TAU CHARM FACTORY

Axion-like particles

- > Search for axion-like particles using $\psi(2S)$ data [PLB 838, 137698 (2023)]
- Axion-like particle "*a*" has negligible decay width and lifetime in $0.165 \le m_a \le 2.84 \text{ GeV}/c^2$.
- $\psi(3686)$ decay -> preclude the pollution from non-resonant production and avoid QED background.
- Three $\gamma\gamma$ combinations per event, exclude intervals around π^0 , η , η' peaks.

$$rac{\mathcal{B}(J/\psi o \gamma a)}{\mathcal{B}(J/\psi o e^+e^-)} = rac{m_{J/\psi}^2}{32\pilpha} g_{a\gamma\gamma}^2 \left(1 - rac{m_a^2}{m_{J/\psi}^2}
ight)^3$$
 .

Fits are performed to the M($\gamma\gamma$) in the mass range of $0.165 \le m_a \le 2.84 \text{ GeV}/c^2$.

Axion-like particles

- Search for axion-like particles using $\psi(2S)$ data [PLB 838, 137698 (2023)]
- Totally, 674 mass hypotheses are probed, exclude intervals around π^0 , η , η' peaks.
- The local significance are less than 2.6σ for all mass points.

- Upper limits on $B(J/\psi \rightarrow \gamma a)$ at 95% confidence level are determined based on a one-sided frequentist profile-likelihood method [Eur. Phys. J. C 71, 1554 (2011)], the observed limits range from 8.3×10^{-8} to 1.8×10^{-6} in $0.165 \le m_a \le 2.84 \text{ GeV}/c^2$.
- The exclusion limits on the ALP-photon coupling are the most stringent to date.

Proposal of the BEPCII upgrade

• optimized energy at 2.35 GeV with luminosity 3 times higher than the current BEPCII.

Prospect Charm Baryons data sample at BESIII

Table 7.1. List of data samples collected by BESIII/BEPCII up to 2019, and the proposed samples for the remainder of the physics program. The rightmost column shows the number of required data taking days with the current (T_C) and upgraded (T_U) machine. The machine upgrades include top-up implementation and beam current increase.

Energy	Physics motivations	Current data	Expected final data	$T_{\rm C}$ / $T_{\rm U}$
1.8 - 2.0 GeV	R values Nucleon cross-sections	N/A	0.1 fb^{-1} (fine scan)	60/50 days
2.0 - 3.1 GeV	R values Cross-sections	Fine scan (20 energy points)	Complete scan (additional points)) 250/180 days
J/ψ peak	Light hadron & Glueball J/ψ decays	3.2 fb ⁻¹ (10 billion)	3.2 fb ⁻¹ (10 billion)	N/A
$\psi(3686)$ peak	Light hadron & Glueball Charmonium decays	0.67 fb ⁻¹ (0.45 billion)	4.5 fb ⁻¹ (3.0 billion)	150/90 days
$\psi(3770)$ peak	D^0/D^{\pm} decays	2.9 fb^{-1}	20.0 fb^{-1}	610/360 days
3.8 - 4.6 GeV	R values XYZ/Open charm	Fine scan (105 energy points)	No requirement	N/A
4.180 GeV	D_s decay XYZ /Open charm	3.2 fb^{-1}	$6 fb^{-1}$	140/50 days
4.0 - 4.6 GeV	XYZ/Open charm Higher charmonia cross-sections	16.0 fb ⁻¹ at different \sqrt{s}	30 fb ⁻¹ at different \sqrt{s}	770/310 days
4.6 - 4.9 GeV	Charmed baryon/XYZ cross-sections	0.56 fb^{-1} at 4.6 GeV	15 fb ⁻¹ at different \sqrt{s}	1490/600 days
4.74 GeV	$\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section	N/A	1.0fb^{-1}	100/40 days
4.91 GeV	$\Sigma_c \bar{\Sigma}_c$ cross-section	N/A	$1.0 {\rm fb}^{-1}$	120/50 days
4.95 GeV	Ξ_c decays	N/A	$1.0 {\rm fb}^{-1}$	130/50 days

Summary

- BEPCII energy upgrade during 2020-2021 has improved the BESIII capability by accumulating more statistics at different energy points.
- BESIII has been playing significant role in studying flavor physics of charm sector and searching for new physics. Many new important results have been published during 2023.
- Future STCF will greatly extend the physics opportunities in study of flavor physics and search for new physics!

Thanks!

Backup

Energy thresholds

0,	
$\checkmark e^+e^- \rightarrow \Lambda_c^+ \overline{\Sigma}_c^-$	4.74~4.87 GeV
$\checkmark e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^- (2595) (\overline{\Sigma}_c \pi)$	4.88 GeV
$\checkmark e^+e^- \to \Sigma_c \ \overline{\Sigma}_c$	4.91 GeV
$\checkmark e^+e^- \rightarrow \Xi_c \ \overline{\Xi}_c$	4.95 GeV

The Born cross-section **ratios** between $\Lambda_c^+ \Lambda_c^- + c. c.$ and $\Lambda_c^- \Sigma_c^+ + c. c.$ at different energy points can provide more information about the production of $c\bar{c}$ or $q\bar{q}$ from vacuum.

EXAMPLE Cross sections for $e^+e^- \rightarrow \Lambda_c^+ \overline{\Sigma}_c^-$ and $\Sigma_c^- \overline{\Sigma}_c^-$

• $e^+e^- \rightarrow \Lambda_c^+ \overline{\Sigma}_c^-$ above 4.74 GeV: An interesting isospin violating process to understand the QCD dynamics at charm sector

✓ A cross section scan slightly above 4.74 GeV will be useful for comparison with that of $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda_c^-}$ and $\Lambda_c^+ \overline{\Sigma_c^-}$

- $\checkmark \sigma(\Lambda_c^+ \overline{\Sigma}_c^-) / \sigma(\Lambda_c^+ \overline{\Lambda}_c^-) \text{ v.s. } \sigma(\Lambda \overline{\Sigma}) / \sigma(\Lambda \overline{\Lambda})$
 - → vaccum pol. to $c\bar{c}$ v.s. $s\bar{s}$
- \checkmark If observed, study the polarizations and form factors
- $e^+e^- \rightarrow \Sigma_c \ \overline{\Sigma}_c$ around 4.91 GeV:
 - ✓ Cross section comparison with that of $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda_c^-}$
 - → good diquark v.s. bad diquark
 - ✓ Study the polarizations and form factors in $e^+e^- \rightarrow \Sigma_c^0 \overline{\Sigma}_c^0$ and $\Sigma_c^+ \overline{\Sigma}_c^-$

Production measurement near threshold

• $e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-$ cross section are measured at twelve energy points from 4.612-4.951GeV.

\sqrt{s} (GeV)	$\mathcal{L}_{int} \ (pb^{-1})$	σ (pb)	$ G_{\rm eff} $ (10 ⁻²)	$lpha_{\Lambda_c}$	$ G_E/G_M $	$ G_M $ (10 ⁻²)
4.6119	103.7	$208.4 \pm 6.9 \pm 7.0$	$49.2\pm0.8\pm0.8$	$-0.26 \pm 0.09 \pm 0.01$	$1.31 \pm 0.12 \pm 0.01$	$43.5 \pm 3.3 \pm 1.5$
4.6280	521.5	$206.4 \pm 3.1 \pm 6.9$	$45.5 \pm 0.3 \pm 0.8$	$-0.21 \pm 0.04 \pm 0.01$	$1.25 \pm 0.06 \pm 0.01$	$41.8\pm1.5\pm1.5$
4.6409	551.6	$205.1 \pm 3.0 \pm 6.9$	$43.4 \pm 0.3 \pm 0.7$	$-0.09 \pm 0.05 \pm 0.01$	$1.11 \pm 0.05 \pm 0.01$	$41.8\pm1.4\pm1.4$
4.6612	529.4	$200.3 \pm 2.9 \pm 6.8$	$40.6 \pm 0.3 \pm 0.7$	$-0.02 \pm 0.05 \pm 0.01$	$1.04 \pm 0.05 \pm 0.01$	$40.2 \pm 1.4 \pm 1.4$
4.6819	1667.4	$188.1 \pm 1.6 \pm 6.3$	$37.7 \pm 0.2 \pm 0.6$	$0.15 \pm 0.03 \pm 0.01$	$0.88 \pm 0.03 \pm 0.01$	$39.2\pm0.8\pm1.3$
4.6988	535.5	$172.3 \pm 2.7 \pm 6.0$	$35.1 \pm 0.3 \pm 0.6$	$0.34 \pm 0.07 \pm 0.01$	$0.72 \pm 0.06 \pm 0.01$	$38.2\pm1.4\pm1.3$
4.7397	163.9	$123.5 \pm 4.2 \pm 5.0$	$28.2\pm0.5\pm0.6$	$0.49 \pm 0.16 \pm 0.03$	$0.61 \pm 0.13 \pm 0.02$	$31.4\pm2.4\pm1.3$
4.7500	366.6	$128.5 \pm 2.8 \pm 4.4$	$28.5 \pm 0.3 \pm 0.5$	$0.42 \pm 0.10 \pm 0.01$	$0.66 \pm 0.08 \pm 0.01$	$31.4\pm1.6\pm1.1$
4.7805	511.5	$124.0 \pm 2.4 \pm 4.2$	$27.2\pm0.3\pm0.5$	$0.17 \pm 0.07 \pm 0.01$	$0.88 \pm 0.07 \pm 0.01$	$28.2\pm1.2\pm1.0$
4.8431	525.2	$84.8 \pm 2.0 \pm 2.9$	$21.6\pm0.3\pm0.4$	$0.38 \pm 0.10 \pm 0.01$	$0.71 \pm 0.09 \pm 0.01$	$23.4\pm1.3\pm0.8$
4.9180	207.8	$98.1\pm3.3\pm3.5$	$22.4\pm0.4\pm0.4$	$0.62 \pm 0.17 \pm 0.01$	$0.52 \pm 0.15 \pm 0.01$	$25.3\pm1.9\pm0.9$
4.9509	159.3	$89.6 \pm 3.6 \pm 3.1$	$21.2\pm0.4\pm0.4$	$0.63 \pm 0.21 \pm 0.01$	$0.52 \pm 0.18 \pm 0.01$	$24.1\pm2.2\pm0.9$

$$\alpha_{\Lambda_c} = \frac{1 - \kappa R^2}{1 + \kappa R^2}.$$

PhysRevLett.131.191901(2023)

 $R=|G_E/G_M|$

2024/1/15

THE 2024 INTERNATIONAL WORKSHOP ON FUTURE TAU CHARM FACTORY

Coming soon stay tunned

- $\Lambda_c^+ \rightarrow n e^+ \nu_e$ (release soon)
- $\Lambda_c^+ \rightarrow \Sigma^+ \pi^- e^+ \nu_e$, $\Sigma^- \pi^+ e^+ \nu_e$
- $\Lambda_c^+ \rightarrow p \pi^- e^+ \nu_e$
- $\Lambda_c^+ \to n K_s^0 e^+ \nu_e$
- $\Lambda_c^+ \to p K_{\rm L}^0$, $p \phi$
- $\Lambda_c^+ \to p \bar{K_s^0}$, $\Lambda \pi^+$, $\Sigma^0 \pi^+$, $\Sigma^+ \pi^0$ (Decay asymmetry and polarization study)
- $\Lambda_{c}^{+} \rightarrow n \mathrm{K}^{+} \pi^{0}(\mathrm{DCS})$ • $\Lambda_{c}^{+} \rightarrow p \mathrm{K}^{-} \pi^{+}, p K_{S}^{0} \pi^{0}, p K_{\mathrm{L}}^{0} \pi^{0}$ • $\Lambda_{c}^{+} \rightarrow \Lambda K_{\mathrm{S}}^{0} \mathrm{K}^{+}, \Lambda K_{\mathrm{S}}^{0} \pi^{+} (\Lambda \mathrm{K}^{*+})$ • $\Lambda_{c}^{+} \rightarrow \Sigma^{0} \pi^{+} \pi^{0}, \Sigma^{+} \pi^{+} \pi^{-}, \Sigma^{-} \pi^{+} \pi^{+}$ • $\Lambda_{c}^{+} \rightarrow \Sigma^{+} \mathrm{K}^{+} \mathrm{K}^{+} (\phi), \Sigma^{+} \mathrm{K}^{+} \pi^{-} (\pi^{0}), \Sigma^{0} K_{\mathrm{S}}^{0} \mathrm{K}^{+},$ • $\Lambda_{c}^{+} \rightarrow \Xi^{-} \mathrm{K}^{+} \pi^{+}, \Xi^{0} K_{\mathrm{S}}^{0} \mathrm{K}^{+}$
- $\Lambda_c^+ \rightarrow p \mathrm{K}^- \pi^+ \pi^0 \ p \mathrm{K}_{\mathrm{L}}^0 \pi^+ \pi^-$
- $\Lambda_c^+ \to \Lambda X \setminus K_s^0 X \setminus p X$