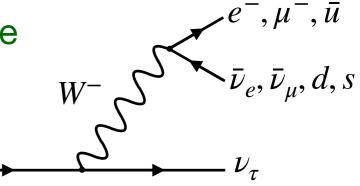


Tau physics at Belle and Belle II


Denis Bodrov (Soochow University, HSE University) on behalf of the Belle II collaboration

The 2024 International Workshop on Future Tau Charm Facilities

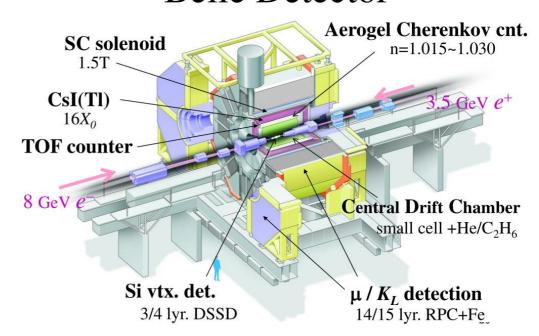
Introduction: why τ lepton?

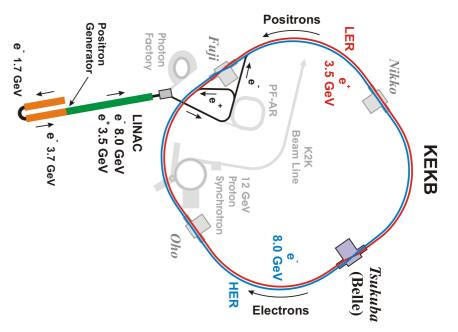
1.777 GeV/c² tau

- τ lepton is the heaviest lepton in the Standard Model (SM) with both leptonic and hadronic decay modes
- Larger mass compared to muon makes τ lepton more sensitive to some models of New Physics (NP)

Broad range of available measurements:

- Precise measurements of properties Study of hadronic decays with possibility of CPT tests:
 - Mass
 - Lifetime
 - Electric and Magnetic DM
- Study of pure leptonic decays
 - Lepton flavor universality (LFU)
 - Michel parameters

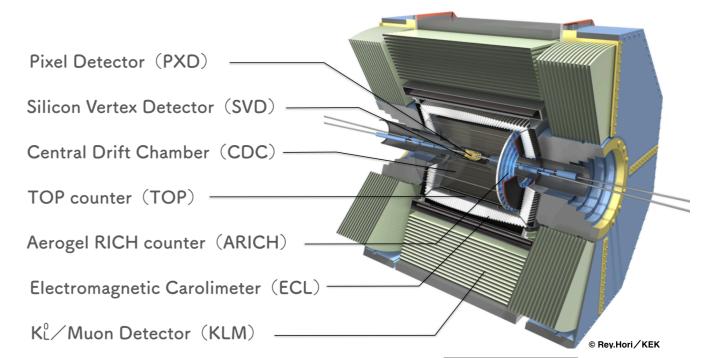

- - QCD at 1 GeV
 - LFU
 - CP violation (CPV)
- Direct search for New Physics
 - Lepton flavor violation (LFV)
 - Invisible particles

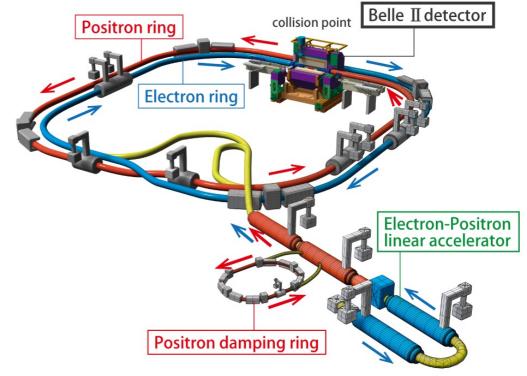

Belle as a τ factory

- e^+e^- colliders outperform hadron machines in τ physics because the $\tau^+\tau^-$ initial state is known, and the detectors are nearly hermetic
- Existing experiments:
 - BES III and KEDR (limited in statistics compared to Belle and Belle II)
 - B-factories Belle and BaBar (Belle II ancestors) are perfect for the τ lepton studies due to unprecedented $\tau^+\tau^-$ data samples
- Belle integrated luminosity of $\mathcal{L}=1\,\mathrm{ab}^{-1}$ provides 912×10^6 $\tau^+\tau^-$ pairs

The largest amount of $\tau^+\tau^-$ pairs

Belle Detector


PTEP 2012 (2012) 1, 04D001

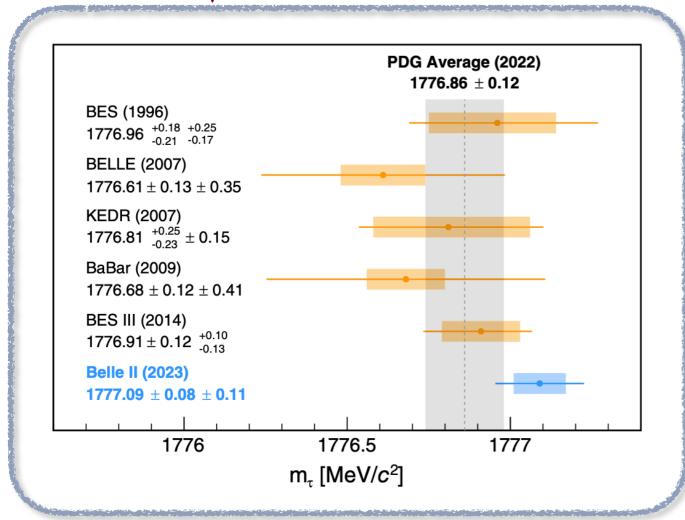

Belle II as a \tau factory

- e^+e^- colliders outperform hadron machines in au physics
- The Future belongs to Belle II

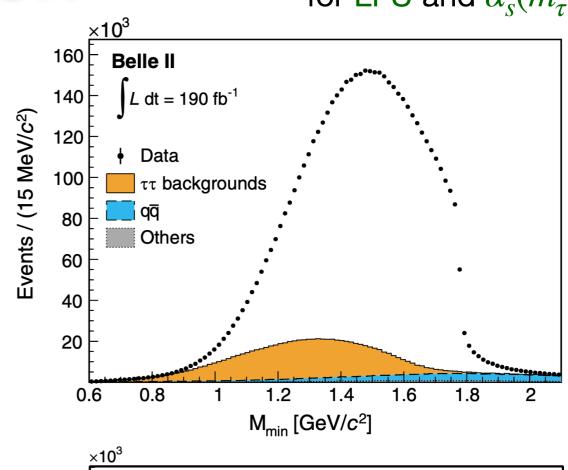
PTEP 2019 (2019) 12, 123C01

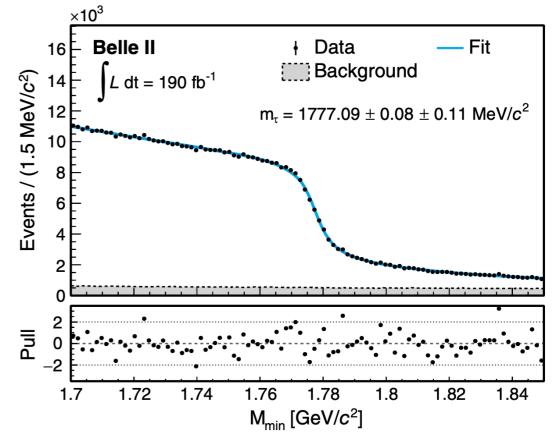
- Existing experiments:
 - BES III and KEDR (limited in statistics compared to Belle II)
 - *B*-factories Belle and BaBar (Belle II ancestors) are perfect for the τ lepton studies due to unprecedented $\tau^+\tau^-$ data samples (for the time being, they surpass the Belle II statistics of $\mathcal{L}=424\,\mathrm{fb}^{-1}$)
- Belle II expects integrated luminosity of $\mathcal{L}=50\,\mathrm{ab}^{-1}$ (full luminosity or FL) providing $46\times10^9~\tau^+\tau^-$ pairs
- Significant improvements on the trigger for low-multiplicity events

Mass of the τ lepton


Precision is needed for LFU and $\alpha_s(m_\tau)$

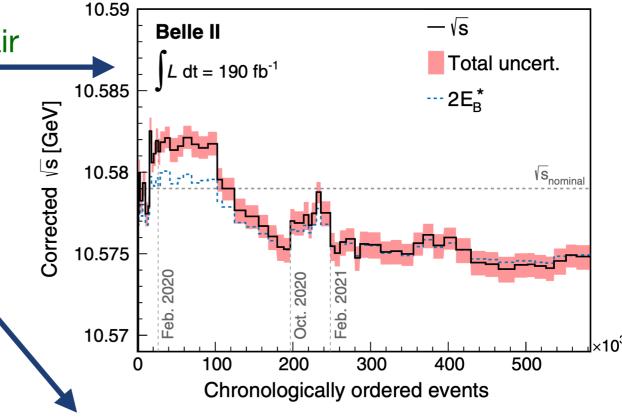
Phys.Rev.D 108 (2023) 032006

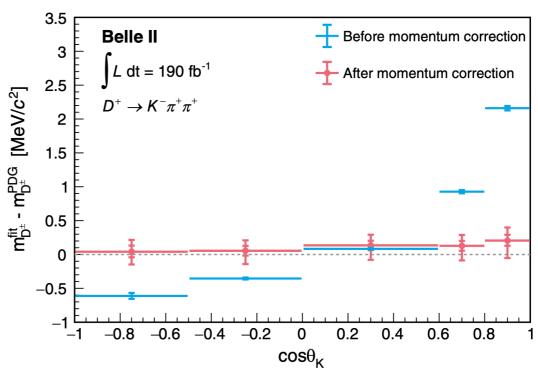

- Belle II in $\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau} (\mathcal{L} = 190 \, \text{fb}^{-1})$
- Pseudomass method


$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s/2} - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} \le m_{\tau}$$

Accuracy in \sqrt{s} and p is the key to precision

Belle II provides World's most precise result

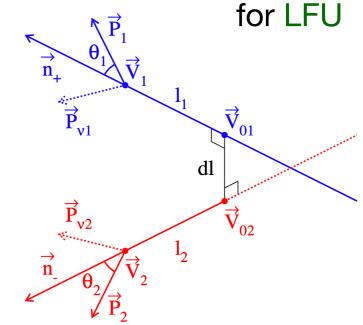

Mass of the τ lepton (2)


Systematics are crucial in this study

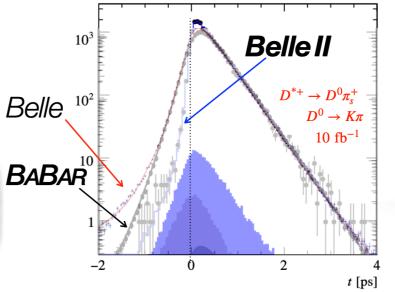
• Beam energy calibration using hadronic $B\bar{B}$ -pair decays and $e^+e^-\to B\bar{B}$ cross section

• Charged-particle momentum correction using $D^0 \to K^-\pi^+$ sample with cross-checks in $D^+ \to K^-\pi^+\pi^+$, $D^0 \to K^-\pi^+\pi^-\pi^+$, and $J/\psi \to \mu^+\mu^-$

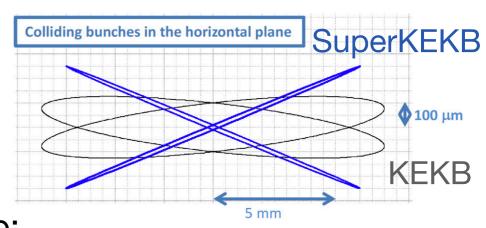
Source	Uncertainty (MeV/c^2)
Knowledge of the colliding beams:	
Beam-energy correction	0.07
Boost vector	< 0.01
Reconstruction of charged particles:	Allanamatan dalikaturnatan dalik
Charged-particle momentum correction	0.06
Detector misalignment	0.03
Fit model:	
Estimator bias	0.03
Choice of the fit function	0.02
Mass dependence of the bias	< 0.01
Imperfections of the simulation:	
Detector material density	0.03
Modeling of ISR, FSR and τ decay	0.02
Neutral particle reconstruction efficiency	\leq 0.01
Momentum resolution	< 0.01
Tracking efficiency correction	< 0.01
Trigger efficiency	< 0.01
Background processes	< 0.01
Total	0.11



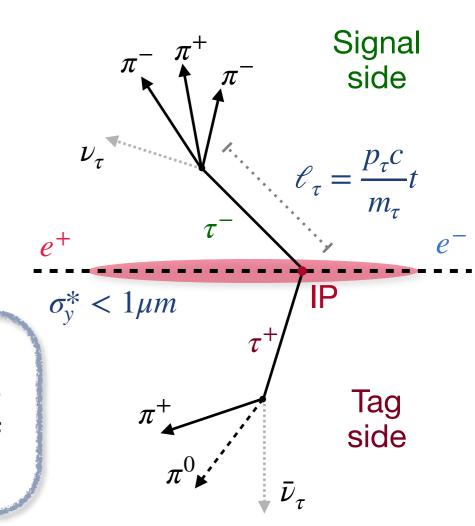
Lifetime of the au lepton


- Boost of the τ lepton in the Laboratory frame is required
- The most precise measurement is done by Belle using $\mathcal{L} = 711 \, \text{fb}^{-1}$ in $e^+e^- \to \tau^+\tau^- \to (\pi^+\pi^-\pi^+\bar{\nu}_\tau, \pi^+\pi^-\pi^-\nu_\tau)$: [290.17 \pm 0.53(stat) \pm 0.33(syst)] \times 10⁻¹⁵ s
- The CPT invariance was tested for the first time: $|\langle \tau_{\tau^+} \rangle \langle \tau_{\tau^-} \rangle| / \langle \tau_{\tau} \rangle < 7.0 \times 10^{-3} \, (90 \, \% \, \text{CL})$
- For lifetime, the statistical uncertainty is dominant, and the main systematics source is SVD alignment
- For CPT test, most systematics cancel
- The result can be improved by Belle II with more statistics and better vertex detector

Precision is needed for LFU

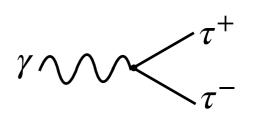

Source	$\Delta \langle \tau \rangle \; (\mu \mathrm{m})$
SVD alignment	0.090
Asymmetry fixing	0.030
Beam energy, ISR and FSR description	0.024
Fit range	0.020
Background contribution	0.010
τ-lepton mass	0.009
Total	0.101

Phys.Rev.Lett. 112 (2014) 031801

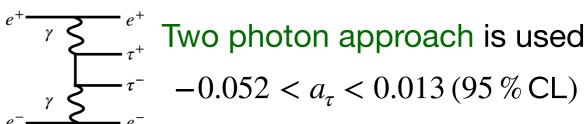


x2 better time resolution (visible at t < 0)

Lifetime of the τ lepton: new approach



- SuperKEKB uses nanobeam collision scheme: constraint to the beam-spot can be done
 - Nucl.Instrum.Meth.A 907 (2018) 188-199
- Second τ lepton can be reconstructed in one-prong decay mode $\tau^+ \to \rho^+ \bar{\nu}_{\tau}$: increase in statistics compared to $\tau^+ \to \pi^+ \pi^- \pi^+ \bar{\nu}_{\tau}$ due to higher branching fraction
- One neutrino mode is still needed for the au lepton momentum reconstruction
- Competitive results can be obtained with current statistics (check the <u>talk</u> by Stefano Moneta at the XXVII Cracow EPIPHANY Conference on Future of particle physics)


EDM and MDM

- General expression of the $\tau\tau\gamma$ vertex includes Electric and Magnetic Dipole Moments (EDM d_{τ} and MDM a_{τ})
- [1] JHEP 04 (2022) 110 [2] 2207.06307 [hep-ex] [3] Eur.Phys.J.C 35 (2004) 159-170 [4] JHEP 10 (2019) 089

- In the SM, the first is forbidden by T-invariance, and the second is $a_{\tau}^{\rm SM}=117721(5)\times 10^{-8}$
- For EDM, matrix element can be written as $M^2 = M_{\rm SM}^2 + \Re(d_\tau) M_{\Re}^2 + \Im(d_\tau) M_{\Im}^2 + |d_\tau|^2 M_{d^2}^2$

MDM measurement by DELPHI [3]

EDM measurement by Belle ($\mathcal{L} = 833 \, \text{fb}^{-1}$) [1]

Triple momentum and spin correlation observables (so called optimal observables)

$$\begin{split} O_{\Re} &= \frac{M_{\Re}^2}{M_{\text{SM}}^2}, \quad O_{\Im} = \frac{M_{\Im}^2}{M_{\text{SM}}^2} \quad \frac{\langle O_{\Re} \rangle}{\langle O_{\Im} \rangle} = a_{\Re} \Re(d_{\tau}) + b_{\Re} \\ &- 1.85 \cdot 10^{-17} < \Re(d_{\tau}) < 6.1 \cdot 10^{-18} \, ecm \, (95 \, \% \, \text{CL}) \\ &- 1.03 \cdot 10^{-17} < \Im(d_{\tau}) < 2.3 \cdot 10^{-18} \, ecm \, (95 \, \% \, \text{CL}) \end{split}$$

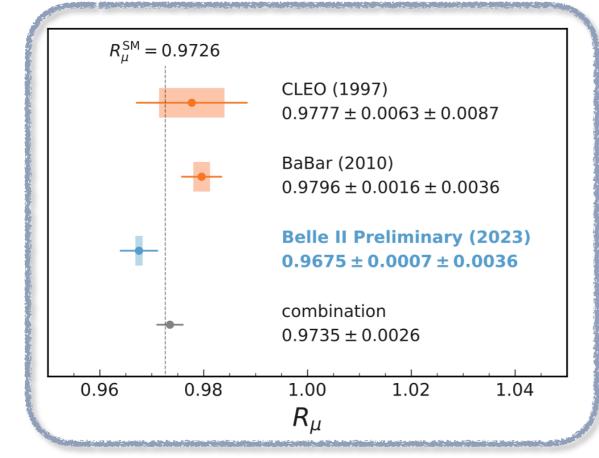
Belle II (FL) expects $|a_{\tau}^{\text{NP}}| < 2 \times 10^{-5}$ [4]

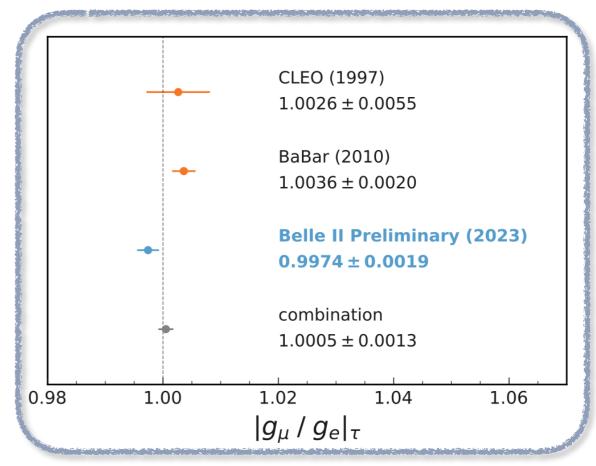
	Mode	$\operatorname{Re}(d_{\tau})(10^{-17}e\mathrm{cm})$	$\operatorname{Im}(d_{ au})(10^{-17}\mathrm{ecm})$
	$e\mu$	$-3.2 \pm 2.5 \pm 3.6$	$0.6\pm0.4\pm1.8$
	$e\pi$	$0.7\pm2.3\pm4.8$	$2.4\pm0.5\pm2.2$
A	$\mu\pi$	$1.0\pm2.2\pm4.3$	$2.4\pm0.5\pm2.6$
	e ho	$-1.2 \pm 0.8 \pm 1.0$	$-1.1 \pm 0.3 \pm 0.6$
	μho	$0.7\pm1.0\pm2.2$	$-0.5 \pm 0.3 \pm 0.8$
	πho	$-0.6 \pm 0.7 \pm 1.0$	$0.4\pm0.3\pm1.2$
	ho ho	$-0.4 \pm 0.5 \pm 0.9$	$-0.3 \pm 0.3 \pm 0.4$
	$\pi\pi$	$-2.2 \pm 4.3 \pm 5.2$	$-0.9 \pm 0.9 \pm 1.2$

Belle II (FL) expects $|\Re,\Im(d_{\tau})| < 10^{-18} - 10^{-19}$ [2]

Leptonic decays: LFU

Talk by Paul Feichtinger at TAU2023


• Precise test of $\mu - e$ universality:


$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau} = \sqrt{R_{\mu} \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})}}$$

$$R_{\mu} = \frac{\mathcal{B}(\tau^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \nu_{\tau}(\gamma))}{\mathcal{B}(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}(\gamma))} \stackrel{\text{SM}}{=} 0.9726$$

$$f(x) = 1 - 8x + 8x^3 - x^4 - 12x^2 \ln x$$

- Belle II with $\tau^+ \to \rho^+ \bar{\nu}_{\tau}$ in tag side $(\mathcal{L} = 362 \, \text{fb}^{-1})$
- Selection based on rectangular criteria and neural network (NN) classifier
- Leading systematics from Particle IDentification (PID) (0.32 %) evaluated using control samples
- Sub-leading systematics from trigger (0.10%)

Leptonic decays: Michel parameters

- Michel parameters (MP) describe the Lorentz structure of the charged currents interaction in the theory of weak interaction and can be used to test the SM
- If daughter lepton polarization is not measured, only 4 MPs $(\rho, \eta, \xi, \text{ and } \xi \delta)$ are accessible
- Michel parameter ξ' describes longitudinal polarization of daughter lepton

Current status of MP measurements

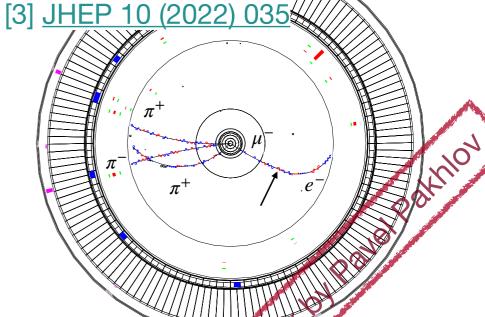
MP (SM)	$ au ightarrow e u_e u_ au$	$ au ightarrow \mu u_{\mu} u_{ au}$
ρ (0.75)	0.747 ± 0.010	0.763 ± 0.020
$\eta\left(0\right)$	0.013 ± 0.020	0.094 ± 0.073
<i>ξ</i> (1)	0.994 ± 0.040	1.030 ± 0.059
$\xi\delta(0.75)$	0.734 ± 0.028	0.778 ± 0.037
$\xi'(1)$	NM	0.22 ± 1.03

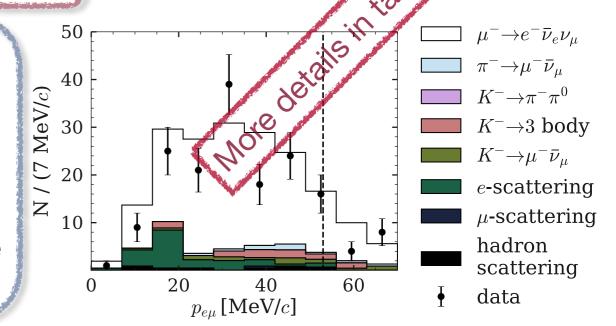
Nucl.Part.Phys.Proc. 287-288 (2017)

For MP ρ , η , ξ , and $\xi\delta$, Belle has already achieved statistical uncertainty of an order 10^{-3} , but systematics is around 10^{-2} (main contribution is from trigger efficiency)

At Belle II (FL), statistical uncertainties will be of the order 10^{-4} , and the systematic errors will be the dominant one

PTEP 2022 (2022) 083C01


Measurement of the MP ξ' in the


$$au^- o \mu^- ar{
u}_\mu
u_ au$$
 decay

- The method is based on the muon decay-in-flight reconstruction in the tracker as a kink
- The information about muon spin can be inferred from the daughter electron direction in the muon rest frame due to P-violation in the decay
- The first measurement was performed by the Belle collaboration ($\mathcal{L}=988\,\mathrm{fb}^{-1}$) [1, 2]: $\xi'=0.22\pm0.94(\mathrm{stat})\pm0.42(\mathrm{syst})$
- With enlarged CDC, special kink reconstruction algorithm (crucial), and record integrated luminosity, Belle II (FL) can improve the statistical uncertainty up to $\sigma_{\xi'} \approx 7 \times 10^{-3}$ [3]
- Systematics can be controlled at the same level with various data samples with kinks

[1] Phys.Rev.Lett. 131 (2023) 021801

Radiative and five-body leptonic

τ decays

- Radiative and five-body leptonic τ -decays provide information about Michel parameters that describe daughter lepton polarization in $\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau$
- Their understanding is also crucial for LFV studies as they are main background

Belle collaboration measured $\xi \kappa(e) = \bar{\eta}(\mu) = -1.3 \pm 1.7 \, (\mathcal{L} = 711 \, \text{fb}^{-1})$ $\xi \kappa = -1/4(\xi + \xi') + 2/3\xi \delta \quad \bar{\eta} = 4/3\rho - 1$ Belle collaboration measured $\xi \kappa(e) = -0.4 \pm 1.2$, $\xi \kappa(\mu) = 0.8 \pm 0.6$, and PTEP 2018 (2018) 2, 023C01

 $\xi \kappa = -\frac{1}{4}(\xi + \xi') + \frac{2}{3}\xi \delta$ $\bar{\eta} = \frac{4}{3}\rho - \frac{1}{4}\xi'' - \frac{3}{4}$

Five-body leptonic τ -decay

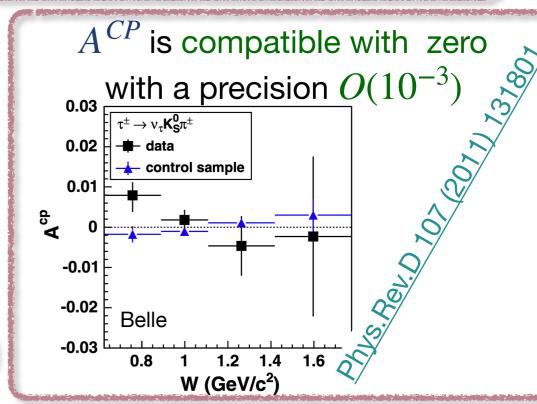
Belle estimations for $\mathcal{L} = 700 \, \text{fb}^{-1}$

Mode	SM Br	Measured	Expected N	Systematics
$\tau^- \to e^- e^+ e^- \bar{\nu}_e \nu_\tau$	$4.21(1) \times 10^{-5}$	$(1.8 \pm 1.5) \times 10^{-5}$	$1300 (r_{\rm s} = 47\%)$	(6-12)%
$\tau^- \to \mu^- e^+ e^- \bar{\nu}_e \nu_\tau$	$1.984(4) \times 10^{-5}$	$< 3.2 \times 10^{-5} (90\%)$	$430 (r_{\rm s} = 50\%)$	(8-13)%
$\tau^- \to e^- \mu^+ \mu^- \bar{\nu}_e \nu_\tau$	$1.247(1) \times 10^{-7}$	NM	$8 (r_s = 37\%)$	(36 - 72)%
$\tau^- \to \mu^- \mu^+ \mu^- \bar{\nu}_e \nu_\tau$	$1.183(1) \times 10^{-7}$	NM	$4(r_{\rm s} = 16\%)$	(36 - 72)%
JHEP 04 (2016) 185		J.Phvs.Conf.S	ser. 912 (2017) 1

CP violation

- No CPV is observed in the charged leptons sector (in the SM, it is predicted only in quarks sector)
- The most promising modes for the studies: $\tau^- \to K^- \pi^0 \nu_\tau$, $\tau^- \to K_S^0 \pi^- \nu_\tau$, $\tau^- \to K_S^0 \pi^- \pi^0 \nu_\tau$, $\tau^- \to (\rho \pi)^- \nu_\tau$, $\tau^- \to (\omega \pi)^- \nu_\tau$, and $\tau^- \to (a_1 \pi)^- \nu_\tau$

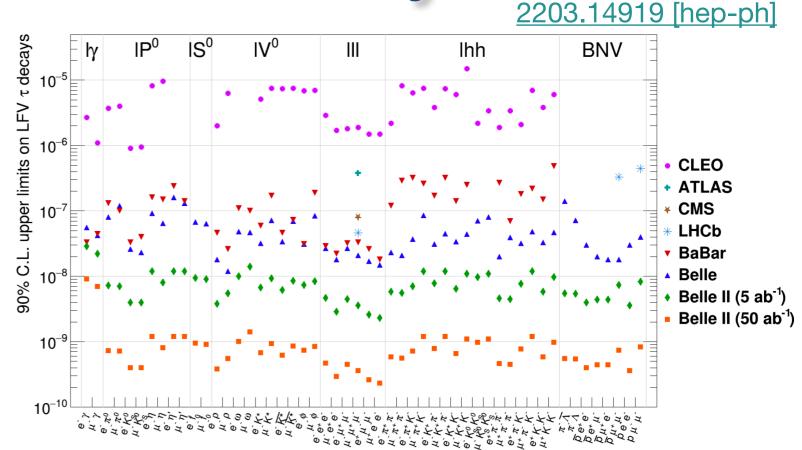
The first measurement of the CP asymmetry was performed by BaBar in $\tau^- \to \pi^- K_S^0 \nu_{\tau}$:


$$A_{\tau} = \frac{\Gamma(\tau^{+} \to \pi^{+} K_{S}^{0} \bar{\nu}_{\tau}) - \Gamma(\tau^{-} \to \pi^{-} K_{S}^{0} \nu_{\tau})}{\Gamma(\tau^{+} \to \pi^{+} K_{S}^{0} \bar{\nu}_{\tau}) + \Gamma(\tau^{-} \to \pi^{-} K_{S}^{0} \nu_{\tau})}$$

- It is also possible to use a modified asymmetry with differential distributions integrated over a limited volume in the phase space with a specially selected kernel (done by Belle)
- More complicated and most powerful method is to use unbinned maximum likelihood fit in the full phase space (not done at B-factories)

Belle II (FL) can approach the sensitivity level of 10^{-4}

Phys.Rev.D 85 (2012) 031102

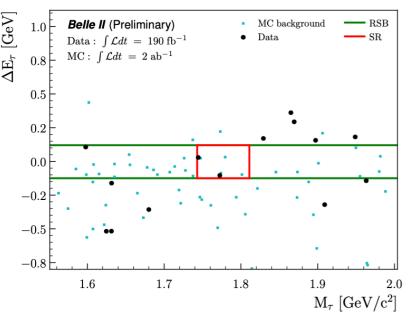

$$A_{\tau}^{\text{SM}} = (0.36 \pm 0.01) \%$$

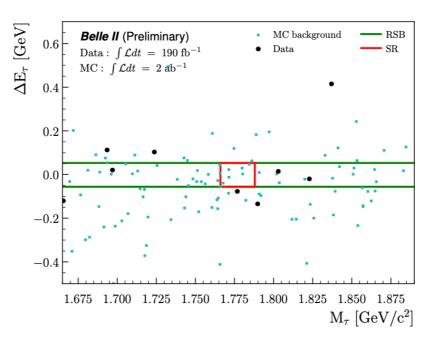
 $A_{\tau} = (-0.36 \pm 0.23 \pm 0.11) \%$

Charged Lepton Flavor

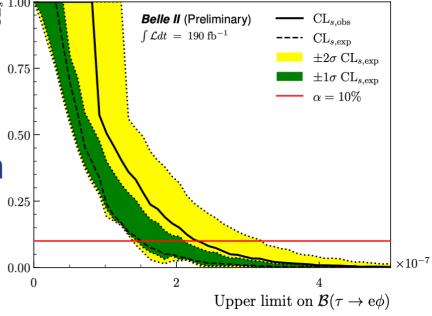
Violation in τ decays

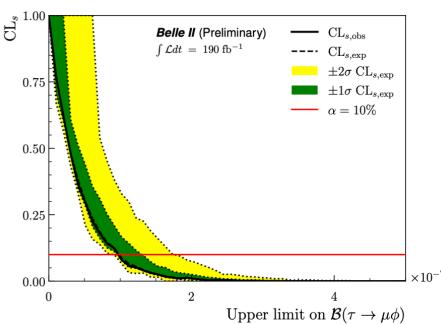
- Decays $\tau \to \ell \gamma$, $\tau \to \ell \ell \ell^{(\prime)}$, $\tau \to \ell h$ ($\ell, \ell' = e, \mu$ and h is a hadron system), and modes with baryons in the final state are sensitive to New Physics
- Different NP models predict branching fractions of such decays at the level 10^{-7} - 10^{-10} (in the SM, $\sim 10^{-53}$ or even forbidden)
- The majority of World's leading results belong to Belle




90% CL upper limits for measurements and extrapolation for Belle II from Belle results with respect to $5\,\mathrm{ab}^{-1}$ and $50\,\mathrm{ab}^{-1}$

 In the zero-background scenarios, Belle II will improve Belle results linearly with the integrated-luminosity increase (assuming the same analysis efficiency)

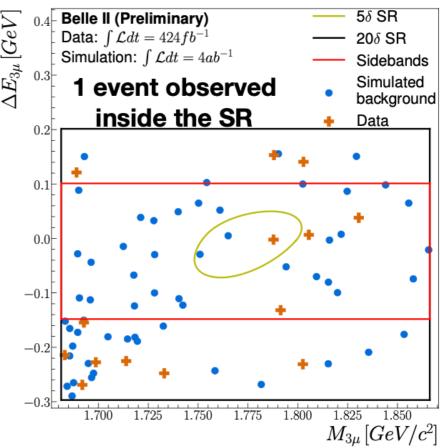

LFV: first result from Belle II

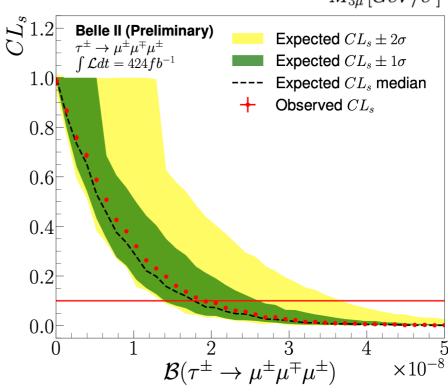

- Search for LFV $\tau^- \to \ell^- \phi$ decays ($\mathcal{L} = 190 \, \text{fb}^{-1}$)
- For the first time, untagged approach is used
- Background is suppressed using BDT
- Twice the final signal efficiency improve for muon mode compared to previous studies
- Background is controlled by sidebands in data

JHEP 06 (2023) 118

Belle
$$\mathcal{B}(\tau^- \to e^- \phi) < 2.0 \times 10^{-8} \, (90 \, \% \, \text{CL})$$

 $\mathcal{B}(\tau^- \to \mu^- \phi) < 2.3 \times 10^{-8} \, (90 \, \% \, \text{CL})$

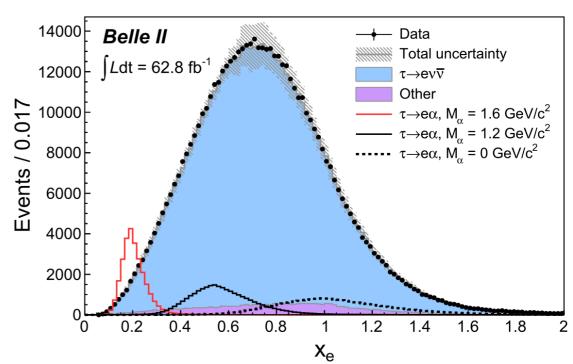

Belle II
$$\mathcal{B}(\tau^- \to e^- \phi) < 23 \times 10^{-8} \, (90 \, \% \, \text{CL})$$
 $\mathcal{B}(\tau^- \to \mu^- \phi) < 9.7 \times 10^{-8} \, (90 \, \% \, \text{CL})$

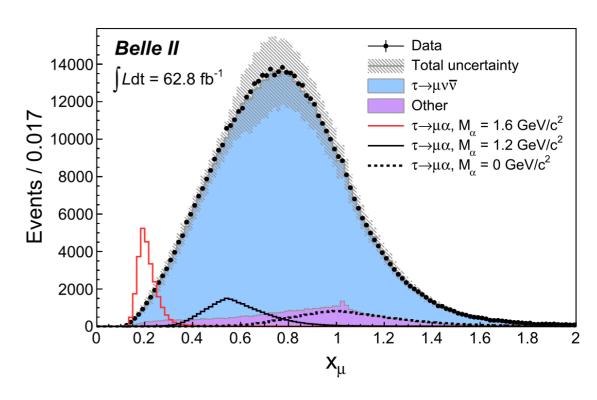

LFV: $\tau^- \rightarrow \mu^- \mu^+ \mu^-$ at Belle II

- Search for LFV $\tau^- \to \mu^- \mu^+ \mu^-$ decays (ongoing)
- Belle II ($\mathcal{L} = 424 \, \mathrm{fb}^{-1}$) is already competitive with Belle ($\mathcal{L} = 782 \, \mathrm{fb}^{-1}$)
- Innovative inclusive untagged method with 1 and 3 tagging tracks and BDT selection
- Conventional method with muon ID and 1 tagging track is used as a cross-check
- $\varepsilon_{\rm sig}$ = [20.42 ± 0.06] % (~ 3 times larger than Belle) with expected background 0.5^{+0.4}_{-1.5} events

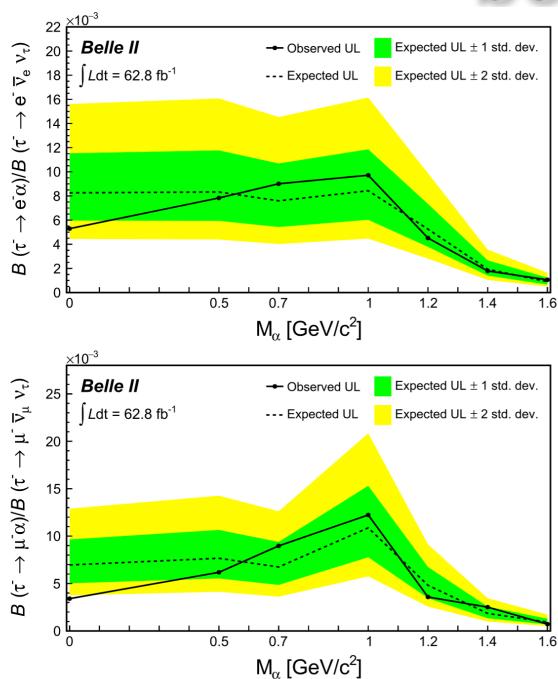
Talk by Alberto Martini at TAU2023

Belle II $\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) < 1.9 \times 10^{-8} (90 \% \text{ CL})$





Search for LFV with Invisible boson


- Search for LFV $\tau^- \to \ell^- \alpha$ decays, where α is invisible spin-0 boson ($\mathcal{L}=62.8\,\mathrm{fb}^{-1}$)
- Predicted in models with axionlike particles
- Second τ lepton is reconstructed in $\tau^+ \to h^+ h^- h^+ \bar{\nu}_\tau$ decay mode ($h=\pi,K$)
- Pseudo τ rest frame is used $(\overrightarrow{p}_{\tau} \sim -\overrightarrow{p}_{3h}/|\overrightarrow{p}_{3h}|)$
- Looked for as an excess above $\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau$ spectrum
- $x_{\ell} = 2E_{\ell}/m_{\tau}$

Phys.Rev.Lett. 130 (2023) 181803

Search for LFV with Invisible boson (2)

2.2-14 times more stringent than the best previous bounds

Z.Phys.C 68 (1995) 25-28 0.06 0.05 ARGUS 0.03 0.02 0.02 0.02 0.04 0.05 1.2 1.4 1.6

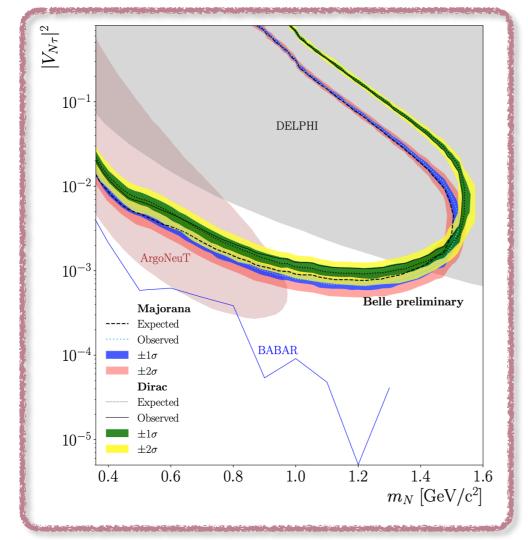
For massless particle

 α Mass

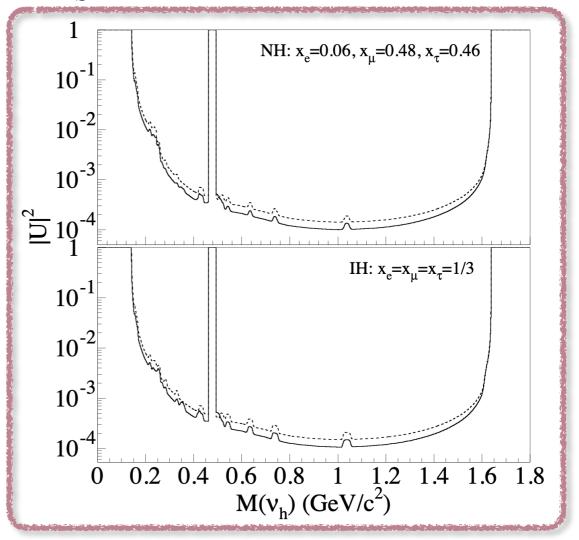
 $[\text{GeV/c}^2]$

Argus
$$\mathcal{B}(\tau \to e\alpha) < 26 \cdot 10^{-3} \, (95 \, \% \, \text{CL})$$

 $\mathcal{B}(\tau \to \mu\alpha) < 15 \cdot 10^{-3} \, (95 \, \% \, \text{CL})$


Belle II
$$\mathcal{B}(\tau \to e\alpha) < 5.3 \cdot 10^{-3} \, (95 \% \, \text{CL})$$
 $\mathcal{B}(\tau \to \mu\alpha) < 3.4 \cdot 10^{-3} \, (95 \% \, \text{CL})$

Heavy neutrinos searches at Belle


Search for a sterile neutrino in

$$\tau^- \to \pi^- N(\to \mu^+ \mu^- \nu_{\tau}) \, (\mathscr{L} = 915 \, \text{fb}^{-1})$$

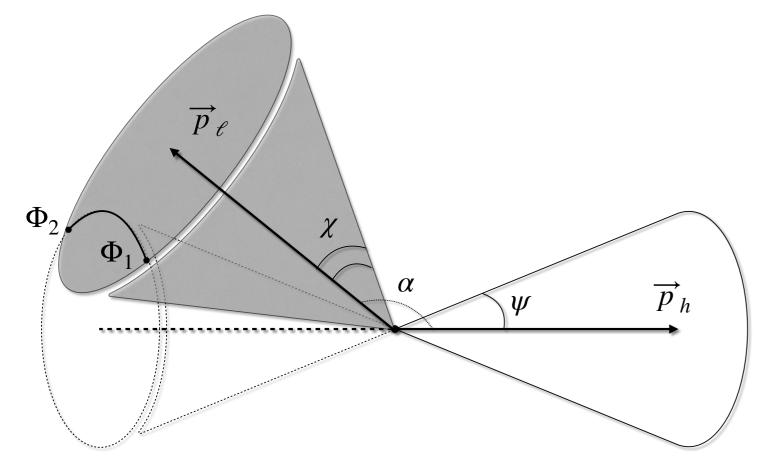
- One prong tag side
- $\mu^+\mu^-$ displaced vertex (> 15 cm from the beam axis)
- $K_S^0 \to \pi^+\pi^-$ mass region is removed

- Search for a heavy neutrino in $\tau^- \to \pi^- \nu_h (\to \pi^\pm \ell^\mp) \, (\mathcal{L} = 988 \, \text{fb}^{-1})$
 - No tag side requirements
 - $K_S^0 \to \pi^+\pi^-$ mass region is removed

2212.10095 [hep-ex]

Talk by Sourav Dey at TAU2023

Conclusions


- Belle experiment is the World leading experiment in τ physics providing a big part of the World's best results
- Although Belle II is still in the beginning of its operation, it has already provided the community with competitive results and new methods applications (τ lepton mass measurement, search for LFV decays $\tau^- \to \ell^- \alpha$ and $\tau^- \to \ell^- \phi$), and more are upcoming ($\tau^- \to \mu^- \mu^+ \mu^-$)
- τ physics plays a significant role in the overall program of both Belle and Belle II experiment
- Belle II opens up an opportunity to repeat all the measurements done by Belle and BaBar with higher precision and to conduct new studies, not available for the previous generation
- Systematics become the dominant source of uncertainty in many analyses
- Belle II has a better sensitivity than STCF in measurements, depending on statistics, (most LFV searches) and in τ -lepton lifetime measurement
- By the end of operation, Belle II will accumulate unprecedented number of $\tau^+\tau^-$ -pairs, which makes it, without any questions, the Super τ -factory

Thank you for attention!

Backup

τ lepton momentum reconstruction at Belle II

- The momentum of the τ lepton produced in $e^+e^- \to \tau^+\tau^-$ is impossible to reconstruct due to presence of undetectable neutrinos
- Precise knowledge of center-of-mass energy, back-to-back production of $\tau^+\tau^-$ -pair, and zero mass (to a high extent) of neutrinos allows to restrict the possible directions of $\tau^+\tau^-$ -pair (up to initial-state radiation)

$$\frac{2E_{\tau}E_{\ell} - M_{\tau}^2 - m_{\ell}^2}{2p_{\tau}p_{\ell}} \le \cos\chi \le \frac{E_{\tau}E_{\ell} - M_{\tau}m_{\ell}}{p_{\tau}p_{\ell}}$$

$$\cos \psi = \frac{2E_{\tau}E_{h} - M_{\tau}^{2} - m_{h}^{2}}{2p_{\tau}p_{h}}$$

$$\Phi_1 = \pi + \arcsin\left(\frac{\cos\psi\cos\alpha + \cos\chi}{\sin\psi\sin\alpha}\right)$$

$$\Phi_2 = 2\pi - \arcsin\left(\frac{\cos\psi\cos\alpha + \cos\chi}{\sin\psi\sin\alpha}\right)$$

τ lepton polarization at Belle II

• The beams at Belle II are not polarized, so average τ lepton polarization is zero. Nevertheless, spins of τ leptons are correlated in $e^+e^- \to \tau^+\tau^-$:

$$\frac{d\sigma(e^+e^-(w^-) \to \tau_{\rm sig}(\vec{s}_{\rm sig})\tau_{\rm tag}(\vec{s}_{\rm tag}))}{d\Omega_{\tau}} = \frac{\alpha^2\beta}{64E^2} \left[A_0 + D_{ij}(\vec{s}_{\rm sig})_i(\vec{s}_{\rm tag})_j \right]$$

$$A_0 = 1 + \cos^2 \theta_\tau + \frac{\sin^2 \theta_\tau}{\gamma^2} \qquad D_{ij} = \begin{pmatrix} \left(1 + \frac{1}{\gamma^2}\right) \sin^2 \theta_\tau & 0 & \frac{1}{\gamma} \sin 2\theta_\tau \\ 0 & -\beta^2 \sin^2 \theta_\tau & 0 \\ \frac{1}{\gamma} \sin 2\theta_\tau & 0 & 1 + \cos^2 \theta_\tau - \frac{\sin^2 \theta_\tau}{\gamma^2} \end{pmatrix}$$

• One can use tagging τ lepton as a spin analyzer with the decay mode $\tau^+ \to \pi^+ \pi^0 \bar{\nu}_{\tau}$. This mode has the largest branching fraction (around 25~%), and it is also well-studied

EDM and MDM

General expression of the ττγ vertex can be parametrized as follows:

$$-ir\bar{u}(p')\left\{F_{1}(q^{2})\gamma^{\mu}+iF_{2}(q^{2})\sigma^{\mu\nu}\frac{q_{\nu}}{2m_{\tau}}+F_{3}(q^{2})\gamma^{5}\sigma^{\mu\nu}\frac{q_{\nu}}{2m_{\tau}}\right\}u(p)\varepsilon_{\mu}(q)$$

$$F_1(0) = 1$$
 $F_2(0) = \frac{g_\tau - 2}{2} \equiv a_\tau$ $F_3(0) = -\frac{2m_\tau d_\tau}{e_\tau}$

• d_{τ} – EDM, a_{τ} – MDM

Michel parameters

 Michel parameters (MP) of a lepton decay are bilinear combinations of coupling constants arising in the most general expression for the decay matrix element

$$M = \frac{4G_F}{\sqrt{2}} \sum_{\substack{\gamma = S, V, T \\ \varepsilon, \mu = R, L}} g_{\varepsilon\mu}^{\gamma} \langle \bar{\ell}_{\varepsilon} | \Gamma^{\gamma} | ((\nu_{\ell})_{\alpha}) \rangle \langle (\bar{\nu}_{\tau})_{\beta} | \Gamma_{\gamma} | \tau_{\mu} \rangle$$

$$\Gamma^S = 1, \Gamma^V = \gamma^{\mu}, \ \Gamma^T = \frac{1}{\sqrt{2}} \sigma^{\mu\nu} = \frac{i}{2\sqrt{2}} (\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu})$$

$$Tensor$$

$$Tensor$$

$$Tensor$$

$$Tensor$$

- Michel parameters describe the Lorentz structure of the charged currents interaction in the theory of weak interaction and can be used to test the SM
- Deviations can be caused by anomalous coupling with the W-boson, new gauge or charged Higgs bosons, presence of massive neutrinos
- The only nonzero term in the SM theory of weak interaction: $g_{LL}^{\,V}=1$

Leptonic decays: Michel parameters (2)

• Differential decay width of au lepton integrated over neutrino momenta:

$$\begin{split} \frac{d^{2}\Gamma}{dx\,d\cos\theta} &= \frac{m_{\tau}}{4\,\pi^{3}}W_{\ell\tau}^{4}\,G_{F}^{2}\sqrt{x^{2}-x_{0}^{2}}\,\left(F_{IS}(x)\pm F_{AS}(x)P_{\tau}\cos\theta + F_{T_{1}}(x)P_{\tau}\sin\theta\zeta_{1}\right. \\ &\quad + F_{T_{2}}(x)P_{\tau}\sin\theta\zeta_{2} + (\pm F_{IP}(x) + F_{AP}(x)P_{\tau}\cos\theta)\zeta_{3}\right) \\ W_{\ell\tau} &= \max E_{\ell} = \frac{m_{\tau}^{2} + m_{\ell}^{2}}{2m_{\tau}}, \, x = \frac{E_{\ell}}{\max E_{\ell}}, \, x_{0} = \frac{m_{\ell}}{\max E_{\ell}}, \, P_{\tau} = |\textbf{\textit{P}}_{\tau}| \end{split}$$

Functions parameters:

$$F_{IS}(x):\rho,\eta; \qquad F_{AS}(x):\xi,\xi\delta; \qquad F_{IP}(x):\xi',\xi,\xi\delta; \qquad F_{AP}(x):\xi'',\rho,\eta'';$$

$$F_{T_1}(x):\xi'',\rho,\eta,\eta''; \qquad F_{T_2}(x):\alpha'/A,\beta'/A$$

• Differential decay width of radiative leptonic τ decay ($\overrightarrow{S}_{\tau} - \tau$ polarization):

$$\frac{d\Gamma(\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau \gamma)}{dE_\ell d\Omega_\ell dE_\gamma d\Omega_\gamma} = \left(A_0 + \bar{\eta} A_1 \right) + \left(\overrightarrow{B}_0 + \xi \kappa \overrightarrow{B}_1 \right) \cdot \overrightarrow{S}_\tau$$

Leptonic differential decay width parametric functions definition

$$\begin{split} F_{IS}(x) &= x(1-x) + \frac{2}{9}\rho(4x^2 - 3x - x_0^2) + \eta x_0(1-x) \\ F_{AS}(x) &= \frac{1}{3}\xi\sqrt{x^2 - x_0^2} \left[1 - x + \frac{2}{3}\delta\left(4x - 3 - \frac{x_0^2}{2}\right) \right] \\ F_{IP}(x) &= \frac{1}{54}\sqrt{x^2 - x_0^2} \left[-9\xi'\left(2x - 3 + \frac{x_0^2}{2}\right) + 4\xi\left(\delta - \frac{3}{4}\right)\left(4x - 3 - \frac{x_0^2}{2}\right) \right] \\ F_{AP}(x) &= \frac{1}{6}\left[\xi''\left(2x^2 - x - x_0^2\right) + 4\left(\rho - \frac{3}{4}\right)\left(4x^2 - 3x - x_0^2\right) + 2\eta''x_0(1-x) \right] \\ F_{T_1}(x) &= -\frac{1}{12}\left[2\left(\xi'' + 12\left(\rho - \frac{3}{4}\right)\right)(1-x)x_0 + 3\eta(x^2 - x_0^2) + \eta''(3x^2 - 4x + x_0^2) \right] \\ F_{T_2}(x) &= \frac{1}{3}\sqrt{x^2 - x_0^2}\left(3\frac{\alpha'}{A}(1-x) + \frac{\beta'}{A}(2-x_0^2)\right) \end{split}$$

MP parameters through coupling constants

$$\begin{split} \rho &= \frac{3}{4} - \frac{3}{4} \left[\left(\left| g_{RL}^V \right|^2 + \left| g_{LR}^V \right|^2 \right) + 2 \left(\left| g_{LR}^T \right|^2 + \left| g_{RL}^T \right|^2 \right) + \Re \left\{ g_{RL}^S g_{RL}^{T*} + g_{LR}^S g_{LR}^{T*} \right\} \right] \\ \eta &= \frac{1}{2} \Re \left\{ g_{RL}^V \left(g_{LR}^{S*} + 6 g_{LR}^{T*} \right) + g_{LR}^V \left(g_{RL}^{S*} + 6 g_{RL}^{T*} \right) + \left(g_{RR}^V g_{LL}^{S*} + g_{LL}^V g_{RR}^{S*} \right) \right\} \\ \xi &= 4 \Re \left\{ g_{LR}^S g_{LR}^{T*} - g_{RL}^S g_{RL}^{T*} \right\} + \left(\left| g_{LL}^V \right|^2 - \left| g_{RR}^V \right|^2 \right) + 3 \left(\left| g_{LR}^V \right|^2 - \left| g_{RL}^V \right|^2 \right) \\ &+ 5 \left(\left| g_{LR}^T \right|^2 - \left| g_{RL}^T \right|^2 \right) + \frac{1}{4} \left(\left| g_{LL}^S \right|^2 - \left| g_{RR}^S \right|^2 + \left| g_{RL}^S \right|^2 - \left| g_{LR}^S \right|^2 \right) \\ \xi \delta &= \frac{3}{16} \left(\left| g_{LL}^S \right|^2 - \left| g_{RR}^S \right|^2 + \left| g_{RL}^S \right|^2 - \left| g_{LR}^S \right|^2 \right) \\ &+ \left| g_{RL}^T \right|^2 + \Re \left\{ g_{LR}^S g_{LR}^{T*} - g_{RL}^S g_{RL}^{T*} \right\} \right) \end{split}$$

MP parameters through coupling constants (2)

$$\begin{split} \xi' &= -\left[3\left(|g_{RL}^T|^2 - |g_{LR}^T|^2\right) + \left(|g_{RR}^V|^2 + |g_{RL}^V|^2 - |g_{LR}^V|^2 - |g_{LL}^V|^2\right) \right. \\ &\left. + \frac{1}{4}\left(|g_{RR}^S|^2 + |g_{RL}^S|^2 - |g_{LR}^S|^2 - |g_{LL}^S|^2\right)\right] \\ \xi'' &= 1 - \frac{1}{2}\left(|g_{RL}^S|^2 + |g_{LR}^S|^2\right) + 2\left(|g_{RL}^V|^2 + |g_{LR}^V|^2 + |g_{RL}^T|^2 + |g_{LR}^T|^2\right) \end{split}$$

$$\xi'' = 1 - \frac{1}{2} \left(|g_{RL}^{S}|^{2} + |g_{LR}^{S}|^{2} \right) + 2 \left(|g_{RL}^{V}|^{2} + |g_{LR}^{V}|^{2} + |g_{RL}^{I}|^{2} + |g_{LR}^{I}|^{2} \right) + 4\Re \left\{ g_{RL}^{S} g_{RL}^{T*} + g_{LR}^{S} g_{LR}^{T*} \right\}$$

$$\eta'' = \frac{1}{2} \Re \left\{ 3g_{RL}^V \left(g_{LR}^{S*} + 6g_{LR}^{T*} \right) + 3g_{LR}^V \left(g_{RL}^{S*} + 6g_{RL}^{T*} \right) - \left(g_{RR}^V g_{LL}^{S*} + g_{LL}^V g_{RR}^{S*} \right) \right\}$$

$$\frac{\alpha'}{A} = \frac{1}{2} \Im \left\{ g_{LR}^{V} \left(g_{RL}^{S*} + 6 g_{RL}^{T*} \right) - g_{RL}^{V} \left(g_{LR}^{S*} + 6 g_{LR}^{T*} \right) \right\}$$

$$\frac{\beta'}{A} = \frac{1}{4} \Im \left\{ g_{RR}^{V} g_{LL}^{S*} - g_{LL}^{V} g_{RR}^{S*} \right\}$$

Five-body leptonic *τ*-decays branching fractions

J.Phys.Conf.Ser. 912 (2017) 1

$$BR_{\text{exp}}^{\tau^{-} \to e^{-}e^{+}e^{-}\bar{\nu}_{e}\nu_{\tau}} = BR_{\text{SM}}^{\tau^{-} \to e^{-}e^{+}e^{-}\bar{\nu}_{e}\nu_{\tau}} \{ [Q_{LL} + (1.051 \pm 0.036)Q_{LR} + (-0.2053 \pm 0.1431)B_{LR} + L \leftrightarrow R] + (0.2416 \pm 0.0002)I_{\alpha} + (0.8606 \pm 0.0001)I_{\beta} \}.$$

$$BR_{\text{exp}}^{\tau^{-} \to \mu^{-}e^{+}e^{-}\bar{\nu}_{\mu}\nu_{\tau}} = BR_{\text{SM}}^{\tau^{-} \to \mu^{-}e^{+}e^{-}\bar{\nu}_{\mu}\nu_{\tau}} \{ [Q_{LL} + (1.220 \pm 0.049)Q_{LR} + (-0.8717 \pm 0.1957)B_{LR} + L \leftrightarrow R] + (181.3 \pm 0.1)I_{\alpha} + (104.4 \pm 0.1)I_{\beta} \}.$$

$$BR_{\text{exp}}^{\tau^{-} \to e^{-}\mu^{+}\mu^{-}\bar{\nu}_{e}\nu_{\tau}} = BR_{\text{SM}}^{\tau^{-} \to e^{-}\mu^{+}\mu^{-}\bar{\nu}_{e}\nu_{\tau}} \{ [Q_{LL} + (1.226 \pm 0.001)Q_{LR} + (-0.8456 \pm 0.0001)B_{LR} + L \leftrightarrow R] + (0.2253 \pm 0.0001)I_{\alpha} + (0.5231 \pm 0.0001)I_{\beta} \}.$$

$$BR_{\text{exp}}^{\tau^{-} \to \mu^{-}\mu^{+}\mu^{-}\bar{\nu}_{\mu}\nu_{\tau}} = BR_{\text{SM}}^{\tau^{-} \to \mu^{-}\mu^{+}\mu^{-}\bar{\nu}_{\mu}\nu_{\tau}} \{ [Q_{LL} + (1.216 \pm 0.005)Q_{LR} + (-0.8459 \pm 0.0005)B_{LR} + L \leftrightarrow R] - (18.00 \pm 0.01)I_{\alpha} + (197.3 \pm 0.1)I_{\beta} \}.$$

• Underlined part is the most sensitive to Michel parameters: $I_{\alpha}=2(\alpha+i\alpha')/A$ and $I_{\beta}=-2(\beta+i\beta')/A$. Here $\eta=(\alpha-2\beta)/A$

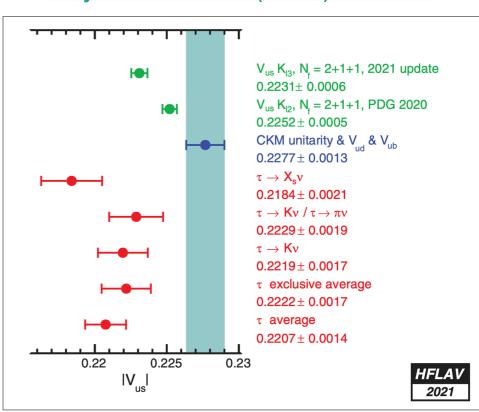
and
$$\eta'' = (3\alpha + 2\beta)/A$$

Here an alternative Michel-like parametrization from Phys.Lett.B 173
 (1986) 102-106 is used

Hadronic decays

- Hadronic decays of au lepton are unique laboratory to determine $lpha_{_S}(m_{_T})$, $m_{_S}$, and V_{us}
- They also can be used for the lepton universality tests: $\tau^- \to \pi^- \nu_\tau$ and $\tau^- \to K^- \nu_\tau$ decays are analogous to $\pi^- \to \mu^- \bar{\nu}_\mu$ and $K^- \to \mu^- \bar{\nu}_\mu$

$$R_{\tau/P} = \frac{\Gamma(\tau^- \to P^- \nu_\tau)}{\Gamma(P^- \to \mu^- \bar{\nu}_\tau)} = \left| \frac{g_\tau}{g_\mu} \right|^2 \frac{m_\tau^3}{2m_P m_\mu^2} \frac{(1 - m_P^2 / m_\tau^2)^2}{(1 - m_\mu^2 / m_P^2)^2} (1 + \delta R_{\tau/P})$$

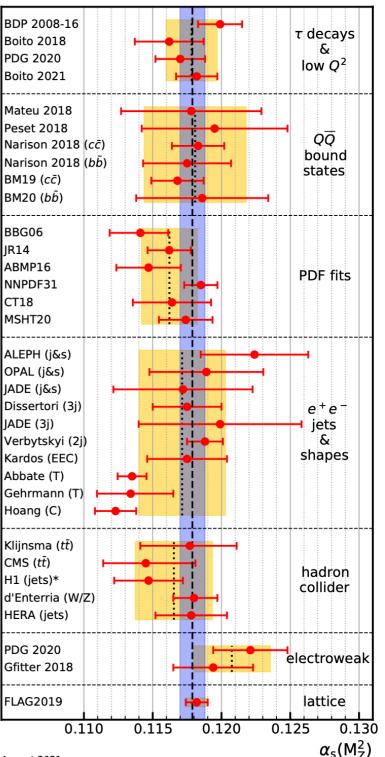

$$|g_{\tau}/g_{\mu}|_{\pi} = 0.9959 \pm 0.0038$$
 $|g_{\tau}/g_{\mu}|_{K} = 0.9855 \pm 0.0075$

• Determination of $|V_{\mu s}|$

$$\frac{|V_{us}|f_K}{|V_{ud}|f_{\pi}} = \frac{m_{\tau}^2 - m_{\pi}^2}{m_{\tau}^2 - m_K^2} \sqrt{\frac{\mathcal{B}(\tau^- \to K^- \nu_{\tau})}{\mathcal{B}(\tau^- \to \pi^- \nu_{\tau})} \frac{1 + \delta R_{\tau/\pi}}{1 + \delta R_{\tau/K}} \frac{1}{1 + \delta R_{K/\pi}}}$$

$$|V_{us}| = 0.2229 \pm 0.0019$$
 $|V_{us}|_{unitarity} = 0.2277 \pm 0.0013$

Phys.Rev.D 107 (2023) 052008



Belle II can measure $\Gamma(\tau^- \to \pi^- \nu_\tau)$ and $\Gamma(\tau^- \to K^- \nu_\tau)$ that has not been done at *B*-factories before

Hadronic decays (2)

- More precise knowledge of already measured hadron modes is desirable for more accurate determination of $\alpha_{\rm c}$ and for other studies, where these modes play the role of background (e.g. the partial-wave analysis of $\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau}$ being done by Belle [1] before done only by CLEO II [2])
- Higher statistics of Belle II will also allow for observation of various hadron modes not accessible in the previousgeneration B-factories
- Studies of hadronic modes of τ lepton can be used in the theoretical calculation of the hadronic contribution in the $a_{\mu} \equiv (g_{\mu} - 2)/2$
- Belle II can confirm or resolve current deviation of $a_{\mu}^{\rm had}(\tau) = (703.0 \pm 4.4) \cdot 10^{-10} \, {\rm from}$ $a_u^{\text{had}}(e^+e^-) = (692.3 \pm 4.2) \cdot 10^{-10} \, [3]$
 - [1] Talk by Andrei Rabusov at TAU2023
 - [2] Phys.Rev.D 61 (1999) 012002
 - [3] Talk by Pablo Roig Garcés at TAU2023

PTEP 2022 (2022) 8, 083C01

Search for LFV in decays with τ lepton in final state at Belle

- Search for $B_s^0 \to \ell^{\pm} \tau^{\mp}$ with the semileptonic tagging method [1] ($\mathcal{L}=121~{\rm fb}^{-1}$)
- Search for LFV decays $B^+ \to K^+ \tau^{\pm} \ell^{\mp}$ [2] $(\mathcal{L} = 711 \, \text{fb}^{-1})$
 - Full reconstruction of the tag side in the hadronic mode
 - Recoil mass of the $K^+\ell^{\mp}$ system
 - BDT for background suppression
- Search for LFV decays of $\Upsilon(1S)$ [3] $(\mathcal{L}=24.9\,\mathrm{fb}^{-1})$
 - Di-pion tagging from $\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-$
 - Recoil mass of the $\pi^+\pi^-\mathcal{E}^\mp(\gamma)$ system
 - [1] <u>JHEP 08 (2023) 178</u>
 - [2] Phys.Rev.Lett. 130 (2023) 261802
 - [3] JHEP 05 (2022) 095

Process	Upper limit (90% C.L.)
$\mathscr{B}(B_s^0 \to e^{\mp} \tau^{\pm})$	$< 14 \times 10^{-4}$
$\mathscr{B}(B_s^0 \to \mu^{\mp} \tau^{\pm})$	$< 7.3 \times 10^{-4}$
$\mathscr{B}(B^+ \to K^+ \tau^+ \mu^-)$	$< 0.6 \times 10^{-5}$
$\mathscr{B}(B^+ \to K^+ \tau^- \mu^+)$	$< 2.5 \times 10^{-5}$
$\mathscr{B}(B^+ \to K^+ \tau^+ e^-)$	$< 1.5 \times 10^{-5}$
$\mathscr{B}(B^+ \to K^+ \tau^- e^+)$	$< 1.5 \times 10^{-5}$
$\mathscr{B}(\Upsilon(1S) \to \mu^{\pm} \tau^{\mp})$	$< 2.7 \times 10^{-6}$
$\mathscr{B}(\Upsilon(1S) \to e^{\pm}\tau^{\mp})$	$< 2.7 \times 10^{-6}$
$\mathscr{B}(\Upsilon(1S) \to \gamma \mu^{\pm} \tau^{\mp})$	$< 6.1 \times 10^{-6}$
$\mathscr{B}(\Upsilon(1S) \to \gamma e^{\pm} \tau^{\mp})$	$< 6.5 \times 10^{-6}$

Best and first results by Belle