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OUTLINE AND MOTIVATIONS

 To provide a field-theoretical justification for stochastic hydrody-
namics

 To present the equations of motion for n-particle correlators

 To reveal some unusual behavior (critical phenomena) through fluc-
tuations
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QCD PHASE DIAGRAM

The main topics related to QCD phase transition are: 1) detecting
a critical point, and 2) identifying a first-order transition.
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SIGNATURES OF THE CRITICAL ENDPOINT

In terms of the scalar order parameter φ, and so on, and its functional
free energy, one predicts a critical equation of state and correlation
length ξ:

ξ ∼ t−ν

ν = 34ε + O(ε2)
t = T − Tc

Tc

More precisely, the QCD fluid belongs to the universality class of the
3D Ising model.
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NON-GAUSSIAN CUMULANTS

It expects a non-monotonic variation of the 4th-order cumulant:

® Luo, Shi, Xu and Zhang, Particles.3:278(2020)

Consider the kurtosis: κ4 = ⟨φ4⟩ − 3⟨φ2⟩
There is a stronger divergence near the critical point: κ4/κ22 ∼ ξ3
Has a non-trivial dependence on t (=beam energy)
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FLUID DYNAMICS FOR RELATIVISTIC QCD MATTER

Fluid dynamics is a universal effective field theory (EFT) of non-
equilibrium many-body systems with a stable equation of state and

○ Conservation of charge: ∂µJµ = 0
○ Conservation of energy and momentum: ∂µTµν = 0

Jµ = n uµ + vµ

Tµν = ε uµuν + p∆µν + πµν

∆µν = gµν + uµuν vµ = −κT∆µν∂ν
(µ
T

)
πij = −η

(
∂iuj + ∂jui − 23δij∇ · u

)
− ζδij∇ · u

The dissipation terms are described by the shear viscosity η, bulk
viscosity ζ and charge conductivity κ
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DYNAMICAL MODEL IN RHIC BEAM ENERGY SCAN

The real world is more complicated than the predictions in the first
order. Additional factors must be considered, such as:

○ Finite size and finite expansion rate effects

○ Freeze-out, resonances, global charge conservation, and others

○ Non-dissipation effects, including memory and critical slowing down

Ø The role of fluctuations is enhanced in nearly perfect fluids
Ø Fluctuations are dominant near critical points
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FLUCTUATIONS IN HYDRO

○ The deterministic hydro equations do not lead to spontaneous fluc-
tuations

○ The occurrence of fluctuations is a consequence of the microscopic
dynamics and must persist at the coarse-grained hydro-level

Introducing non-linear dissipation with temperature-dependent trans-
port coefficients and random noises:

Jµ → Jµ + θµ

Tµν → Tµν + θµν

⟨θµ⟩ = 0 〈(θµ)2〉 ∼ δ(x − x′)(t − t ′)
⟨θµν⟩ = 0 〈(θµν)2〉 ∼ δ(x − x′)(t − t ′)
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REPRESENTATION IN MSRJD FIELD THEORY

In terms of the slow variable (a conserved density), the free energy
of the fluid:

F[ψ] = ∫
d3x {12(∇⃗ψ)2 + r2 ψ(x, t)2 + λ3! ψ(x, t)3 + ... + h(x, t)ψ(x, t)}

The diffusion equation:

∂tψ(x, t) = ∇⃗
{
κ(ψ) ∇⃗

(
δF[ψ]
δψ

)} + θ(x, t)
where the Gaussian noise term θ(x, t) has a distribution

P[θ] ∼ exp (
−14

∫
d3x dt θ(x, t)L(ψ)−1θ(x, t))
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REPRESENTATION IN MSRJD FIELD THEORY, CONT.

The conductivity, κ(ψ), is field-dependent: κ(ψ) = κ0 (1 + λDψ)
The partition function is given as: ® MSR, PhysRevA.8:423(1973)

Z = ∫
Dψ P[θ] exp (

−iψ̃ (e.o.m [ψ, θ ] ))
= ∫

DψDψ̃ exp (
−

∫
d3x dt L(ψ, ψ̃))

The effective Lagrangian of this theory is:

L(ψ, ψ̃) = ψ̃
(
∂t − D0∇2) ψ − D0λ′2 (

∇2ψ̃)
ψ2 − ψ̃L(ψ)ψ̃

Note: D0 = rκ0 and λ′ = λ/r + λD.

The noise kernel is chosen as L(ψ) = ∇⃗
[
kBTκ(ψ)] ∇⃗
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TIME REVERSAL SYMMETRY

Stochastic theories must describe the detailed balance condition:

P (ψ1 Ï ψ2)
P (ψ2 Ï ψ1) = e−∆F/kBT

which is related to time-reversal symmetry:Ψ(t) Ï ψ(−t)
Ψ̃(t) Ï −

[
ψ̃(−t) + δF

δψ

]
L Ï L + d

dtF

® Janssen, ZPhyB.23:377(1976)

The Ward identity is revised to〈
ψ(x1, t1) [

∇⃗κ(ψ)∇⃗ψ̃
] (x2, t2)〉 = Θ(t2 − t1) 〈

ψ(x1, t1)ψ̇(x2, t2)〉
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SIMPLER EXAMPLE OF MODEL B

○ Linearized propagator:

  ̃   

○ Vertex and new vertices:
1
2�

0k2

k

�Dk · q

q

k

○ Loop contributions:
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ANALYTICAL RESULTS OF ONE-LOOP

The retarded function

G−1(ω, k) = 1
−iω + D0k2 + Σ(ω, k)

with Σ(ω, k) = λ′32π (
iλ′ωk2 + λD

[
iω − D0k2] k2) √

k2 − 2iω
D0

The charge (thermal) conductivity in this system becomes a
scale-dependent term in the low-energy effective hydro theory

The vertex function of composite operator λD[ψ∇⃗ψ̃] is given by

ΓD(ω, k) ≡ (−iω + D0k2) 〈
D0λD[ψ∇⃗ψ̃]∇⃗ψ

〉
ω,k

The field-dependent fluctuation-dissipation relation becomes:

2 Im {
G(ω, k) [

D0k2 + ΓD(ω, k)]} = ωC(ω, k)
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1PI EFFECTIVE ACTION

Consider the generating functional with local source J, J̃:

W [J, J̃ ] = − ln ∫
DψDψ̃ e−

∫
dt d3x{L+Jψ+J̃ ψ̃}

Performing a Legendre transform to the 1PI effective action via
background field method with ψ = Ψ + δψ:Γ[Ψ, Ψ̃] = W [J, J̃ ] −

∫
dt d3x (

JΨ + J̃Ψ̃)

Taking the derivative of the 1PI effective action w.r.t. the classical
field Ψ yields the e.o.m. encoded the fluctuation effects:

(∂t − D∇2)Ψ − κλ232 ∇2Ψ2 + ∫
d3x′ dt ′ Ψ(x′, t ′)Σ(x, t; x′, t ′) = 0
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DOUBLE LEGENDRE TRANSFORMATION

Z nPI effective action ÍÑ e.o.m. for n-point functions

✓ Couple a bi-local source 12ψaKabψb to the system ® Cornwall,

Jackiw and Tomboulis, PhysRevD.10:2428 (1974)

✓ Plug in the 1-loop 1PI effective action

✓ Sum beyond 1-loop terms

✓ Apply the stationary conditions:
δW
δJa

= ⟨ψa⟩ = Ψa ,
δW
δKab

= 12⟨ψaψb⟩ = 12 [ΨaΨb + Gab]
✓ Perform a Legendre transform to yield the 2PI effective action:Γ[Ψa, Gab] = W [Ja, Kab] − JAΨA − 12KAB [ΨAΨB + GAB]
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2PI EFFECTIVE ACTION

The 2PI effective action is given by:

Γ[Ψa, Gab] = S[Ψa] + 12 δ2S
δΨAδΨB

GAB − 12 Tr [log(G)] + ΓF [Ψa, Gab]
The higher order fluctuations are:

exp(−ΓF [Ψa, Gab]) = 1√det(G)
∫

D(δψa) exp {
− 12δψA(G−1)ABδψB

−
[
S3[Ψa, δψa] − J̄AδψA − K̄AB(δψAδψB − GAB)] }

with

J̄a = 12 δ3S
δΨaδΨBδΨC

GBC + δΓF
δΨa

, K̄ab = δΓF
δGab
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DSE IN MIXED REPRESENTATION

The loop diagrams generated by ΓF use the full propagator Gab:

Taking the derivative w.r.t G, obtain the Dyson-Schwinger equation:


Σ11 Σ12

Σ21 Σ22

 =





In time-momentum mixed representation

Σ(t, k2) = (κλ3)2 ∫
d3k′ k2(k + k′)2C(t, k′)GR(t, k + k′) ,

δD(t, k2) = (κλ3)22
∫

d3k′ k4C(t, k′)C(t, k + k′)
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NAIVE NUMERICAL SIMULATIONS
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3D curve of δG(t, k) and the iterative solutions of DSE taking
advantage of convergence
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LONG-TIME BEHAVIOR
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The long-time behavior of the diffusion cascade is conjectured to be
∼ n! exp(−Dk2t/n) because of the n-loop terms. ® Delacretaz,

SciPostPhys.9:034(2020)
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MODE COUPLING THEORY

• For non-critical fluids, use the gradient expansion method where
kξ ≪ 1

• For critical fluids, their behaviors are characterized by the transport
coefficients in the MCT

By applying an uncontrolled approximation within the MCT, the re-
tarded function for the diffusion mode:

G−1(ω, k) = iω − ΓkΓk = T6πη0ξ3K(kξ) K(kξ = x) = 34 [1 + x2 + (x3 − x−1) arctan(x)]
η0 is the bare shear viscosity. ® Kawasaki, AnnPhys.61:1(1970); JC

and T. Schaefer, work-in-process
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MODEL H

○ Linearized propagator:
π⊥π̃⊥ π⊥π⊥

○ Vertices and new vertices:

i
wkj

j

��⌘

w Pkaqb

q

k

j

i

�⌘Pkaqb

q

k

j

i

i
wkj

l

l

j

○ Mode-coupling loop contributions:

The multiplicative noise contribution to the tails is subleading compared to the con-
tributions induced by mode couplings in hydro limit
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2PI EFFECTIVE ACTION IN MODEL H

Above: The traditional contribution, which originates from the vertex
of the Poisson bracket, is illustrated within the MCT

Below: Additional contributions are derived from the newer vertex
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SCALING FORMS OF THE TRANSPORT COEFFICIENTS

The modified critical transport coefficients:

D → Dc(ω, k, ξ) = D (kξ)xDFD (ωξz, kξ)
κ → κc(ω, k, ξ) = κ (kξ)xκFκ (ωξz, kξ)
η → ηc(ω, k, ξ) = η (kξ)xηFη (ωξz, kξ)
γ → γc(ω, k, ξ) = γ (kξ)xγFγ (ωξz, kξ)

• Contrary to the hydrodynamic limit, where D = κm2, η = γw and w
is enthalpy

• The relaxation frequency scales as ω ∼ kz

• The dynamical exponent z is determined as z = 4 − η + xD for the
diffusion mode in the regime where k ≫ ξ−1
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CRITICAL MATRIX

The Ornstein-Zernike form is utilized, expressed as χ−1(x) = g (x) =1 + x2, with the static critical exponent set to η = 0. And then,

Σc12(s, x) = D ξz−2 x2+xDg (x)FD(s, x) ,Σc11(s, x) = κ ξ2z−2 x2+xκFκ(s, x) ,∆c12(s, x) = γ ξz−2 x2+xγFγ(s, x) ,∆c11(s, x) = η ξ2z−2 x2+xηFη(s, x) .
where

Fi(s = 0, x → ∞) = F∞
i = constant

and
Fi(s = 0, x → 0) = F0

i x−xi

with i = D, κ, γ, η.
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UV FINITE SELF-CONSISTENT EQUATIONS

Re-scale the frequency and the momentum as (s, r) = (ωξz, ω′ξz) and(x, y) = (kξ, k′ξ), the self-energies are:

Σc12(s, x) = ξz−7 ∫
r,y

{ Σc11(r, y)
r2 + |Σc12(r, y)|2 (κλ3)2x2(x⃗ + y⃗ )2

i(s + r) + Σc12(−s − r, x + y)
− ∆c11(r, y)
r2 + |∆c12(r, y)|2 ξ2

w2y2 x2y2 − (x⃗ · y⃗ )2
i(s + r) + Σc12(−s − r, x + y)

− Σc11(r, y)
r2 + |Σc12(r, y)|2 x2 − y2

w(x⃗ + y⃗ )2 x2(x⃗ + y⃗ )2 − (x2 + x⃗ · y⃗ )2
i(s + r) + ∆c12(−s − r, x + y)

}
,

Σc11(s, x) = ξz−7 ∫
r,y

{ Σc11(r, y)
r2 + |Σc12(r, y)|2 (κλ3)22 x4 Σc11(s + r, x + y)(s + r)2 + |Σc12(s + r, x + y)|2

+ ∆c11(r, y)
r2 + |∆c12(r, y)|2 ξ2

w2y2
(
x2y2 − (x⃗ · y⃗ )2) Σc11(s + r, x + y)(s + r)2 + |Σc12(s + r, x + y)|2

}
,
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∆c12(s, x) = ξz−7 ∫
r,y

{ Σc11(r, y)
r2 + |Σc12(r, y)|2 (γλη)2Pt(x, y)(x2 + x⃗ · y⃗ )2

i(s + r) + ∆c12(−s − r, x + y)
− Σc11(r, y)
r2 + |Σc12(r, y)|2 x

2y2 − (x⃗ · y⃗ )2
wx2

(
x2 + 2 x⃗ · y⃗

)
i(s + r) + Σc12(−s − r, x + y)

}
,

∆c11(s, x) = ξz−7 ∫
r,y

{ Σc11(r, y)
r2 + |Σc12(r, y)|2 (γλη)2Pt(x, y)(x2 + x⃗ · y⃗ )2∆c11(s + r, x + y)(s + r)2 + |∆c12(s + r, x + y)|2

+ Σc11(r, y)
r2 + |Σc12(r, y)|2 x

2y2 − (x⃗ · y⃗ )2
ξ2x2 (x⃗ + y⃗ )2 (

x2 + 2 x⃗ · y⃗
) Σc11(s + r, x + y)(s + r)2 + |Σc12(s + r, x + y)|2

}
,

where Pt(x, y) = 1 + (x2 + x⃗ · y⃗ )2 x−2(x⃗ + y⃗ )−2

stay tune for the numerical results!
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SUMMARY AND OUTLOOKS

Ø To complete the numerical simulation of the mode coupling approx-
imation, as it can provide important insights into the critical region

Ø To consider extending our model to include expanding systems,
which can help us gain a deeper understanding of the dynamical
nature of the phase transitions

Ø To investigate how our approach can be connected to kinetic theory
to provide more valuable insights into the microscopic behavior of
QCD matter

Thank You for Your Attention!
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