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Motivation
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DAMPE Electron (2017)

e first direct observation of TeV break i
e extended the spectrum up to 4.6 TeV -
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* [n order to improve the et+e-
measurement beyond TeV, several
approaches can be pursued:

- Improve energy calibration and
measurement

- Increase statistics

- Enhance the performance of e/p
separation




Method

 Non-fiducial definition in this work: events penetrate the calorimeter
from one lateral side to the opposite side

Take into account additional events (compare to the fiducial analysis)

These events traverse over ~50 Xg, improving e/p identitication

Fiducial events / Expected statistics gain
(ideal case with G3 trigger)
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Challenge

e How to select lateral-penetrating events?
- No track reconstruction = unable to infer hit geometry
* Possible solutions

- Reconstruct the track using calorimeter information (PMO
colleagues’ work, with deep learning method)

- Classitying lateral-penetrating events using calorimeter
features & XGBoost (this work)




Data Sample

e Flight data:
- 9 years (2016.01.01-2024.12.31)

- Exposure time: 2.17x108s

e MC Sample:
- Electron (upper): 1-10TeV, QGSP_FTFP_BERT_HP, 99.5M
- Electron (lower): 1 -10 TeV, QGSP_FTFP_BERT_HP. 50.3 M
- Proton (upper): 1-10 TeV, FTFP_BERT, 159.8M
- Proton (lower): 1 - 10 TeV, FTFP_BERT_HP, 137.4M

Note:

- Upper hemisphere: standard scenario, zenith angle in [0°, 20°]
- Lower hemisphere:, zenith angle in [90°, 130°]

- Proton > 10 TeV: essential, but not included in this version




e Input Flight data/MC sample
- Pre-selection
- XGBoost Classitication (trained on mixed
e/p sample)
v Classifier 1: identification of lateral-
penetrating events

v Classifier 2: identification of incident
direction (along the X-axis or Y-axis)

v Classifier 3: identification of incident
vertex (plus—minus or minus—plus)

- e/p separation

- Flux calculation

Analysis Procedure

Training sample after pre-selection:
- electrons: 2.6M (upper) + 0.95M (lower)
- protons: 1.2M (upper) + 1.7M (lower)
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Pre-Selection

® Pass high energy trigger (G3)

e Total energy in[1, 10] TeV (focus on [1,10] TeV;
extensible to lower/higher energies)

e STK veto: remove events with well-reconstructed
STK tracks




XGB Classifier 1

e Classifier 1: identification of lateral-
penetrating events

e Performance of Classitier 1:
~86.5% signal efficiency with

* Typical feature profiles: ~6.5% misclassification
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XGB Classifier 2

e Performance of Classifier 2:
~99.8% signal efticiency with

o Classifier 2: identification of

incident direction

. . ~0.2% misclassification
e Typical feature profiles:

Predicted Probability Distribution
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e Classifier 3: identification of
iIncident vertex

XGB Classifier 3

e Typical teature profiles:
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e Performance ot Classifier 3:
~99.8% signal efticiency with
~0.2% misclassitication

Predicted Probability Distribution for Signal and Background
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e/p Separation

e Following the e/p separation method in Nature (2017)
e New feature definition in the lateral-penetration coordinate frame

- Detine columns perpendicular to the dominant incident direction as new layers
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e/p Separation %

e Following the e/p separation method in Nature (2017)

 New feature definition in the lateral-penetration coordinate frame

- Detine columns perpendicular to the dominant incident direction as new layers

Features of shower transverse development
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e/p Separation %

e Apply the features of e/p separation on the flight data
e Define Zeta’ = Log(F,,,) + 0.8 X Log(SumRMS)
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Acceptance and Counts Spectrum

e 452 events above 1 TeV for Y direction, no background subtraction
e Comparable to 1.5 years of fiducial events in statistics

e Rough estimation: 9 years of lateral-penetrating events = 3 years of
fiducial events (in statistics)
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Preliminary Result

Y direction only
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DAMPE Fidu, stand. Ereco, 4.8 years (Geneva)

Note:

- Statistical uncertainties shown for
this work

- Proton contamination is not well
determined due to low statistic in
MC proton sample

- XGB Classifiers will be retrained

with extended MC proton sample
above10 TeV

- XGB misclassifications are not taken

INto account
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Summary & Next Plan

e A new method based on XGBoost has been developed for non-fiducial
(lateral-penetrating) electrons

* Preliminary results agree with fiducial electron flux within uncertainties

* A rough estimation: including all lateral-penetrating events (both X and
Y) boosts statistics by ~30%

* Next plan:

- Generate additional MC samples

- Investigate XGBoost misclassitfication, proton/nuclei contamination,
and systematic uncertainties ﬂo\‘
- Enhance electron/proton separation using ML techniques 0\‘

Q0
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Event Definition

e Misclassification types:

- Else type 1: Top-to-Side Event \

L\

- Else type 2: Side-to-Bottom Event AW\ V\VAVVA\4 %
- Else type 3: Side-to-Side Event

Y

Bgo Calorimeter I z
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All Features Used

e Variables used by training

RMS » Max RMS Area?: Area? = (RMSX ., XRMS? .)?
LayerFraction
 TRMS
FValue: FValue; = RMS?XLayerFraction;
* LRMS
nBarLayer
LRMS
Ej XX i e RMSratio:
Center of Gravity: CoG; = Z’Z _’;xx 2 TRMS
o o« Zeta: Zeta = FipX(X; RMS;/mm)*/(8x10°)
Max X LayerFraction
2
* Max RMS Ratio: (Z:ﬁ iﬁ?’)
Max Y LayerFraction
* Total Hits  Max Layer Hits
Max X BarFraction: MaxXBF = —X 22T 2nergy
Layer Energy
* Max Layer Hits_1 * Max Layer Hits_2
Max Bar Energy

Max Y BarFraction: MaxYBF =

Layer Energy
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Features Used in Classifiert

e Top Else1&2 Eliminate

* Layer RMS: 0, 4~9
 FValue: 0~13

* LayerFraction: 0~13

* nBarLayer:0~13

 (Center of Gravity:0~13

Else3 Eliminate ®

Layer RMS:0~13

FValue: 0~13

LayerFraction: 0~13
nBarLayer: 0~13

Center of Gravity:0~13

X-direction & Y-direction Classification

* Layer RMS:0~5

e FValue:1~5
* nBarLayer:0~7

 (Center of Gravity:6,7,8

e BF conbination
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XGB Classifier 1

e Background: Top, Else1, Else2: e Background: Else3:

e The Contamination is ~ 3.42% at a signal
efficiency of 90%.

Predicted Probability Distribution for Signal and Background

e The signal efficiency is ~ 96.5% at a
contamination of 5%.
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XGB Classifier 1

e For remove else3 events

Loss Function
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e Multi-peak structures are found
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Features Study

e Understanding of multi-peak structures
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Features Study

e Layer fraction extrapolation in the last layer

layer energy = a - exp(b - layer_number + c¢)

- . ' \ + shower profile -
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e/p Separation

Y direction only " 10°
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