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Fiducial e/p classification with DNN

Model architecture:

David Francois Droz P´erez
https://doi.org/10.48550/arXiv.2102.05534

Results:Results:
Reached good seperation and low 
background compare to classical 
method

https://doi.org/10.48550/arXiv.2102.05534


 Variables for the DNN extractor are calibrated. (RMS layer corrections)
 Dynamically re‑weights features at both modality and cross‑modal levels

The Hierarchical Attention-based Multimodal Fusion (HAMF) model 
Input: Multiple feature modalities
Output: Fused features + attention weights
End-to-end analysis pipeline: Extraction and Gating:

 extracts features 
 refine feature importance.

Hierarchical attention 
fusion:
 weights each detector’s 

contribution
 learns interactions between 

the BGO image and STK 
information

Fiducial e/p classification with the HAMF model



Training results
 AUC of 0.9992 → high
 stable learning without overfitting
 High and stable accuracy across 

training epochs

Fiducial e/p classification with the HAMF model
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The combined HAMF model outperforms models with only variables information (DNN) or 
only BGO image (CNN)

Predictions of Data/MC have a good agreement, allows for further background subtraction and 
efficiency calculation. 

Prediction
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An estimator combining both models scores: 
 can help provide better e/p identification at high energy above 10 TeV

Prediction

Fiducial e/p classification with the HAMF model

DNN score HAMF score 
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Fiducial Electrons Flux – based on DNN
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Acceptance 
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Data-MC DNN score distribution 
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Background Subtraction (newBgo)
 proton background 

proton smoothed
proton raw mc
data
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Efficiency and background fraction

• Live time = 236375620 seconds
➔ 2015-12-30 to 2025-10-01
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Fiducial Electrons Flux
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Statistical Analysis: break significant  
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Fiducial Electrons Flux – based on new Omega
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Omega: selections using attention fuesd CNN+DNN and the DNN score, 
and cut on edge  

Data-MC Omega score distribution 
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Efficiency and background fraction

• Live time = 236375620 seconds
➔ 2015-12-30 to 2025-10-01
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Efficiency and background fraction

● New cleaning cut: edge cut (bit3):
→ (see Prof.Xin Wu’s slide)
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Newbgo compare 
to 2017flux

Fiducial Flux, Statistical error only 
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Oldbgo compare to 
2017flux

Fiducial Flux, Statistical error only 
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Statistical Analysis: break significant  
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TopFiducial 



Top-Fiducial Electrons

 the shower direction extrapolates to 
the top and bottom of the BGO 
sensitive volume, within a distance 
of 280 mm from the centre, in either 
the X or Y direction.

 the bottom extrapolation of the 
shower is not within a distance of 
280 mm

 Shower leakage



Top-fiducial event energy reconstruction with CNN

Fiducial Non-fiducial

the CNN method improves the estimation of the energy of the particles 
Enzo Putti-Garcia

https://doi.org/10.48550/arXiv.2503.10521

https://arxiv.org/search/astro-ph?searchtype=author&query=Putti-Garcia,+E
https://doi.org/10.48550/arXiv.2503.10521


The CNN’s robustness against shower leakage makes it a 
powerful tool for high-energy cosmic-ray studies, especially in 
the TeV regime

Non-fiducial e/p identification with CNN



 same model as for fiducial events
 different input variables for the DNN extractor

Separate into two energy range for training:
 Below 1 TeV and above 1TeV

Room for improvment : 
 selecting different dnn variables
 add STK image extractor 
 further optimization of variables calibration 

Non-fiducial e/p identification with HAMF



Data/MC comparison with the HAMF model

Prediction

 A energy dependent shift of the Proton-MC template is needed



Comparison of the CNN and the HAMF model

 CNN has a better separation power,
 The combination of both estimators enables more accurate background modeling
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TopFiducial Flux – based on classifier Omega 
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Acceptance
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TopFid: Data-MC Omega score distribution 
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TopFid: Efficiency and background fraction
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TopFid: Efficiency and background fraction
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TopFid: Flux result above 1 TeV
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Template Parametrization -- on-going 

● Tuning parameters for 
background systematical study



36

Backup



37

Fiducial Electrons Flux

(newBgo)
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Efficiency with different selections cuts
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The figures can be improved 

Omega: selections using attention fuesd CNN+DNN and the DNN score, 
and cut on edge  

Fid Data-MC Omega score distribution 
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TopFid Data-MC Score Distribution (Newbgo)
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