G ¢aAzLk%s

nd Technolo

Improved Energy Calibration
for BGO Calorimeter in DAMPE

Cong ZHAO GRXEE)
University of Science and Technology of China

DAMPE Electron Analysis Meeting
Hefei, Feb. 9-13, 2026



Outline

* Overview

* Fluorescence Position-Independent Calibration
* MIPs Calibration

* Dynode Ratio Calibration of PMTs

* The Response to Cosmic-Ray Electron Candidates



Energy Measurement of Unit
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Energy Calibration Process
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Fluorescence Position-Independent Calibration



Why only Dy5?
Why only use signals read out from both ends with Dy5?
 a narrower distribution

* a more linear behavior
 a negligible impact of MIP
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Traditional Method

Attenuation Length Calibration

Assumption: light attenuation follows an exponential law.
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The linear fit function, even with segmentation and stepwise approaches, cannot

fully describe In(Ep/Ey) . -



Traditional Method
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The fluorescence attenuation length can be used to monitor the temporal
variation in the performance of each crystal, verifying that all crystals remain
within the designated normal operating condition.



New Method
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Instead of calibrating the attenuation length, E, and E, are corrected to E,
relying on the stability of the E.
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Stability of the E. for Proton MIPs
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A position dependence is observed in E., indicating deviations from ideal
exponential fluorescence attenuation.

10



E. in All Layers of Proton MIPs
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The positional uniformity of E- has improved after correction compared to

before the correction.

Helium MIPS
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arbon MIPs
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An Example of Ep Correction

One point every 10 mm
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New Method

Smooth the temporal variation of the position-dependent coefficient
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Comparison
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The new method reduces the energy position dependence in the reconstruction

at both P and N ends
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MIPs Calibration



Proton MIPs Calibration

*Most abundant component of cosmic rays

*Daily updated using proton MIPs for continuous calibration.

In-orbit Calibration: Proton MIPs within +20°
geographic latitude

Simulation of the Space Environment:

Primary component: Back-tracing simulation of
incident protons within =20° geographic latitude.
Secondary component: Based on AMS-01
measurements at low magnetic latitudes.

The input spectrum in the in-orbit simulation is not
fully consistent with that of the actual space
environment.

Input Proton Flux for Simulation
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Proton MIPs Calibration
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Matching the MIP peak in ADC from flight data with simulated energy deposition
In MeV allows direct conversion from ADC counts to energy. 19



Proton MIPs Calibration
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Proton MIPs are highly effective in correcting for temperature effects and
thus have served as the fundamental benchmark for energy calibration.
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Helium MIPs Calibration

Back-tracing simulation of incident helium
particles within =20° geographic latitude.

o OOE Why Helium MIPs?
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Helium MIPs at
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Helium MIPs at each Layer of the S1 end
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The digitization of the S1 end in the simulation data requires optimization
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Helium MIPs Calibration

Energy Loss (MIPs)
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The proton MIP signal at the S1 end is relatively small and falls into the non-
linear response region, likely due to a low signal-to-noise ratio.
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Helium MIPs Calibration
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Validation of Carbon MIPs - Total Energy Vs Time
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The Carbon MIP energy shows a temporal variation of less than 1%, and
the energies measured at the two ends are highly consistent.
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Dynode Ratio Calibration of PMTs



Traditional Method

The signal correlation of adjacent channels in a specific PMT.

30 ——T—T1 1 T T 300
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| | | | | | | | |
% 2000 4000 6000 8000 1000012000 % 2000 4000 6000 8000 1000012000
Dy8 (ADC channels) Dy5 (ADC channels)

In energy reconstruction, the signal conversion between dynodes, derived from fits a
few hundred ADC counts, must be extrapolated up to ~12,000 ADC counts.
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The opposite-end channel is used as an intermediary to extend the fitting range
by combining ratios from channels with wider overlapping signal ranges.
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New Method

Traditional Fit Range
5_ : :

Traditional Fit Range

SPY-0 S A S S ——
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Especially for Dy2, this method extends the fitting range from ~100 to ~500 ADC
counts compared with a direct Dy2-Dy5 fit, reducing low-signal nonlinearity.
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Stability

Variation of the dynode ratios for a specific PMT from January 1, 2016, to January 1, 2026.
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LED Test

Electronics VA chips
-
: Dy8 . !
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Two reference PMTs with different sensitivities (the output signal of Dy8 from monitorl, the output signal
of Dy8 from monitor2) are used to verify the output signals from Dy2 and Dy5 of the test PMT. The light
from a pulsed LED was split by fibers, which are able to cover all PMTs.
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LED Test

Correlation between Dy5 and monitoring PMT (M1) signals.
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In the medium-to-high signal range, Dy5 and M1 exhibit good linear consistency,
further confirming the reliability and effectiveness of Dy5 as an intermediary
channel for dynode ratio calibration.



LED Test

Correlation between Dy2 and monitoring PMT (M2) signals.
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Dy2 and M2 also maintain a stable linear response in the medium-to-high signal
region, but Dy2 exhibits stronger nonlinearity at low signals, consistent with in-
flight observations.



The Response to High-Energy Cosmic-Ray

Electron Candidates



PN Consistency
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Stability of P/N
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Even/Odd Consistency
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Stability of Even/Odd

Electron Candidates Above 200 GeV
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Shower maximum crystal

The Crystal with the Maximum Energy Deposition in the BGO Calorimeter for Electron Candidates
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Shower maximum crystal
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Statistical Stability of Electron Candidates
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The event rates (3 months) fluctuate randomly around a stable average without
systematic drift, indicating a stable detector response over years of operation44



High-Energy Electron Candidates
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Layer Index

The longitudinal energy deposition distribution of the electron candidate event across
layers, with the simulation data representing 100 electrons having the same energy
and incident direction as the flight data.
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Calibration of Fluorescence Attenuation Effect



Dy5 Method Vs Dy8 Method

Electron Candidates Above 200 GeV In a Specific BGO Bar
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This may be due to the lower signal-to-noise ratio of Dy8, leading to larger fluctuations
and degraded resolution. Therefore, Dy8 is not suitable for attenuation calibration.
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DAC Calibration



Layer 5 and Layer 7

(a) Dy2 of Side0 (d) Dy2 of Side1
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Helium MIP
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MIPs Calibration



Helium MIPs Calibration
A Specific Bar
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In practice, the Heyc value is replaced by the first-layer value derived from
flight data collected during the initial three-month period.



