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Nuclear Cluster Physics

Nuclear many-body problem
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Early developments for clustering in nuclei
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The lines show common elements. The maxima for a given isotope chain

coincides with nuclei with even (and equal) numbers of protons and neutrons.

Excitation energy of first excited states plotted versus binding energy per nucleon
for nuclei up to A =20. Good clusters should have both high binding energies and

first excited states.
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Ikeda diagram for light nuclei

Supplement of the Progress of Theoretical Physics, Extra Number, 1968
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Cluster Nucleosynthesis
Diagram (CND)
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Excitation energy

Threshold Rule: clusters appear near decay thresholds.
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The Systematic Structure-Change into the Molecule-like
Structures in the Self-Conjugate 4n Nuclei

Kiyomi IKEDA,* Noboru TAKIGAWA and Hisashi HORIUCHI
Department of Physics, University of Tokyo, Tokyo

(Received November 6, 1968)

The rotational bands with the diatomic-molecule-like structure in the self-conjugate
4n light nuclei, such as, @-@, @-'*C and @-'*O, appear systematically at near the
threshold energy for the decay into the relevant subunit nuclei. The relations between
the structure change into the molecule-like structure and the threshold energy for the
decay into the subunit nuclei are discussed. According to this discussions, the diagram
for the systematic structure changes into the molecule-like structures through the
alpha particle release is presented as the function of the mass number and the energy.
Upon this diagram the rotational bands with K=0% in light 47 nuclei can be sum-
marized. The order of the degree of the polarization toward the separation of the
subunit nuclei for the diatomic molecule-like structure case is discussed qualitatively.
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Geometry structure of Na nuclei

In nuclear microscopic cluster model,
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Structure of the Excited States in 12C
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Microscopic cluster calculations for 12C,
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Rich clustering structure in nuclear systems.
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Cluster states of 12C
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Two broad resonance states with large decay width
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'PT Four-particle correlations in fermion systems at finite temperatures are investigated with special
1 Sl<] <4 attention to the formation of a condensate. Instead of the instability of the normal state with respect to
the onset of pairing described by the Gorkov equation, a new equation is obtained which describes the
onset of “quartetting.” Applying to symmetric nuclear matter, below a critical density, the four-particle
condensation (a-like quartetting) is found to be favored over deuteron condensation (triplet pairing).
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Nonlocalized clustering

Clusters make the localized motion confined by
the inter-cluster distance parameter R.
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Inversion doublet rotational bands in 2°Ne

H.Horiuchi and K.Ikeda,PTP40,277(1968)
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Clusters make the nonlocalized motionin a
container whose size is described by
parameter 8 (B? = b? + 23?)
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Brink cluster model

Container picture



Container picture for various cluster systems

S, and S;: inter-cluster
S, distance parameters.

3 4

Clusters make the localised
motions around the fixed
positions.

Traditional cluster model
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B: the size of the
nucleus parameter.

Clusters move around
~in the cluster-type
mean field.

Container model

Table 5

B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren,et al.,PRL. 110, 262501 (2013) PRC89, 034319 (2014).

Y. Funaki et al. / Progress in Particle and Nuclear Physics 82 (2015) 78-132

By, B:) = (B1, B,), are shown in parentheses in a unit of fm.

113

Max.(B.., B;)

8Be

12c 20Ne 3wLCS

4aLCS

o+ 1.000(1.8, 7.8)

2+
4+

3-

0/:0.93(1.5, 1.5)
(01:0.978)
0,:0.993(5.3, 1.5)

0.993(0.9, 2.5) 0.987(0.1,5.1)
0.988(0.0, 2.2)
0.978(0.0, 1.8)
1.000(3.7, 1.4)
0.999(3.7, 0.0)

0.989(0.1, 5.4)
0.981(0.1, 6.6)

0.944(0.1, 8.2)

0.942(0.1, 8.4)
0.931(0.1, 9.0)

The maximum squared overlaps between the single THSR wave functions and RGM/GCM wave functions. The corresponding f values, where (8, = 0.015
5
0.01

% Be

o B 0.005
0.995(1.6, 3.0)
0.994(0.1, 3.0)
0.977(0.1,2.1) -5

4 2 0 2 4

o

2 The value by the use of the extended version of the THSR wave function, with the parameter values (81, , B1z, f2.1, B2;) = (0.1, 2.3, 2.8, 0.1), which

we will discuss in Section 3.9.3.
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Future work: New trial wave function for the nuclear clusterstructure of nuclei

An antisymmetric 4-nucleon Slater Determinant wave function,
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Integrated Gaussian Method
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[OO and NeNe collisions )
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Shape/Structure of the 12C
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Two-body overlap function (Two-body RWA)
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The clustering structure from experiments : M
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The clustering structure of 1O
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Na nuclei

Search for the 5a condensate state

30 condensate 40, condensate 5a condensate
(Hoyle state) (04" state) (?)
2001 (THSR) 2008~ (OCM,THSR) 2019~

A 4

study of alpha condensate in finite nucle1



Multi-alpha condensation

Dilute multi-a cluster condensed states with spherical and 1 @
axially deformed shapes are studied with the Gross-Pitaevskii 21 E(**C)~ 0.0 MeV
equation and Hill-Wheeler equation where the « cluster is treated 5  E(**0)~2MeV
as a structureless boson, % E(**Ne )~ 3 MeY”
it is predicted to exist in heavier self-conjugate 4N nuclei up ‘f _ e
to N=10. 5. e
/./
o
T. Yamada and P. Schuck, Phys. Rev. C 69, 024309 (2004). I .
2 4 6 8 0 12
N

Some candidates for & condensate were

found from experiments for '>C and '°0O.

Rev. Mod. Phys. 89, 011002 (2017).

No experimental signatures
for o condensation were observed
Phys. Rev. C 100. 034320 (2019)

An experimental way of testing Bose-Einstein condensation of
clusters in the atomic nucleus is reported. The enhancement of
cluster emission and the multiplicity partition of possible emitted
clusters could be direct signatures for the condensed states.

PRL 96, 192502 (2006)




Recent experiment for Sa condensation
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Spectroscopy of narrow, high-lying, low-spin

states in *"Ne

I. A Swariz,*" B. A. Brown,* P. Papka,'* F. D). Smit,” R. Neveling,” E. Z. Buthelezi,” 8. V. Fértsch,” M. Freer,”
Tz. Kokalova,® J. P Mira,'* E. Nemulodi,"* J. N. Oree,® W. A Richter,™* and G. E Steyn’
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several MeV @ @

| 19.17Mev  5a

: 19
y 16.86 MeV "“Ne+n Y. Funaki et al., Phys. Rev. Lett. 101, 082502 (2008) .
Y. Funaki, Phys. Rev. C 97, 021304(R) (2018).

4 o condensed state (0%) in 10
Candidate at E, ~ 15.1 MeV

_ ___E!__f_ew MeV
: @g‘@t 4a+a

15.1 MeV ?
11.98 MeV '?C+%Be

1189 MV Necrarg 0 ®

alpha inelastic scattering at 0°

is useful to excite O states. Y 16
4,73 MeV O+a

160 + a

Low-energy decay particle measurement
in coincidence with alpha inelastic scattering.

0,*; g.s.

20Ne

courtesy from Kawabata

The state at £x=22.5 MeV/, which could not be interpreted by
the shell-model calculations, is a tentative candidate for the 5a
cluster state.
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Recent experiment for Sa condensation
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The Salpha microscopic wave function

To solve the configurations problem:

Conventional cluster model

Container model
| Schematic illustrations of two distinct microscopic cluster models. a, The conventional
custer model of B, in which the inter-cluster variables {S;} are the Jacobi coordinates of {R;}. b,

Container picture for 4o + o cluster structure of ?’Ne. The B is the size variable for the description of
4a and f3; for the description of the relative motion between 4 and ¢ clusters.

1/25% +2/382 +3/482  4/582
'-P{ﬁ,,ﬁz]=fd3R]d3de3R3djﬂ4d3R5 Exp [- /31 ’:522"' /485 _ ’:3,4
1 2

(1)

:| {DB{R[ :-R21R3:-R41R5}

where the conventional Brink cluster wave function ®B,

®"(Ry, Ry, Ry, Ry, Rs) =

1
V,fﬂ“’[if’liﬁl}---‘35(32}---%0{35}],

o {EKP [_ 2(&, - 51)% + 3;’3{521&; )2 +3(& —53}2] Ex [_%;54}2] lj.p;m{a} 2

(4)
with the single-nucleon wave function,

R2

1 .3 L iy
'i'i{Rk}:(E}zf 27 L.



Three-body effective interaction

To solve the interaction problem: 5.<md>n,\
X’ /_t:’:—ffrm_%___f:%—vl =4
x A 4% /
The Hamiltonian for 2°Ne in this work can be written as: Pl TR e
A e A} B 4
0 :‘R’+ VA B
N
2 U
H = V2?2 - Tg + +3 VP 4 SV, e ke
ijk 2 2 Y —Fi
1<J 1<j 1<j <k x4 T t| ---F2 X
g T
_ _ _ _ "o 10 20 30 40 50
The effective nucleon-nucleon potential part is taken a Gaussian forr.., Eem (MeV)
which is expressed as:
2 TABLE III. Physical quantities for double closed shell nuclei together with nuclear matter.
2 Ti <Dt
V}Ei ) = Z v(z) exp { ( (-:)) } (Wr{;z) + Mrgz)Pij) P Eoin (MeV) 2?2 2?.?) 2?.12 221; Ezs%
a (fm~2) 0.50 0.50 0.50 0.41 0.51
10 Euin (MeV) 123.0 124.0 93.0 121.4 127.6
and a (fm™?) 0.35 0.35 0.31 0.32 0.34
Eump (MeV) 23.3 27.7 23.2 32.7 26.4
.. 2 2 40Ca Euin (MeV) 334.0 340.2 250.8 325.5 342.1
(3) J— 3 rt:l' TJk a (fm™? . . . . .
Visk = 2 i) exp {~ (%) - (3,) } FLUN S
" " NM E/A (MeV) 17.0 16.7 15.7 16.0 16.0
X (W,Ea) + M,(f) ng)(wr(f) + M,(‘3) Pj:), I;é gx/?eV)) 300 s 103 32 300

Tohsaki F1 three-body interaction was used.
A. Tohsaki,Phys. Rev. C 49, 1814 (1994).




Radius-Constraint Method + Stabilization Method

To solve the resonance problem:

Radius-Constraint Method,

S g (BraBr B Bica 2 (01 — XD | Bra (61, 55))

x g (81, 5;)

= (RD}g) By, B) (910 (B 8|00 61, B))

W= ) 9P BrB)ra(Bis 52)
B1.B2

Here ,R") < R, and Ry is the radius cut-off parameter.
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Five 0" states above the threshold

To solve the resonance problem
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Energy (MeV)

Two of Five 0 states above the threshold

Present RCNP Exp.  iThembaExp.  Phenom.Cal.

5 a threshold

Two 0* states around 3 MeV are found.

S2 factor
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The Salpha condensate state

Reduced width amplitude

larger amplitude ,
Simple way to confirm condensate state

I
0.3 T T I I T T T T T 0.00 0.18 0.36 0.54 0.72 0.91
(07) 0%, Il
0.25 07g
0f, ~---- (07) 037 10 iy
0.2 0%, (07) . 0i
o oAE
0.15 | d . et 074
i , 03 (On) 07 [ilomm
0.1F Fo i of,
P : 0%, A
0.05 H " bk R 0%
h 03
0 bbbl 2 VR 03
\/ 07
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0%
0.1 ] | I I I 1 I I 1 I 1 0
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D+
a (fm) Oi
1
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B. Zhou, et al., Nat. Commun. 14, 8206 (2023).




The decay scheme and connections

25+
5 Na condensed state .
< 204 40 /
o a
< a
g 15 S6Ar @
5 =8 ] 36 Moy
Z 10- 285 321
= 24Mg <£| eV
2 s- 20 @ 28 Mey,
- Ne 2
{120 '°0_"4 4 Mey
%%_ C./' 2.0 Me\/
o= <:__I-IO 3 2.3 el — T '
2 2 Mey, 8 10 12

T. Yamada and P. Schuck, PRC 69, 024309 (2004).

Exotic clustering structure ?

S5a threshold

07 (g:s.)

20Ne

I, ~0.7 MeV

I ~7x1071° MeV 0;

B. Zhou, et al., Nat. Commun. 14, 8206 (2023).
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Candidates of a 2a condensate surrounding the 160 nucleus

\ 24Mg (10 + 201)

07

0 1000 2000 3000 4000

time [fm/c]

State E r B(1S0) (r?) (r*)val
0f —16.78 2.67 3.47
0y —8.16 28.4 2.70 3.53
07 —4.95 <0.01 145.0 2.97 4.13
0y —1.26 0.17 160.7 2.94 4.08
07 0.37 4.28 3.03 4.28

2a condensation around the core nucleus 160

Htet, et al., PRC112, 014322 (2025)




The 6 clustering structure probed by Inelastic Scattering

6o condensed state was searched for in the highly excited region.

§ i 24 ? A. Tohsaki et al./Nuclear Physics A738 (2004) 259-263 261
i= wl[ ]2 o] N
< (a) % » L 8 elab 1o e 1d 1 ber of for each kernel. Here, th £ il
= 20 " ot The inlep;fn"mfr, number of psfrmnt.m@‘ns ?r each kerne - ere, “(.‘ fasp O-': he imrmr
E ./ § 600 ﬂ('r L\[} M/ 1\::::11 i?:l 1})?15]:li::l:j\;(,r[ut? final row shows a full number of permuations without any
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Phys. Rev. C 69, 024309 (2004). g i, ! (U™ (B) 01w (B)) = > W, :
2 e |
« 60 condensed state is expected 100 ¢ | ’
at 5 MeV above the 6a threshold. 0 iyt o RS
- E,~28.5+5=33.5MeV {1’ Mg e o
* No significant structure suggesting the 6o § 300 'J,r R % J\ﬂN f | Still tough in theory—
condensed state. = v W /i ﬁf*% A
£200 iy, but AI makes a big difference.
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. e . .. o o VAT
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Excitation Energy (MeV)

by measuring the 12C+12C scattering
PLB,848 (2024)  KAWABATA Takahiro
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Clustering structure of 3a+p in N



Search for the Hoyle-analogy state in 1°C

1185, 735

. L1075, 2

-71.55, 5/

12C(states) +

13
single particle states |:> C (states)

M. Milin and W. von Oertzen, Eur Phys J A 14, 295 (2002).
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S. Shin, et al., Phys. Rev. C 103, 054313 (2021).
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Search for the Hoyle-analogy state in 13C
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Chiba et al.,Phys. Rev. C 101, 024317 (2020)
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Hoyle-analog state in 13N
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Transition Present Experiment
B(E1,3/2] —1/2)) 0.016 0.036
B(E1,1/2F —1/27) 0.0007 0.036 4+ 0.004
B(E2,3/27 —1/27) 4.87
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Y.Y Cao et al. Phys. Rev. C 112, 034313 (2025)




Hoyle-analog state in 13N

PHYSICAL REVIEW C 109, 054308 (2024)

Cluster structure of 3a + p states in N

,1'S. M. Cha,’ E. Harris ®,1-3 C. Hunt,'* C. H. Kim®.,° D. Kim,?

,LE. C. Pollacco®,’” B. T. Roeder,! M. Roosa®,!-?
1,3

J. Bishop L2G. V. Rogachev,l*l4 S. Ahn,”> M. Barbui
S.H. Kim,° E. Koshchiy ,L Z. Luo,? C. Park®, C. E. Parker
A. Saastamoinen,' and D. P. Scriven
YCyclotron Institute, Texas A&M University, College Station, Texas 77843, USA

2School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

3Department of Physics & Astronomy, Texas A&M University, College Station, Texas 77843, USA

4Nuclear Solutions Institute, Texas A&M University, College Station, Texas 77843, USA
SCenter for Exotic Nuclear Studies, Institute for Basic Science, 34126 Daejeon, Republic of Korea
®Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
"IRFU, CEA, Université Faris-Saclay, F-91191 Gif-Sur-Yvette, France

Background: Cluster states in °N are extremely difficult to measure due to the unavailability of *B +a elastic-
scattering data.

Purpose: Using B-delayed charged-particle spectroscopy of 120, clustered states in '*N can be populated and
measured in the 3 + p decay channel.

Methods: One-at-a-time implantation and decay of '*Q was performed with the Texas Active Target Time
Prolectlon Chamber 14983ap decay events were observed and the excitation functlon in 13N reconstructe

| 9B(e. s>®a/p+lzc(o+)] B ®al PBECT)®al, and

[
[9B(%+) &) ] structure, respectively. A previously seen state al VIEV was also determined to have a [p +
2C(g.s.)/ p + "*C(01)] structure. The overall magnitude of the clustering is not able to be extracted, however,
due to the lack of a total width measurement. Clustered states in >N (with unknown magnitude) seem to persist
from the addition of a proton to the highly a-clustered '*C. Evidence of the %+ state in °B was also seen to be
populated by decays from *N*.

Conclusions: These states are seen to have

I(a) 3/21 — “B(3/2 I)®n|;,,2®u |

ag(a) )

04r
"B(1/2 )Xal12@ 2
0.2r
/\\/
04l (b) 3/22_ —_ "B(3/2)Xals2XR) 0 ]
- PB 1/2 ®lklju®l
0.2+
~ AR
0.0 P Vi . —
\
\/l
0.6 f . f { t :
(c) 3/2; —_— B(3/2 )X)alsX) 0
0.4 — B(5/2")Qals2Q) 1 A
- = 'B(3/2 )Qal52( 2
0.2

B(5/2 7 )Qals &) 3 ]

This obtained state corresponds to
the state observed at 11.3 MeV
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Hoyle-analog state in 1N
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light nuclei, ground and excited states, superposed many clustering configurations
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/ . . Bdckward Scattering Mode
The response function of photonuclear reaction L CEqT gt CO. Lr+o0100
Laser Hutch

Riw.q) = ¥ 1%l O@) (¥ 8(Es — Eo ), L T
f

in which w is energy of incident photon, O(q) is the respondence of nuclear
system against photon injection. For evaluating the response function, define
the Lorentz integral transformation

C(oq) = / " gy P a) /( I

- w—og)?+o7
I

After integrating over w, and letting ¢ = —op + ig;, we obtain
] i L(o,q) = <\IJ ’ \If>
Lloa) = Y (0] 0'(a) v O(a) o)
7 (EI—EU—}—O'*) (Ef—Eg—l-U) K /

1 1

— f

- ifj (0] 0'(a) = 1KY =7 Ol [90)

1 1
= (U] O'(q) O(a) [¥o)

(H—E0+J*)(H—EQ+O')

k V. D. Efros, et al., J. Phys. G. 34, R459 (200]){.
_




Photonuclear reaction cross sections of ®He and SLi
4 N\ [ N
Inclusive Photonuclear Cross Section Inclusive Photonuclear Cross Section
5.0 T T 5.0 [
& o
40 | e 40 o e e
‘ ‘ m  Experimental Data ‘ B Experimental Data
E !
b o
20 40 60 80 100 20 40 60 80 100
® (MeV) o (MeV)
®He+y cross sections calculated by LIT ®He+y cross sections calculated by LIT
with a+n+n cluster model space with six-body model space
/L 4
S. Bacca, et al., Phys.Rev.Lett.89, 052502 (2002).




Photonuclear reaction cross sections of ®He and 6L
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S. Bacca, et al., Phys.Rev.Lett.89, 052502 (2002).
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Observation of the Exotic 0; Cluster State in He
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Intersection of nuclear structure and high energy nuclear collisions
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from collective to cluster motion
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Summary and Prospect

» Light nuclei exhibit a rich variety
of cluster structures and, near the
cluster threshold, can display novel
clustering configurations.

Future (2026~)

> Integrated Gaussian Method
enhanced with:
New interaction paradigms,
Al-driven many-body approaches

» In-depth interdisciplinary research
in areas such as nuclear reactions,
nuclear astrophysics, and high-energy
heavy-ion collisions, among others.
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and your attentions.
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