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Introduction of HEFT

HEFT:
T matrix 1. Build a Hamiltonian model;
(Phase Shifts,
inelasticity) 2. If Experimental data available, we fit

Experimental data to fix the parameters in
Resonance  the model;
(Mass , Width, Pole If Lattice data available (close to physical
pion mass), we fit these data;
If both, we can use both of them constraint

HEFT

position, Coupling)

Lattice 1. Build Model the model parameters. |
Spectrum If we only have Lattice data with
| - unphysical pion mass, we need another
2- FIX Para- 3 EXtraCt PhyS parameter for the mass dependence, such
as mass slope.
i 3. From the fixed Hamiltonian, we can study
. . B, B o1 1 the properties of Resonance. Especially,
Unphysical & >—< X from the eigenvector in the finite volume, we
mass ?? oy B2 oo 32 can estimate the internal structure of the
hadron.
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Introduction of OBE and DD* vs DD*

The interaction between D and D* OBE Heavy Quark Symmetry
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« g = 0.57 from the decay width of D* —

D, while undetermined parameters 1&f. 4 :
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Introduction of OBE and DD* vs DD*

The interaction between D and D* OBE
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Introduction

of OBE and DD* vs DD*

The interaction between D and D* OBE Heavy Quark Symmetry B
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The mass differences leads to isospin breaking, our calculations are
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Check Robustness
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ONnO0.~+ 1.2 GeV 0.587+0.21 0.550+0.12
pp > X DD m
1.17 GeV 0.56 0.9
Cheng, et al. PRD 106,016012
40 I i T L T T
E X |
35l ! | DOD** D * D' L, DDt D *D"™
1 I
I 1 I
Iy 'y
S 30 pi i i b !
g i : ] i |
o 2°f | ! r 1 ™
g il ] il
= 207 | 1 ]
Q ]
E 15} b
3
= 10F L ]
5 L
3873 3874 3.875 3.876 3877 373 3874 3.875 3.876 3.877 373 eI 3878 3876 3877
Mmpepon+ [GeV] Mpopog+ [GeV] Mpopog+ [GeV]
‘ * * Res(D?D*+
A (GeV)| BE (keV) T (keV) X2y I=0 I=1 PD°D**) PD*D*) DT D70
0.8 -387.7 67.3 48 fm  95.8% 4.2% 70.0% 30.0% —1.063 + 0.0017
1.0 -393.0 70.4 47 fm  95.8% 4.2% 70.0% 30.0% —1.055 + 0.0017
1.2 -391.6 72.7 A7 fm  95.7% 4.3% 70.3% 29.7% —1.052 + 0.0017 78
; @ TaNTRRY A
] L //_\v/\v/ﬁ\\ m L q) O S e hy=vd -
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The nature of T,

Complex scaling method

r — re',

°) q—qe ¥ Hy®y = EyPy,

--- D°D**,6=15"
— D*D*,6=15"
D°D**,0=25"
— D"D*,0=25°

* Bound state: T,
mr .=3874.7 MeV,

AE = —393 keV

~ D*opo jpop=o  Coupled-channel = =3 7. =70.4keV
effect =
S « J(r?) = 4.7 fm
*— + *+ - =74 ;
. D*~D*/D** D~ ” | '\
Im(E) o x A e &1 +70.0%D**D° 30.0% D*D*°
, S.Aoyama et al. PTP. 116, 1 (2006). BealiE) M=y
T. Myo et al. PPNP. 79, 1 (2014) wrr
N. Moiseyev, PR 302, 212 (1998) 958%1 DD (I — 0)
0.4 4\ — DD T, 42% DD*(I == 1)
T —+ Re(E) PN D*D™
S f = ~ .
Bound states \\‘.\ ‘,;l“ 0.2 —Ir' \\\""a___ Because of mass difference
\‘ e Resonance states ..,[_E_ 0o _i hhh",‘_‘,‘_‘:_-:-_—,—_-_—_-_-_n_.___.,.,,,,_ _ ~ ~ .
\ 20 = T e =0 =—{r i — D)
X - 0 =00 V2
\ ?—0.2 . =
1
\ihuntlnuum states —0.4 1 [[=1]= E(D*_‘_DO G D*OD+)
(I) 1|0 2I0 3|0 4|0
r [fm]
29
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Two Interactions ?
Too many solutions of a+b=5

dependence! from T
DD*, DD* X
ch — Interaction | 5 From 3P0 model, and the
o > - wavefunction of quark model
cc statel
aq 31
X(3872) X One boson exchange (OBE)
2 32




From the interaction of
DD* to obtain the
interaction of DD* +
DD*, check X(3872)
exists or not by pure
DD* + DD* interaction,
without cc state.

Imag.(E) [MeV]

=10

I — _
Vigip = x* Vpsp

DD* + DD*
A=1.0GeV

-10

Imag.(E) [MeV]

“! DD* + DD*

*1 x=1.5

10 ‘ . . ’ ’

-10 -5 0 5 10 15
Real(E) [MeV]

F|_l //_\v/\v/q\\ I o e

-5 0 5

10 15

Real(E) [MeV]

0

Imag.(E) [MeV]

“1 DD* + DD*
“1Tx=2.0

0 5 10
Real(E) [MeV]

S University of Chinese Academy of Sciences

2 4 6 8 10
Real(E) [MeV]

First of all,

Produce X(3872) with pure DD* + DD*

* Bound state: T,
mr .=3874.7 MeV,

AE = —393 keV
[r,, = 70.4 keV

o J(r2) =47 fm

«70.0% D**D°, 30.0% D*D*°

It IS attractive interaction

while it is not enough to form a bound
state, while just a virtual state

3870.0 + 0.26 1 MeV

) PRATRXE

31
A
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Produce X(3872) W|th DD* + DD* and cc

From the interaction of

DD* to obtain the
intraction of DD* +
DD*, check X(3872)
exists or not by pure
DD* 4+ DD* interaction, =~ |
without ¢¢ state. "1 A=1.0GeV

=10

-4

—6

Imag.(E) [MeV]

-10 —I5 (IJ 5l 1IO 1I5
Real(E) [MeV]

Attractive interaction BUT not enough to form a bound state

» A bare state shows the cc bare state component.
1c1(2P, 3940) and its wave function, determined
by the quark model.

* The interaction parameter y = 4.69 for the 3P0
model is determined through y(3770) to DD.

» Therefore the analysis of X(3872) does not
introduce any additional parameters.

L //_\v/\v/ﬁ\\ I o e

Real(E) [MeV]

——— ppTo

=== DYD*0

— DDt +

— DD +

+c.c,8=15°
c.c,8=15"
+c.c,8=25"
c.c,8=25"°

1 1
0.0 0.5
-10

1
1.0 1.5

0 10 20 30 40 50 60
Real(E) [MeV]
(b)

versity of Chinese Academy of Sciences

70 80

@ Tadsmry

* Bound state: T,
mr .=3874.7 MeV,

AE = —393 keV
[r,, = 70.4 keV

o J(r2) =47 fm
«70.0% D**DY, 30.0% D*D*°
* Bound state for X(3872)

AE = —80.4 keV
FTCC - 325 keV

«J(r2) =112 fm

«94.0% D*°D° 4.8% D*~D™,
1.2% cc
° 32

s y=T A




T.., X(3872)HYT* J&

0.4 ——- D°D"" T

T R
AE = —393 keV
[r, = 70.4 keV

o J(r?) =47 fm

«70.0% D**D°, 30.0% D*D*Y

« X(3872) R4
AE = —80.4 keV
FTCC - 325 keV

. <r2> :—1012 fm —0.2 1 . — DD X(3872)
*94.0% D* " D° 4.8%D*D*, 1.2% cC

—0.4 —= Xc1(2P)

r [fm]
X (3872) BURE e/, FTILAEANDDURR B R— M EBRKRICHIE R, KPR
REFIERE, —BXPMTSHREARTDODEME, MBAEIRS, MERSEAFT—, ME2KE
FRIAZE AN E TS, MM KEEBXFRERMEHR T XBINESE, MEREESHKRSF,
ERAcCRR T AE. MAREERF, WANEESHEZRER. 33
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Prediction

0
S ﬁnf}*ir c.c,8=15° ) wave function I(JPC) u — channel : 7 u — channel : p/w t — channel : p/w
1 gu;o +: Z :; 5 . 7(DT D = DD (1) [T 3V Sve Ly _EVEL LYY
N DD 4cc0-25 D7D+ D) 1) W R R 8
;. : = ([DTD*] + [D"D*]) 0(17)[X(3872)] Ve vp— vy —3vi- Vi
S 4414} 0.0 | oo va(PTDT] = [D°D) 1(17%) —5V V- v lyi iyt
g H ' 7 ({DFD*7} + {D"D}) 0(1+)[he] —3V, Byea Ly —dyp - Ly
E ' 1'1 & {DTD} —{D°D})  1(1T) [Z(3900)] 3V Ve vy Vo — Vi
- —6 : 1 —08k *oey,
1 i . o
o ﬁ) P T A siack, pp° /DD
e —-16 *s _ —
E . | . ’ D D *  0(1%)[TA] T}.(3874) Red, cc + DD
0.0 0.5 1.0 .5
ol / 1(1%) Unstable
0 10 80
0(1%)xe1]  X(3872), x.1(3958) LHCb 2406.03156
.. Teng Ji, Dong, Guo, Hanhart,
, D —, 117)[We1]  Missing... Meifner, 2502.04458
1)\(/;1(_ I;)957 9 MeV r — 16.7 MeV 0(1*)[h,] X(3870), h(3961)  comPAss, PLB 783,334 (2018)
o ' 10510 S )
*Main decay channel: D*D 1(1%)[Z,] Nopole around 3900

F|_l //_\v/\v/\\ L T

34
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Prediction

0
—== DD +c.c,8=15"
— DDt +c.c,0=15"
2 mme DD+ c.c,8=25"
— DDt +c.c,8=25"
> 41t 0.0 .
s K
al v -
= —61 ¢ 1 —0.8} oy
' .'-. )
Y 'o-
—8 1 * —16F s .>
' | | |
t 0.0 05 1.0/{5
_lUI ILI T

T T
0 10 20 30 40

Real(E) [MeV]
(b)

* Xe1(2P)
M = 3957.9 MeV

*Main decay channel:

F|_l //_\‘v/\v/q\\ I o e

50 60 80
_FXCI(ZP) == 167 |\/|eV
D*D

6B Yats Ry

Observation of new charmonium(-like) states
in Bt - D**DYK™* decays Xer(4010) JPC = 1t
LHCb Collaboration 2406.03156 mo =4012.5 %35 757 Ty = 62.7253 %6

—6.4 —6.6

I B | T T L B I R A L

5wl f LHCb 9 fb-! % Lol LHCb 9 fb-!

20 M @ 427 ®)

& s0f 18 sof .

R 12 1

= + 1= L

5 I L s LT PR O PR s ST Pt T 5 r I T L) AL LN | i

o 4.0 4.2 4.4 4.6 4.8 © 0 4.0 4.2 4.4 4.6 4.8
M(D*-D") [GeV] M(D"* D-) [GeV]

X(3872) Relevant DD* Scattering in N f = 2 Lattice QCD
H. Li, C. Shi, Y. Chen, M. Gong, J. Liang et al

CLQCD 2402.14541 T amn 0w

307(2) 362(1) 417(1)

Bound state from F2,3
Ep(MeV)  —9.773} 977,50 —1.370% -1.3195

Hs) = K(s) BW fit from Ej 4
- 1 — K(S’)Zp(?) ‘ mp(MeV) 3924(5)  3926(6) 3969(4) 3995(4)
I'r(MeV) 63(23) 57(18) 37(13) 57(10)

Bound state pole and residual from Es 3.4
q Er(MeV) —11(1) —10(2) —1.6(7) —1.7(7)
K(S) = 5 -+ Yy Resonance nole and residue

M? —s mpg(MeV) 4008(4)  4029(4) 4050(3) 4071(3)
I'r(MeV) 60(6) 38(9) 43(8) 50(7)
Brpp« (%) ~ 100 ~ 100 ~ 100 ~ 100
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MD,(2317)%IT,.:(2327)

3000
o] Bf§
1 D?,(2860)|1_| D4(2860)
2800+
I 1.)-;,(2700)=‘=
S . - Gl SR e e A T D'K
S" g — D, (2460)
S 2400) Sl G R DK
é » D (2317—
2200t
[ D:"' ° Godfrey/Isgur(1985)
I | ] Qur fit
2000 DA ——  Detected
1800L

JPC

Z.Yang, G.-J. Wang, J.-j. Wu, S.-l. Zhu, M. Oka Phys.Rev.Lett.128(2022),112001

@ TonvmRs

University of Chinese Academy of Sciences
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D.,(2317), D.,(2460), D.,(2536), D.,(2573)

3000 Z.Yang, G.-J. Wang, J.-j. Wu, S.-l. Zhu, M. Oka Phys.Rev.Lett.128(2022),112001

i | 2 - - .
R ———— - Bk 1. Fix the bare mass and wave function from Gl model;
1 D?,(2860)|1_| D4(2860)
2800+
I 1.)-;,(2700)=‘=
2600} = p,2500) - s eanass
_ [ s D(2573)
S [ S Dyes3eg RLsied | DK
S" I g — D, (2460)
; 2400;_______________________-_ _________________________________ DK
cEq : D231 —
2200t
[ D:"' ° Godfrey/Isgur(1985)
I | ] Qur fit
2000 DA ——  Detected
1800 — ' : ' ‘ '
0~ 1- o+ 1+ 2% 3-
JPC
Cs cores channel
B(|**1L;)) B(mass) a L
D2 (2317) M) 2405.9 DK S

D;,(2460) [0.68]'P,) — 0.74]°P,) | 25115 D*K S, D
= —0.99¢s + 0.13¢4
D1 (2536) |-0.74|*P1) — 0.68]>P,)| 2537.8 D*K S, D
= —0.13¢5 — 0.99¢44
D3,(2573) [3P,) 25712 DK,D'K D
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D.,(2317), D.,(2460), D.,(2536), D.,(2573)

3000
e <1k
1 D?,(2860)|1_| D4(2860)
2800+
1.)-;,(2700)=‘=
N ---.‘( .............................. DK
S" — D,,(2460)
— |
2 2400 O SRR O e S | DK
cEq » Dy(2317—
22001
D:"' ° Godfrey/Isgur(1985)
I | ] Qur fit
2000 DA ——  Detected
1800 — ' : ' ‘ '
0~ 1- 0* 1* 2+ 3
JPC
Cs cores channel
B(|**1L;)) B(mass) a L
D2y (2317) [ Po) 2405.9 DK S
D;,(2460) [0.68]"P,) — 0.74]°P,) | 25115 D*K S, D

= —0.99¢, + 0.13¢4

D1 (2536) |-0.74|*P1) — 0.68]>P,)| 2537.8 D*K S, D

D3,

= —0.13¢5 — 0.99¢4
(2573) |3 P>) 2571.2 DK,D*K D

L //_\v/\v/ﬁ\\ I o e

Z.Yang, G.-J. Wang, J.-j. Wu, S.-l. Zhu, M. Oka Phys.Rev.Lett.128(2022),112001
1. Fix the bare mass and wave function from GI model;

2. The interaction of bare-channel and channel-channel;

3p, model 1

at quark level

Figure 2: The diagram contribute to the process D?(2317) — DK

University of Chinese Academy of Sciences

1

3

2

K

D

@ tetvmxsy

p,w
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Mass (MeV)

D.,(2317), D.,(2460), D.,(2536), D.,(2573)

Z.Yang, G.-J. Wang, J.-j. Wu, S.-l. Zhu, M. Oka Phys.Rev.Lett.128(2022),112001

3000
e - Bk
1 D?,(2860)|1_| D4(2860)
2800t
1.):,(2700)4:
.______________________];ﬂE _____________________________ D'K
I — D,(2460)
2400t m
--------------------------------------------------------- DK
Dy(2317—
2200t
D:-‘- ° Godfrey/Isgur{ 1985)
I | ] Qur fit
2000 DA ——  Detected
1800 ' : ' ‘ '
0~ 1- 0* 1+ 2t 3~
JPC
Cs cores channel
B(|*°*'L;)) B(mass) a
D2y (2317) [ Po) 2405.9 DK
D;,(2460) [0.68]"P,) — 0.74]°P,) | 25115 D*K S, D
= —0.99¢5 + 0.13¢pq
D1 (2536) |-0.74|*P1) — 0.68]>P,)| 2537.8 D*K S, D
= —0.13¢5 — 0.99¢4
D?,(2573) |3 P>) 2571.2 DK,D*K D

L //_\v/\v/ﬁ\\ I o e

1. Fix the bare mass and wave function from Gl model;

2. The interaction of bare-channel and channel-channel;

3p, model

at quark level

3. Fit Lattice data;

E — mg — mp [MeV]

100

50

-50r

—100r

O+\\\
L i\

E — mg — mp* [MeV]

1001

501

=50r

—100+

p,w

Figure 2: The diagram contribute to the process D?(2317) — DK

1+
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E — mg — mp* [MeV]

100

501

=501

—100

1

NN

---- Free Hamiltonian
— Fit

¢ m;=150 MeV

1 mp=156 MeV

2 3 2 5

L [fm]
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D.,(2317), D.,(2460), D.,(2536), D.,(2573)

Z.Yang, G.-J. Wang, J.-j. Wu, S.-l. Zhu, M. Oka Phys.Rev.Lett.128(2022),112001

3000
;::::::::::::::::::::::::::;::Bf§ 1. F|X the bare mass and wave func“on from GI m0d6|;
i D?,(2860)|1_| D5(2860
2800+
[ ot 2. The interaction of bare-channel and channel-channel;
2600 = p,(2590) 4 p
S !3.»-.\£Z§_3_6):i:_1_3___iiéb_}l_);’f(f?___- DK 3 K
2. 2400[ . “( o Ly mops! p,w P(cs)
2 : Do 17— D D%(2317) ~ 32.0%
= 2200[ at quark level D51 (2460) %52'4%
L ® Figure 2: The diagram contribute to the process D?(2317) — DK Diy (2536) ~ 98.2%
L D= ® Godfrey/Isgur{ 1985) D35 (2573) ~ 95.9%
I | ] Qur fit . .
20001, o — Derecred 3. Fit Lattice data;
i T TN ‘ Conclusion:
1800 0 E 0 e > = 1001 07 \ 100F 1F \ 100{ k‘ N
- \\ D*,(2317)-DK
s S S0t - S 5o S sof > * S-wave
Cs cores channel 2 Ty = DM z D51(2460)-D K
B(|*5*1L;)) B(mass) e L ? 0 g 0 .“ 3 ol .
Dro(2317) ) 24059 DK S . . | i Mass moving vs Gl Model
D, (2460) [0.68]"Pry — 0.74°Py) | 25115 D*K S, D U s I 3 I eo - .
N = D.,(2536)}-D'K
D:1(2536) |-0.74|* P1) — 0.68|>P,)| 2537.8 D*K S, D a0F 4 mp=150 MeV -wave
— 0134, — 0.99¢4 —100} -100} s2f ma— =100 4 " ce mev D52(2573)-D(*)K
D?,(2573) > P2) 25712 DK,D*K D 1 2 L[fé ] 4 5 1 2 L[fé ] 4 5 1 2 L[fé ] 3 5

Mass stable vs Gl model
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D(2317), Dy(2460), Dy1(2536), Dy(2573)

3000
S e K1
I ,(2860)|1_| ;(2860)'1'l
2800+
I D-;:,(2700)=l= 2
< .________________________JQ??f’):l.’ _______________________ DK
S" I g — D, (2460)
; 2400 I e f o e T DK
cEq i Dy(2317—
2200+t
[ D:"' ° Godfrey/Isgur(1985)
I ] Qur fit
2000 DA ——  Detected 3
1800 — ' : ' ‘ '
0 1- 0+ 1+ 2% 3
JPC
Cs cores channel
B(|**1L;)) B(mass) a L
D2,(2317) 1 Po) 2405.9 DK S

D:,(2460) [0.68]TP;) — 0.74°Py) | 25115 D*K S, D

= —0.99¢, + 0.13¢4

D1 (2536) |-0.74|*P1) — 0.68]>P,)| 2537.8 D*K S, D

D:5(2573) |° P2)

= —0.13¢s — 0.99¢4

25712 DK,D*K D

Imag.(E) [MeV]

128(2022),112001

e
D 317 ..
50 ) Preliminary
...10 -
1
_20 - —
P(e5)
—-30 - D7(2317) ~ 32.0%
Dy (2460) ~ 52.4%
D21(2536) ~ 98.2%
—-40 - D}5(2573) ~ 95.9%
£l
&
-50 y n.
i )-DK
-wave
-60 - > )-D*K
- ving vs Gl Model
= DK Bare Mass D¢n -D*K
T T T (*) D-Wave
0 50 100 150 200 )-D'K

F|_l //_\v/\v/q\\ I o e

Real(E) [MeV]

) TN TRRE
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’le vs Gl model

41
Soomp Sl fi




B - D™D, (2460)

1 a
O.SOLHCbgfb - -

0.45F
0.40 F ","':-" .

0.35F

m(rtr™) (GeV)

0.30

20 220 o5
m(D} ") (GeV)

Dy = D.m Isospin breaking
Dint, DIm®, DFm~ areisospin triplet
— Four quark state

Model Resonance  Mass (MeV)  Width (MeV)
fo(500)  464+23+14 214 +28+8
500) + RBW T.5(0*
Jo(500) %) TEY/TS  2312+27+11 264446421
. fo(500) 472+ 32+19 226+24+18
500) + K-matrix T,5(0%
fo(500) x Tea(0F) TEHH/TO. 2328 £12+£12 96+ 16 + 23

L //_\v/\v/ﬁ\\ I o e

D™ DX gt

decays

B Faasmxs

P University of Chinese Academy of Sciences

9 T T T 9 T T T T
(QD) 120 r (05 100
100
[e.e] N 0
N 2 80}
. 80 - . B
SR S 60
=1 C = 40
<
= 40 [ ..g
3 : B
8 20F 5
@) X 1 @) ol
O L ul1 T | T S T | PR S Loy T T T N B 1
0.25 0.30 0.35 0.40 0.45 0.50 2.10 2.15 2.20 2.25 2.30

m(nt ™) [GeV] m(D} ") [GeV]

/‘\60_ L L L L L L L.
______ ++ > I ‘ ]
T: 250 LHCb m(n"n~) > 0.39 GeV 1
Tes 2 ol
————— fo(500) S
Background P
— Total fit 3
-+ Data g
2+
&)

0'..............
2.10 2.15 2.20 2.25 2. 30

m(D{nt) [GeV]

LHCb Sci.Bull. 70 (2025) 1432
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B - D™D, (2460) - D™ D ntm™

200¢ v
= — 8
Z 150] Z
S =
= =
2 | =
=100 T
o L4
= <}
50 5
5 = 2
0! - ‘ — B 0
0.30 035 0.40 0.45 0.50
Mg |GeV]
+ (= ——
) ,(:n' ) /?T+
D+ (D) A 7 s
T R - ~ tadl
D;rl DD ), D KO Kt) —%& \I\’“(K*)
\ s D;l Dt
~ g [ \ 5
~ - KY(K™) DD
(a) (b)
+ +
m
KO(KY) T - A
P —— N // P - / P -~
n / v + x
D‘sl | l"// D:_ D.ql L - D:—
D (D)
(c) (d)

Figure 1.

contribution.

Diagrams for the decay D,;(2460)T — Dfntx~ with (a+b+c) and without (d) the D*K

F|_l //_\v/\v/q\\ I o e

[=2) =] = E
g 8 8 8
S

o
o
T

20 |

Candidates / (0.008 GeV)

Masn- |GeV] 0 25| *

Tang, Lin, Guo,
Hanhart and Meissner,
Commun. Theor. Phys.
75 (2023)5 055203

030 035 040 045 050
m(rta™) [GeV]

University of Chinese Academy of Sciences

————— fo(500)
Background

— Total fit

—|— Data

100
-1 P g L
80 9fb|_.———— - (b) -

40

Candidates / (0.008 GeV)
N
o

20 Fr BRI

P — Lo PR R RN S [N T S T
2.10 2.15 2.20 2.25 2.30
m(D7t) [GeV]

LHCb m(n*m)>0.39GeV ]

O 9! (c) 7
40:_ B _—|7_| -
N eI R B =
r _j'" i L

Candidates / (0.008 GeV)
8
|

2.10 2.15 2.20 2.25 2.30
m(D 7t [GeV]

LHCb Sci.Bull. 70 (2025) 1432
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D.,(2460) » D m*m™

ZY Wang, YS Li and SQ Luo, PRD 111 (2025) 7, 076009

D: .
D;’ T D}
D1 (2460) / Dy (2460) Da1(2460)"
at
\\ - ~ 1S —

Missing the triangle loop, losing the
(a) (b) nature of Dy1(2460)

Roca, Dias and Oset, Eur.Phys.J.C 85 (2025) 7, 808

=5 Wik 4 2 ke oy 2
TR Bl SR
AR e N e 7 e
(c) (a) (b) (©
6;(”/‘**? X o S
BT, T
\\'*_\. T DT + ‘\‘-; ‘T’D D:
Z.Yang, G.-J. Wang, J.-J. Wu, M. Oka, 2510.01564 @ ©

Missing the coupled channel effect of D;m — DK
44
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D, » Df m¥m™

Conclusion: ot
* . € -
D ,(2317)-DK tODH 2
- _ gp KB _Tv Juvd
D..(2460)-D’K S-wave Mp = E&ef'el” (g — 2 )

D,,(2460): g9s > gp

Mg = gge

Mass moving vs Gl Model
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