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|. Nuclear structure across energy scales

Il. Nuclear deformation in ground-state 238U and %Zr nuclei
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Collective structure of atomic nuclei

Emergent phenomena Of the many-bOdy quantum SyStem Y. Ye, X. Yang, H. Sakurai, B. Hu, Nature Review Physics, 7, 21-37 (2025)

« Non-monotonic evolution with N and Z Y.-G. Ma, S. Zhang, Handbook of Nuclear Physics (2022)
Quadrupole/octupole/hexadecapole deformations
Clustering, halo, skin, bubbile... 0.18F
: 208
0.16F Pb
Quadrupole Octupole
b 8fF—T 1 T 1T T . .
I nucleonic clustering

Neutron skin

- 0.3 | I I. T T | T T T T I 2
R = experiment i T
z(im) linear average 106 116C 450, 531‘ e ||
i of experiment Cd g
S. Cwiok et al., Nature 433, 705 (2005) 0.2 & prediction B (2)
L.P Gaffney et al., Nature 497, 199 (2013) o  FSUGold

Hill-Wheeler de ~
coordinate 'Y( g) qg. 0.1 i
40 . . . bl 92 :
Triaxial spheroid v .
0 N
20 i
\ | 0.1 g —l_5
iy i 4 2 0 2 4 00102
-3
e 0 I (=).(1N_Z) A 02 X (fm) p (fm)
A Andreyev etal,, Nature 405, 430 (2000) A.Trzcinska etal., PRL 87, 082501 (2001) }P. Ebran etal., Nature 437, 341 (2012) 5

A. M. Centelles etal., PRL 102, 122502 (2009)



Nuclear shape at low energy: long exposure

Lower-energy spectroscopy method energy

A

Traditional imaging method taken before destruction

Tij2

Ay

gamma spectroscopy l ‘

few-nucleon transfer i ‘ i

radioactive decay

— Low energy spectroscopic methods probe a superposition of

EITRE— l : these fluctuations.
coulomDp excitauon . .
s petoson — Instantaneous shapes not directly seen, but inferred from
}%,f model comparison.

laser spectroscopy

Each DOF has zero-point fluctuations within certain timescales.

Quantum fluctuations in orientations ‘ N . E= n? J(;-/,+ 1)
. - 0.307 MeV
4* 0.148 MeV
Time scale: 7 > I/h ~ 10°-10* fm/c Coherent superposition of g: 0.045 MeV

wavefunctions probed at low energy
Rotational band of 238U



Imaging by smashing method

Take a snapshot Evolution Measurement

Nuclei collisions T, (7 = 0) 0,T" =0, EQOS, viscosity...

S -

Pressure-driven expansion of free-streaming
— >

Quark-gluon plasma (QGP)

A 4

- o
T~ 2Ry/T ~ 0.1fm/c 7 ~ 10fm/c 7~ 10%fm/c
exposure expansion detection

Po

p(r,0,¢) = R J. Jia et al., Nucl. Sci. Tech. 35, 220 (2024)

B2 — quadrupole deformation
B3 — octupole deformation

Y —> triaxiality

a9 — surface diffuseness

Ry — nuclear size

ab initio theory/shell model/DFT



Imaging by smashing method

Take a snhapshot Evolution Measurement
Nuclei collisions T, (T =0) 0,T" =0, EQOS, viscosity...
T -

Pressure-driven expansion of free-streaming

—_— >
Quark-gluon plasma (QGP)

A 4

- o
T~ 2Ry/T ~ 0.1fm/c 7 ~ 10fm/c 7 ~ 10"fm/c
exposure expansion detection
_ PO - - Observables _d°N
p(r,0,9) T ot R J. Jia et al., Nucl. Sci. Tech. 35, 220 (2024) d¢de N(pr) Z Ve ind

B2 — quadrupole deformation

B3 — octupole deformation

R2 2 g n ,ing .
(r1) o (1 e™?) Event-by-event linear responses:

TM'\ Olpr] R, V, x &,

Ry B [pr] R,

Y —> triaxiality
ay —» surface diffuseness

Ry — nuclear size

ab initio theory/shell model/DFT Si ze & S h a p e

Key: 1) fast snapshot, 2) linear response, 3) large multiplicity for many-body correlation -




800

4 |pr] o~ _ R,
[pr] R,
(b) $
i T Pb+Pb 7
b=2.5 | V/SnN = 5.02 TeV
55 6.0 65 550 575 600 625
R (fm) E; (10°MeV)
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Linear response in ultra-central collisions
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Imaging nuclear shape in high-energy snapshot

* Nuclear shape in intrinsic (body-fixed) frame not directly visible in the lab frame
--Mainly inferred from non-invasive spectroscopy methods.

b Quantum fluctuations in orientations - c . E= # J(2J/ +1)
‘v ‘ h & e 0.307 MeV
...... € | O\
' y 4+ 0.148 MeV
Time scale: 7 2 I/ ~ 10°-10* fm/c Coherent superposition of (2): 0.045 MeV

wavefunctions probed at low energy
Rotational band of 2®U

1 fm/c = 3 x 1072* seconds
=3 x 10 attoseconds
= 3 yoctoseconds



Imaging nuclear shape in high-energy snapshot

Nuclear shape in intrinsic (body-fixed) frame not directly visible in the lab frame
--Mainly inferred from non-invasive spectroscopy methods.
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Imaging nuclear shape in high-energy snapshot

Nuclear shape in intrinsic (body-fixed) frame not directly visible in the lab frame
--Mainly inferred from non-invasive spectroscopy methods.
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STAR, Nature 635, 67-72 (2024)

https://www.nature.com/articles/s41586-024-08097-2

across energy scales

Body-body: large-eccentricity large-size

V2}‘ pT\‘

Tip-tip : small-eccentricity small-size

Vg\ pT}‘

W =a+ blﬂzz'
(6pp)® = a+b,B;,
(v; 6pT) as— b3[32 cos(3y).

G. Giacalone, J. Jia, C. Zhang, PRL 127, 242301(2021)

Shape-frozen like a snapshot during nuclear crossing (10-?°s << rotational time scale 10-?'s)

probe entire mass distribution in the intrinsic frame via multi-point correlations
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Il. Nuclear deformation in heavy 238U and °¢Zr nucleus

B Po
p(’P, 0, ¢) - 1+ e(r—R(0,9))/aq

R(H, ¢) — RO (1 + 62 [COS 7Y2,0(97 ¢) + sin ’YY2,2(07 ¢)] + /B3Y3,0(97 ¢) + B4Y4,0 (97 ¢))

o ill

DFT calculations predict a slightly small WS deformation [52U ~ 0.28 — Bauws =~ 0.25]

. . . 47
corresponding to a larger volume deformation in presence of £,,~0.1 Bzpeay = ——; 1 / &rp(r)r’Ya
0

3R,

47 B(E2
Low-energy estimate with rigid rotor assumption from B(E2) data Azip = SR2Z &

/82U,LD = 0.287 + 0.007 YULD = 6° — 8&°
Bsu ~ Bau ~ 0.1

62
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Ratio of observables

>U /<V§>Au

2
(v,

0.2<p.<3GeVic '~ -~ @ )
. P; =~ a | o () ® PY
aQ © ®
7o) - AN N
. , ; . = = <
we o) ..... =~ N ~~ L
& L & rT e, ~ of ®
2 | ® ] o © o o i
n e . [ = [
1.5 2subevent method ag. 1.5 e [ ] C\(ICN
1 0_.:2:: GeV/c = & \>/ .
: & U+U ‘- . -
60 0 20 0 -1
Centrality [%)]
_ o
o0 o
ik .'Q.‘.' ' _
| 1 1 1 ] 1 1 1 | -2r 1 | 1 1 1 | 1 .
40 20 0 40 20

Elliptic flow and size fluctuation are enhanced by the nuclear deformation effect.

Ratios cancel final state effects and isolate the effects of initial state/nuclear structures.

Centrality [%]

Centrality [%]

— U deformation dominates the ultra-central collisions (UCC)

Centrality [%]
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Constraining the ground-state 238U: 8,y and yy

(VI VB pu
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Constraining the ground-state 238U: 8,y and yy

(B2 EPD) Ay
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Relation confirmed from hydro
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Sufficient precision is achieved
from ratios in ultra-central collisions
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Constraining the ground-state 238U: 8,y and yy
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Relation confirmed from hydro
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High-energy estimate
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low-energy estimate:
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Viscosity, nuclear parameters, and model variations

1) Taking the ratios cancels the viscosity effects.
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Viscosity, nuclear parameters, and model variations

2) Effect from nuclear parameters are small, included as model systematics.
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Viscosity, nuclear parameters, and model variations

2

2

2) Effect from nuclear parameters are small, included as model systematics.
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Evidence of octupole deformation g3y

Sm,

a,

11 6}, Iarge d
L

However, vs is fluctuation driven, expect in central
2 2
<v3> X <z—:3> ~1/A

mass number
B. Alver and G. Roland, PRC 81, 054905 (2010)
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Evidence of octupole deformation g3y

IP-Glasma+MUSIC calculations

— 7T T T

IP-Glasma+MUSIC+UrQMD —
B,=0.00, B,=0.09 -
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1.4
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<~

1.2
'
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Sm,
3115_} Ial‘ged A

Centrality (%)

However, vs is fluctuation driven, expect in central

<v§> X <z—:§> ~1/A

mass number
B. Alver and G. Roland, PRC 81, 054905 (2010)

2
(v3p.),

C. Zhang, J. Jia, J. Chen, C.

(v3) follows a linear increase with 33,

Characteristic anticorrelation in <v§5pT> shows a pronounced (33-dependent suppression.

IP-Glasma+MUSIC+UrQMD

p,=0.10,

10 20
Centrality (%)

Shen, L. Liu, 2504.15245

2
<U3>U U asuy b3 3 b3 4
Rjg= 15— t— = + g3+ ,3
<U3> Au+Au G3Au a3Au a3A
2
<v35pT>U U
R =~ " TUIU ~ o — bBB2.
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Evidence of octupole deformation g3y

STAR, Rep. Prog. Phys. 88, 108601 (2025)
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= No apparent p; dependence
= Order of vzand v,;-p; reversed by considering non-zero 5 B4y,
= Anevidence and modest 33 ; ~ 0.08-0.10 are confirmed and Bsu ~ Bau



Probe f;y and its fluctuation

Octupole collectivity

L. Liu, C. Zhang, J. Chen, J. Jia, X. Huang, Y.-G. Ma, 2509.09376

soft
octupole deformation Case Bs - (52) (83
Ucaseo 0.00 0.100 0.01 0.000300
= Ucasel 0.05 0.087 0.01 0.000288
7 7 7 Ucase2 0.06 0.080 0.01 0.000274
Ucases 0.07 0.071 0.01 0.000252
Ucases 0.08 0.060 0.01 0.000218
2 =92 2 Ucases  0.09 0044 001  0.000169
< ﬁ 3> — B 3 + 0o Bs Ucases 010 0.000  0.01  0.000100

Cnel2} = <5721> ~ <5727,,0> + (Pnpy,) </8121>

Cne{d} = (%) — 2(e2)”

~ (€np) — 2<5i,o>2 +(p

2 2%

) (B2) — 2(ppi) (B2

Four-particle correlation is linearly scaled to (8% ).

|Res c1avic3 12| = |Rustarnviqay| |c3,e{4}/cs {2} = [vi{4}/vi{2}|

x1072

| TRENTO
L (B3,)=0.01

¢ 0-2%
¢ 0-5%

U+U@193 GeV

| TRENTO
[ <ﬁ§,u> =0.01

¢ 0-2%
¢ 0-5%
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UU/AuAu

(b) 1

1
0.0001

1
0.0002

(B3.u)

A way to discriminate between static and dynamic collective modes in high-energy nuclear collisions
B. G. Zakharov, JETP Lett. 112, 393 (2020); P. Carzon et al., PRC 102, 054905 (2020),; H. Xu et al., PRC112, L051901 (2025); K. Hagino and M. Kitazawa, 2508.05125

1
0.0003
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Nuclear structure via collectivity v, ratio

V2 Ratio 5 21 0.2% V3 Ratio 5 21 0.2%
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Nuclear structure via collectivity v, ratio

Ratio

1.05

v, Ratio 5 o
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- & Vapg, /V|2,Zr STAR Da{a E E ! E
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y i
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v3 Ratio 5 21 0.2%
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I ey ]
" #Vin,/Vs; STARData | | @& 1
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C. Zhang and J. Jia, PRL128, 022301(2022), J. Jia, C. Zhang, PRC 107, L012901 (2023)

Boru~ 0.16 increase v,, no influence on

Vs ratio

Baru = 0.16 £ 0.02

. Af; AP ANay AR
difference 0.0226 -0.04 -0.06 fm 0.07 fm

Current estimation is from transport model
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Nuclear structure via collectivity v, ratio
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* Direct observation of octupole deformation in °®Zr nucleus
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Boru~ 0.16 increase v,, no influence on

Bzz~ 0.2 decrease v, in mid-central,
decrease v ratio

Baru = 0.16 £ 0.02

B3z, = 0.20 = 0.02

difference

AB;  AB3  Aag ARq

0.0226 -0.04 -0.06 fm 0.07 fm

Current estimation is from transport model

C. Zhang and J. Jia, PRL128, 022301(2022), J. Jia, C. Zhang, PRC 107, L012901 (2023)
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Nuclear structure via collectivity v, ratio

vz Ratio

v, Ratio 5 21 02%
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* Direct observation of octupole deformation in °¢Zr nucleus
* Imply the neutron skin difference between °°Ru and %Zr

Boru~ 0.16 increase v,, no influence on
Vs ratio

Bzz~ 0.2 decrease v, in mid-central,
decrease v ratio

Aay=-0.06 fm increase v, mid-central,
smallimpact on vy

Bory = 0.16 +0.02 |83,z = 0.20 &= 0.02

. Af; ABs | Dao | ARy
difference 0.0226 -0.04 | -0.06 fm 0.07 fm

Current estimation is from transport model

18

C. Zhang and J. Jia, PRL128, 022301(2022), J. Jia, C. Zhang, PRC 107, L012901 (2023)




Nuclear structure via collectivity v, ratio

V2 Ratio 5 21 0.2%
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Direct observation of octupole deformation in °¢Zr nucleus
Imply the neutron skin difference between °®Ru and %¢Zr

Simultaneously constrain parameters using Bayesian analysis

ORu
OZr

Ro =

~ 1+ clAB‘; + CgAﬁg +c3ARy + cyAa

Boru~ 0.16 increase v,, no influence on

Vs ratio

Bzz~ 0.2 decrease v, in mid-central,

decrease v ratio

Aay=-0.06 fm increase v, mid-central,
smallimpacton v,

0.07 fm only slightly affects
Vo, and vj ratio.

Radius ARy =

Baru = 0.16 £ 0.02

B3z, = 0.20 = 0.02

. A3 A3 Aag ARy
difference |5 5556—0.04 | -0.06 fm [0.07 fm
Current estimation is from transport model 18
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Imaging the radial structures (neutron skin)

Radial parameters Ry, ag are properties of one-body distribution —» <pr>, <Ng,>, VoRP~v.{4}, 6,0,

H. Xu, QM2023

J. Jla C Zhang, PRC 107 L02901 (2023)

J. Jia, G. Giacalone, C. Zhang, PRL 131, 022301(2023)
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Nuclear structure is inherent of heavy-ion probes
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lll. Nucleonic cluster pattern in light '°0 nucleus

-=-= from one-body distribution to many-body nucleon correlations

1+ w(r?/R?)
1 + e(r—R)/ao

> Modern ab initio first-principle calculations

p(r) o
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Engineering QGP shape and nucleon-nucleon correlations

Nucleon fluctuation subnucleon fluctuation NN correlation (cluster pattern)

Lo
5 g

N~ —r p(a)
deuteron deuteron
ab initio calculations
TAR W. He, Y.-G. Ma et al., PRL 113, 032506 (2014)
S » PRL 130, 242301 (2023) W. Broniowshi, E.R. Arriola, PRL 112, 112501 (2014)
STAR, PRC 110, 064902 (2024) Y.-G. Ma, S. Zhang, Handbook of Nuclear Physics (2022)

C. Zhang, J. Chen, G. Giacalone, S. Huang, J. Jia, Y.-G. Ma, PLB 862, 139322 (2025)
S. Huang, J. Jia, C. Zhang, PLB 870, 139926 (2025)

G. Giacalone et al., PRL135, 012302 (2025), PRL134, 082301 (2025)

S. Jahan, Roch, C. Shen, 2507. 11394, ...

Nearly same N,

A
A 4

d+Au collision, 200 GeV O+0 caollision, 200 GeV
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Nucleon-nucleon correlations in finite quantum many-body systems

Possible clusterin ground—statelgO nuclei based on low energy, but NO clear experimental evidence.

Woods-Saxon: without many-body nuclear correlation

Nuclear Lattice Effective Field theory (NLEFT): model with
many-nucleon correlation including a clusters

Luetal.,, PLB 797, 134863 (2019)
M. Freer et al., Rev. Mod. Phys. 90, 035004 (2018)
S. Elhatisari et al. Nature 630, 59 (2024)

Variational auxiliary field diffusion Monte Carlo

(VMC): MC solution of Schrédinger eq. from the time evolution of

trial wave function.
A. Lonardoni et al., PRC97, 044318 (2018)
J. Carlson and R. Schiavilla, Rev. Mod. Phys. 70, 743 (1998)

ab-initio Projected Generator Coordinate Method
(PGCM): Wave function from variational calculation (as in density
functional theory)

Frosinietal., EPJA 58, 62 (2022); EPJA 58, 63 (2022); EPJA 58, 64 (2022)

0.05

0.00

| e VMC
| — - - 3pFfitto VMC
|~ e NLEFT

| = = « 3pF fitto NLEFT
| == 3pF

| == PGCM

4
One-body r (fm)
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Ab-initio nucleon-nucleon correlations and their impact on high-energy

Multiple final-state observables
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C. Zhang, J. Chen, G. Giacalone, S. Huang, J. Jia, Y.-G. Ma, PLB 862, 139322 (2025)
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 3pF asthe baseline can NOT capture the NN correlations.

 Distinct differences are observed between VMC and NLEFT/PGCM.

* Central collision is prominent.

Data analysis is ongoing and will be presented in sOM.

Two-body correlations in coordinate space

Two-body C(Ar)
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Probing the tetrahedral a clusters in 0 nucleus

Jin-Yu Hu, Hao-jie Xu, Xiaobao Wang, Shi Pu, 2507.01493
Compactness of cluster

< | (a) Tetrahedron 1 (b) Spherical
e - [def2}/e,2) x€0, 2] T - = {2} /ef2} x=0 T
51.4 Def2ieft) xelo, 2] — :2{2} ,:3{2} ;2 -
i - $e {2} /e{2} VMC ° 1 A2} ey i

B = = {2} /e{4} x=0
e{2}/e{4} x=2 A

- e (2} /e{4}VMC
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Predictions for centrality-dependent trends are significantly sharper with tetrahedral deformation than with spherical symmetry.
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Benchmarking geometric tomography of 0O nucleus

STAR, 2510.19645

& 120 ©) d+Au - d) O+O = data
>>R —— hydro+PGCM
< - ¢ {4} {2} NLEFT
— - - 2 2
o "2 = —— &, {4Y¢,{2} PGCM
rf\# < - - - £,{4Y¢,{2} AFDMC
0.8 B
0.6 # data
— hydro + +
0.4- —e{aYe 2} [
-I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 1 I 1 1 1 1 | 1 1 1 1 | 1 J
20 40 60 80 50 100 150
Nch Nch

S. Jahan, Roch, C. Shen, 2507. 11394

(vn{2})* = ea{2} = (v;,)

NLEFT from Dean Lee; PGCM from Benjamin Bally

e2{2} = (e3)

(va{4})* = —cafa} = 2(02)* — (o) e{d}* = 2(3)" — (¢3)

d+Au is flat; Large enhancement in O+0O with continuous decrease

£o{4} Ie,{2} from three models:
AFDMC vs. EFT/PGCM has a visible difference.

Can many-nucleon correlations significantly impact
the eccentricity fluctuations? YES!

C. Zhang et al., PLB 862, 139322 (2025)
G. Giacalone et al., PRL135, 012302 (2025), PRL134, 082301 (2025)

The interplay between sub-nucleon fluctuation and
many-nucleon correlation.

STAR, PRL 130, 242301 (2023)
S. Huang, J. Jia, C. Zhang, PLB 870, 139926 (2025)
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Benchmarking geometric tomography of 0O nucleus

STAR, 2510.19645
£o{4} Ie,{2} from three models:

AFDMC vs. EFT/PGCM has a visible difference.

& 127 ¢) d+Au - d) O+O & data

i - —— hydro+PGCM . ianifi v i

< 1-_ 4 i — — ¢, {4Ye {2} NLEFT Can many-l?u_cleon corrt::latlons significantly impact
AL L " s | —— &,{4)/¢ {2} PGCM the eccentricity fluctuations? YES!

- - - ¢,{4)/e,{2} AFDMC C. Zhang et al., PLB 862, 139322 (2025)

0.8+ ﬁ?ﬁ B ) G. Giacalone et al., PRL135, 012302 (2025), PRL134, 082301 (2025)

The interplay between sub-nucleon fluctuation and

0.6 W data many-nucleon correlation.
I — hydro + + STAR, PRL 130, 242301 (2023)
0.4 —e4Ye {2} | S. Huang, J. Jia, C. Zhang, PLB 870, 139926 (2025)
-I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 1 1 1 I 1 1 1 1 | | 1 1 1 | 1 J
20 40 60 80 N 50 100 150 \ Geometric scan elucidates nuclear tomography
ch cn  and strong nuclear force?
S. Jahan, Roch, C. Shen, 2507. 11394 NLEFT from Dean Lee; PGCM from Benjamin Bally

data & high-energy model & low-energy inputs
(v {2})? = c {2} = <v72,L> e2 {2} = <€§> More results will be presented in sQM.
(0n{4})* = —ca{d} = 2(02) — (%) ex{d}* = 2(&3)° — (&)

d+Au is flat; Large enhancement in O+0O with continuous decrease o6



Benchmarking geometric tomography of 0O nucleus

STAR, 2510.19645
£o{4} Ie,{2} from three models:

AFDMC vs. EFT/PGCM has a visible difference.

& 127 ¢) d+Au - d) O+O & data

i - —— hydro+PGCM | lati ianifi iy i ¢
£ [ 4 i — = ¢,{4¢, {2} NLEFT Can many-nucleon correlations significantly impac
AL L " s | —— &,{4)/¢ {2} PGCM the eccentricity fluctuations? YES!

- - - ¢,{4)/e,{2} AFDMC C. Zhang et al., PLB 862, 139322 (2025)

0.8+ ﬁ?* B ) G. Giacalone et al., PRL135, 012302 (2025), PRL134, 082301 (2025)

The interplay between sub-nucleon fluctuation and

0.6 W data many-nucleon correlation.
I — hydro + + STAR, PRL 130, 242301 (2023)
0.4 —e4Ye {2} | S. Huang, J. Jia, C. Zhang, PLB 870, 139926 (2025)
-I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 1 1 1 I 1 1 1 1 | | 1 1 1 | 1 J
20 40 60 80 N 50 100 150N Geometric scan elucidates nuclear tomography
ch cn  and strong nuclear force?
S. Jahan, Roch, C. Shen, 2507. 11394 NLEFT from Dean Lee;, PGCM from Benjamin Bally data & high-energy model & Iow—energy inputs
(v {2})? = c {2} = <v72,L> e2 {2} = <€§> More results will be presented in sQM.
4 _ 2\ 2 4 4 2\ 2 4
(v{4})* = —en{d} = 2(v;)" = (vn) {4} = 2(e3)" — (&) Interesting measurements from LHC O+O/Ne+Ne

New avenue: shape imaging method for light ions
d+Au is flat; Large enhancement in O+0O with continuous decrease o6



IV. Conclusions and Outlooks

1. The signatures of nuclear structure in nuclear collisions are ubiquitous:
STAR, Nature 635, 67-72 (2024) STAR, Rep. Prog. Phys. 88, 108601 (2025) STAR, 2510.19645
= L R T
. vz xy < T RV% ] o~
' Co 11 - & 120 ¢) d+Au - d) O+O & data
[ oo < 7 15% 20 —— fydro+PGCM
i — D=1 *l i T L " . = = &,{4Ye,{2}NLEFT
: L <5 - “I ! ii’ i -~ 0 " = —— ¢,{4Ye,{2} PGCM
& R ¥ IH"II e [ - - - £,{4¥e,{2} AFDMC
oso-a : : 08__ L
: 0.9+ - 0s * data =
' i ] i ~ hycro + 2
0.25 [~ :I | | | | . | | | | l: l ll Z . - _82{4}/82{2} -
llllllll o 60 40 20 0 from arge to small nuclei 2|0. . .4|0. s I6IOI . |8|0| - 5I0. . .160. - I1t'|>0| )
: N 5 . Centrality [%)] Nep N
Bau = 0.286 4 0.025; vy = 8.5° + 4.8° Bsy = 0.08 —0.1; B3y ~ Bau NN correlations is remarkable

2. Many potentially interesting works to study

— Rigid and soft 8,, and y (shape fluctuations/coexistence) — Neutron skin & symmetry energy constraints
— Confronted with ab initio calculations and more light-ion studies — Intersection with Nucleosynthesis, nuclear fission, 0vf33
— TeV-GeV facilities, LHC and HIAF — Other tools, i.e. UPC, Al-assistant work

STAR, Science Advances 9, abq3903 (2023); Shuo Lin, Jin-Yu Hu, Hao-Jie Xu, Shi Pu, Qun Wang, PRD 111, 074020 (2024); .... 27



IV. Conclusions and Outlooks

Relativistic heavy-ion » High-energy
experiment ’ A phenomenological

(GeV-TeV)  Nuclear structure calculations

across energy

scales

Low-energy nuclear

model calculations

Thank you!
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Benchmarking geometric tomography of 0O nucleus

STAR, 2510.19645

197 16 16
d+ Au O+ ™0 d+1g7Au 160+160
Nucleon-Glauber TP T Quark-Glauber
dAu 00
SZAH > 8?)0 gghu ~ 20
g < €3 gg,fAu ~ 6300
nucl > quark
€9 < &9 é:nucl ~ squark
8:131“01 < gguark L i

Nucleon-Glauber and quark-Glauber yield different triangular v;
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