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Charmonia and charmonium-like states
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X(3872) and possible isospin-1 partners

® X(3872) has been discovered by Belle for more than 20 years, debates are still ongoing!

® Excellent observable for distinguishing models: Isospin-1 partners!
| No, in charmonium model L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, PRD 71 (2005) 014028
0 Quark bound states, in compact tetraquark model

» With isospin-independent quark interactions, isoscalar and isovector tetraquarks must
coexist

I = 1 multiplet: [cu][ed], = ([cullea] — [cul[ed]), [ed][ea]
0 How about hadronic molecular picture?

» Thought to be non-existing, but never carefully investigated

> Will be shown to exist as virtual states in this talk



® No signal in the charged channel so far
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JPC = 1%+ sector

® Hadronic molecules: consider S-wave interactions between charm and anti-charm mesons

® For each isospin, only two low-energy constants (LECs) at LO in nonrelativistic expansion for S-wave
interactions of 6 meson pairs

® For the JP¢ = 1** sector, also two LECs at LO:
O/ =0:Cyx; [ =1:Cqx
® Two inputs from X (3872) properties :

» Mass > Neutral systems X and W2 : coupled
My = 3871.6913:59%0-9°MeV LHCb, PRD 102 (2020) 092005 channels
Mpo + My« = 3871.69(7) MeV  pDG 2024 v (DD%)y = (D°D*® — D°D*%) /2
> ISOSpin breaking in decayS LHCb, PRD 108 (2023) L011103 v (DE*)+ — (D+D*— _ D_D*-I_)/'\/Z
M x(3872)>] /1 p° » Charged systems WCJ{: single channel

= 0.29 £+ 0.04

R, —
X ‘ Mx(3872)-) /9w

Extracted using BW for resonances;

Updated to 0.26 + 0.03 using Omnes repr. for mm P-wave MX—>J/¢W N€zjk€¢8xq P( )Q(S) [1 + %XGw(S ]
J. Dias et al., PRD 111 (2025) 014031 Omnes pw mixing




Lippmann-Schwinger equation (LSE)

® Coupled channels: D°D*0, D*D*~ with C = + b

® T matrix is given by the LSE: .
D

12dl D
T(E;p',p) =V(E;p',p) +fﬁV(E;p’,l)G(Eil)T(Ei lip)

D D
Potential: contact term (Cyx, C;x) + one-pion exchange (OPE) ‘
D D*
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ct — &
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» 3-body effects: OPE, D™ selfenergy
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Molecular line shapes at LO ik

. 1 bound state pole
® Scattering length approx.: k cotd = - + - k- ik
® Poles: bound or virtual state (k = 1/|al) 0 Rek  FKG, etal., RMP 90 (2018) 015004;

O d and vi | hardlv be disti <hed thr. sl state ool N. Brambilla et al., Phys.Rept. 873 (2020) 1
Bound and virtual state can hardly be distinguishe fvinual state pole line shapes w/ phase space;
above threshold (E > 0) one unstable constituent:
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Lippmann-Schwinger equation (LSE)

Z-H. Zhang et al., JHEP 08 (2024) 130
® Two poles of the T-matrix for the (DD*)y — (DD*) scattering amplitudes (4 Riemann sheets)
[0 X(3872) pole on the 15t RS (RS, ;)
L1 1W,.,(3880) pole on the 4" RS (RS, _)
> Shaded by D*D*~ threshold
> Cusp at the DTD*~ threshold!!!

Im E B Thresholds
—— Cuts
—— PathtoRS_
--= Path to RS__
+ Path to RS _
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Prediction of an isospin vector partner of X(3872)

® There must be near-threshold isovector W, states

Cutoff insensitivity checked: poles relative to
[ Virtual state pole in the stable D* limit

thresholds varied within 5% for A € [0.5,1.0] GeV
> W2 in DT D*0 single-channel scattering amplitude:
pole on the 2" Riemann sheet (RS) ® Virtual state W,_; was confirmed in lattice

8+8 MeV below DD*~ threshold QCD calculation with M, = 280 MeV
M. Sadl et al., PRD 111 (2025) 054513

+4.6 _ \
3866.9_7_7 l(007 i 001) Mev Jpc Interpolators l/ao[fm—l] ro [fm] )(z/Ndof AmV [MCV]

_ _ . All 0461116 0967043 0.13  —3.0130

0 . * * . . 1+ 0.45 0.73 31.1

> W m(DD )0 — (DD )iscatterlng amplitudes: n.p excl 0.547197 223+0%% 024 28126
pole on the 4™ RS (RS, ), e AL 0@4® 178103 018 3§
1.3J_r8'8 MeV above DT D*~ threshold T/wenedoexdl 096751 2197w 015 ~6.7%:

“Uncertainty is so large that it is unbounded from below.

Wh: 3881.2%035 +i1.6%3:5 MeV

sign convention different from ours

1
[ Must appear as threshold cusps!!! Also obtained in one-boson exchange model

0 Compact tetraquarks (maiani et al. (2005)) cannot be virtual states in X-X.Chen, Z-M. Ding, J. He, PRD 111 (2025) 114008

as they do not feel the thresholds
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Why have they not been observed?

® VY, lives in the same amplitudes as the X(3872), effects shielded by X
» WQ inD°D*® — D*D*~ scattering amplitudes [ » Universality of dip for large scattering length

v For strongly interacting channel-2 (large a,5),

| — 1B | | o there must be a dip around threshold
[ | X(3872) contribution |
105 | = [Tu(E)] substracted ! T T 1 T
| Il’lput: BX = 180 keVI : 5:'_-\_ : [ e Qoo = —3fm
— 104 ! 1.2} > 1.2} ]
Eﬂ\ ?:_\ o RN e an=a; =038 fm ]
= < 1.0f 1 &
& S 3
= 0.8} =
10° ¢ = =
é‘ 0.6 %
0.4F E 0.4
102 + 0.2f
10 0-%:05 0005 000 005
E [GeV]
Threshold cusp! e z\/2u2E)
peak or dip depends on processes T (F) = — » .
(E — Zkl) |:a22, o — 1\ 2,LLQE + O(E)i|

X.-K. Dong, FKG, B.-S. Zou, PRL 126 (2021) 152001




Why have they not been observed?

® /2, lives in the same amplitudes as the X (3872), effects shaded by X

» W2 in D°D*® — D*D* scattering amplitudes > Charged W, in D*D*° scattering amplitude:
height much lower than the X peak

| T' - | , I —— Bx=180keV
! T ()] | X(3872) contribution | 1200 : :
105 F | —m [T (E) substracted !
: 1000
: Input: By = 180 keV|
| _
_ 108 | ~ 800
& \ ! 5 600
103} I N el ii%\”‘
------- ~ - 400
i 200 |
102 I I 1 1 1 L 1 1
él T -20 -15 -10 -5 0 5 10 15 20
E. [MeV]
Threshold cusp! > should be searched for in high-statistic J /ym*m°
peak or dip depends on processes data

X.-K. Dong, FKG, B.-S. Zou, PRL 126 (2021) 152001
® The observed X (3872) signals should contain the W23 contribution as well = combined analysis !!
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‘Combined analysis of BESIIl and LHCb data for X(3872)

® X(3872) line shapes = X(3872) + possible W, (3880)"

® 717t invariant mass distribution = isospin breaking, informationon [ = 1

Teng Ji et al., arXiv:2502.04458
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Combined analysis of BESIII and LHCb data for X(3872)

® Coupled channels
O (DD*)y, (DD*).: contact terms + OPE, DD three-body effects considered
O Inelastic channels:
> ] /Yp, ] /Yw: pincluded using the Omnes dispersive approach, p-w mixing considered
> /Yy, 'y, xc; (1P)7°: neglected in the baseline fit, included in uncertainty analysis

D° D D° D* D° D J/ D D J/ D  D* J/
D ; - D D* ’ " T+ b b " T+ b b Tr

D’ pr  D? D’ p Db D°
0 e D po _~D° D' po D" D Jj DT D J DD I/
D" D Iog D D" p " v« p p " o p p P T

p-w mixing included
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Combined analysis of BESIII and LHCb data for X(3872)
Results upcateo

157 —— Best fit 60 1 A —— Best fit
’% I DYD* threshold % —.~ Non-—X(3872)
4 ‘ 4
> 107 | e D™ D*~threshold | 5 40 A -—= X(3872)
@ 11 ¢ BESIII data ) $: BESIII data
5 51 £ 20 A
O ] ) ]
> >
m ] m
0_ — — —n O_
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le2 le2
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O e ] SN
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To N > ]
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o4 < 21
= Z
) ]
2 21 0:3 11
2 1 S
M 0 0‘:
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Best fit: y2/dof = 57/(96 — 10) = 0.66
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Pole positions: X(3872) and isovector W {(3880)

® Poles

O X (3872) as a bound state below DYD*°
threshold (2.70)

o 1281432 11241415
Ex = (_160 38— 28 — 12577375 53
*

i) keV

6mD0 ==

Mx = (3871.53% 0% — 0.13¥504i) MeV
O W,.,(3880)° pole on RS, _, relative to

the DT D*™ threshold:
Ew = (3.1 +£0.7+4 1.37¢i) MeV
® Residues:

08

gx.0 = (0.35 +0.03)e* 12 001" GeV ™
gx.+ = (0.22 4 0.02)e"%? 005t GeV—
agw,0 = (044 + 0. 07)6_1 150,00 ¢ GeV ™ 2,

. 40.16 . 1
aw,+ = 0. 70+8 82) 2.18_¢ 05 ¢ GeV

» Much more precise than previous determination

ol ° I/VCO1 : 20 sta.
6 - : pm—m———— o WJY: 1o sta.
'%‘ RS++ F !, 1 . + ng . BeSt f].t
= —0.21 ' | ' --- DTD*" cut
=418 X: 20 sta. ——== D'D* cut
S E od X: 1o sta.
g I HH X : This work
El X BESIII[20]
N Y . .
-0.4 —-0.2 0.0 0.2
Re[E] [MeV] RS-
01 e L L L et >
0 1 8 12
Re[E] [MeV]

2, X(3872) couples more strongly to DYD*?;

.1(3880) couples more strongly to D*D*~




Other properties of X(3872) [~/ /7c upozieo

® \Vidth (twice of the imaginary part of the pole): 250725 keV

[ Branching fractions computed using the method in LA Heuser, G. Chanturia, FKG, C. Hanhart, M. Hoferichter, B. Kubis,
EPJC 84 (2024) 599

Mode | DYDVzY | DDV~ | J/opntn~ | J/ypnTn— 7" | others
BR(%) | 4173 | 2242 517 1675 16 + 2

IXjbe| = 0.26(2)
I9Xj/dpw

® |sospin breaking ratio Ry =

® Compositeness using a formula including range corrections Y. Li, FKG, J.-Y. Pang, J.-J. Wu, PRD 105 (2022) L071502

1 [*  Red(E)
X =1- — E = 0.97(2
exp<7T/O d E_RGEX) 0.97(2)
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Signal of W _{(3880)?

® Signal of W,;(3880)° almost invisible in the current data, reasons:

O Virtual state, threshold cusp
O (DD*), easier produced than (DD*)  for bothe*e™ - yDD* @ /s ~ 4.23 GeVand B - K*DD*

> For BY decays, fit parameters (ratio of production
vertices): Py /Py, = 0.5+ 0.1

Data: PDG 2024
Br [B+ —~ KT (D+D*_ -+ D‘D*+)]
Br [B+ — K+ (DOD*O -+ DOD*O)]

FKG et al., PLB 725 (2013) 127

= 0.14 £0.02

r(pY - yD*®) >» I'(Df - yD**)

> Switching u <« d, situation should be different for B°
J.G. Korner et al., PRD 47 (1993) 3955;
Fayyazuddin et al., PRD 50 (1994) 2329 decays

Data: PDG 2024
Br [B" — K°(D*D*~ + D~ D*")]
Br [BY — K° (DYD*0 4+ DOD*0)]

= 5.8 £ 2.7
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Implications of the existence of W, (3880) €)

® I/, (3880)° signal should be stronger in B® — K°[D°D°r?, ] /4yt~ decays, to be checked @ LHCb, Belle I

10 1 5
] --- Non—X(3872) ° ) Total
> 8_: Background g 31 X(3872)
§ 61 I\ 1 4} Belle data B° £ ]
o | ‘ =g
= 1 | A i 2‘_
Z 4] 3
2 s 1 ~
LE 21 = * NN
S o TN———
L R v & e e S| B [
"""""""""" = LIS L L A B L B R R B L L B R R B |
3.87 3.88 3.89 3.90 3.85 3.86 3.87 3.88 3.89 3.90

mpo o0 [GeV] Mg+ - | GEV]

® Cusp at D*D*O threshold in J /Yy tr®
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Other implications to be explored

® Br(X — y'y)/Br(X — J/Yy): could be different at different experiments

I'( xe1(3872) — 71(25))/T( xe1(3872) — vJ/9)

PDG 2024

VALUE Cl% EVTS DOCUMENT ID TECN COMMENT
* ¢ We do not use the following data for averages, fits, limits, etc. ® ®
< 0.59 90 ABLIKIM 2020W BES3 e e — vxa(3872)
9.46 £0.64 £0.29 36 +9 1 AALJ 2014AH IHCB B — y(28)K+
<21 90 BHARDWAJ 2011 BELL BT — y(28)KT
3.4 +1.4 AUBERT 20098  BABR Bt — yceK'
! From 36.4 +9.0 events of x.1(3872) — J/4y decays with a statistical significance of 4.4c-.

o'(X — )(C]no) with iso-vector final states: could receive sizable contribution from W, (3880)"

”TOX(:Q < 5%
0% 1 (3.871)%
'/TOX(:O < 16%

PDG 2024 iy



Summary and outlook

® Pole position of the X(3872) determined to be (relative to the DYD*? threshold)

Bx = (~160H558 — 12543542 ke

® Compositeness of X(3872): 0.97(2)

® Existence of an isovector W,{(3880)

O Signal of W,,(3880)° predicted to be more visible in B® — K°[D°D°x°, ] /ymtn]
O Signal of W, (3880)%: threshold cusp at D*D*° threshold in J /yrtn®
® Some X(3872) decays need to be reanalyzed

Thank you for your attention!
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Results in the pionless theory

® All the qualitative features in the pion-full theory persist in the much simpler pionless theory

i R 25
- — Cpx : —— WY above threshold

b de. 20

cl % — Wi
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L 10 p—— =
9 i
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7 -
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T \ T
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0 25 50 75 100 125 150 175 25 50 75 100 125 150 175
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i i
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E % 1000 +
_ 10t | | _
% i i ;; 800
&= I -
— +
103 A N 4 = 600
! —————————
; | 400
i i
10° i i 200}
II 1 1 1 II 1
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X(3872) line shapes

® Line shapes of a near-threshold resonance depend on reaction mechanism!  x.-k. Dong, FKG, B-S. Zou, PRL 126 (2021) 152001

» Peak for |T,1| (1: lower inelastic channel; 2: elastic channel) 16f@ | 1 Jjor | 16F®) - 4y —05fm
—1 [ 0 y*— [] [ agp =3 fm
873 1 al 2:D°D* | al 2 ]
Ty (E) = i { _"/:\/QIUQE‘*'O(E)] . sl T S ap=—3fm |
(1/12(1/(]/11 — ’Lkl) A 22 eff N 1.2F % 1.2 F. ]
= [ Q [ ay; =a;p=0.8 fm ]
= 1.0} € 10f '
» Dip for |T;4| if scattering length for channel-2 is large % N
5 IS
—871'22 (% — ’1:\/ 2/12E> ﬁa :L]q’_: 0'6:_
Tll(E) — . ' . — _ & 0.4f
<CL_11 —1 k:l) [(122‘(?” — i\ 2us B + (’)(E)] 02l
0.0 S
=2(—1 _ ; -2 —0.05 0.00 0.05
_ _§pEtr 1 4 42 (a1y —iky) £ [GeV]
* \ayf - ik @) et — ik
background poleterm  The interfering phase is fixed by unitarity! |
| % ];;SIIII data
® X(3872) showsupasadipinete™ - X - J/ymm direct production 5 o b 5
¢ I/ e DO £
3 15}
Y Y ALD*O T
o 10}
+ 0 + )0 T
L AN AN ol
(a) (b) 0 | | | |
V. Baru, FKG, C. Hanhart, A. Nefediev, PRD 109 (2024) L111501 3620 3840 3860 3880 3900 22

Vs (MeV)



