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电子的两大内禀属性

电荷
（电流起源）

自旋
（磁性起源）

古希腊时期：摩擦起电现象

1858年：发现阴极射线

1897年：汤姆逊实验

1909年：密立根油滴实验

1922年：斯特恩-盖拉赫实验

1924年：泡利不相容原理

1925年：乌伦贝克-古兹密特理论

1928年：狄拉克电子相对论波动方程

这两大属性构成了现代科技特别是信息技术的物理基础
自旋是量子信息的重要物理载体

自旋
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人类是怎样认识自旋的？ 



塞曼效应

1896年塞曼

反常 正常“双线之谜”

1897年普雷斯顿

“塞曼效应”

光谱线在磁场中分裂的现象
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1925 乌伦贝克和古兹米特 1928  狄拉克

电子自旋假设

“电子也许是个自转的带电小球，就把它叫做电子自旋吧”

他们的导师埃伦菲斯特（P.Ehrenfest）： “You are both 
young enough to allow yourself some foolishness”



自旋（Spin) 

e-

10!"#米 
（1飞米）

𝑆$ =
ℏ
2

e-
姓名：电子
电量：-1.6×10-19 库仑
质量：9.1×10-31 千克

自旋：1/2

𝑣 ≫光速

电⼦⾃旋 ≠  ⾃转的电⼦



自旋： 微观粒子的内禀属性

怎么来的？  科学上无法解释！

光子 电子 中子 希格斯玻色子

自旋 1 1/2 1/2 0

质量 0 9.1×10-31千克 1.7×10-27千克 2.2×10-25千克

电荷 0 -1.6×10-19库仑 0 0

自旋不是一个经典概念



自旋的广泛应用

磁共振 磁存储

磁场中的自旋效应

获6次诺贝尔奖
⼴泛应用于医学健康和
⼯业领域

基于自旋的铁磁效应

获得2007诺贝尔物理奖
信息时代的奠基⽯

主要基于宏观尺度自旋效应的被动观测和直接利用
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自旋磁共振

原理：原子核自旋处于外磁场中，
能够吸收和放出对应频率的电磁辐
射，发生磁共振现象Gj D=n

特点：能够用来准确、
快速和无破坏性地获取
物质的组成和结构上的
信息

13

NMR的基本原理

Nuclear Magnetic Resonance Spectroscopy:

• Nucleus with spin（核自旋）

• Magnetic field（磁场）

• Resonance perturbation（共振扰动）
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医学 化学 

生物 能源 

物理

• 化学结构鉴定
- 天然产物化学 
- 有机合成化学 • 动态过程的
研究 
- 反应动力学 
- 研究平衡过程(化学平衡或
构象平衡) • 三维结构的研究 
- 蛋白质 
- DNA, 蛋白/DNA复合物 
- 多糖 
• 代谢组学的研究(生物代谢
指纹谱图与外界应激的关系) 

• 药物设计(NMR研究构效
关系SAR)
• 医学(磁共振成像)
• 量子信息
•... 

核磁共振 – 应用



传统磁共振在20世纪取得了巨大成功

Otto Stern
1943, Physics

Richard R. 
Ernst
1991, 
Chemistry

Kurt Wüthrich
2002, 
Chemistry

发现质子磁矩

Isidor Isaac Rabi
1944, Physics

用共振方法记录
原子核的磁特性

E. M. Purcell
1952 ,Physics

Felix Bloch
1952, Physics

Paul C. Lauterbur
2003, Medicine

Sir Peter Mansfield
2003, Medicine

医学磁共振成像

n 基础科学突破
3次诺贝尔物理学奖

n 交叉领域技术突破
3次诺贝尔化学
1次生理医学奖

15
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磁共振的“诺贝尔”之路

Rabi之前
“暗黑科
技掌门人”

原子核的光谱和原子核能量跃
迁的基本理论
1922年的诺贝尔物理学奖



磁共振科学技术的创新：催生革命性变化

磁共振物理学

化学

生理学和医学
NMR成像技术（MRI）

2003, Mansfield (物理学家)
Lauterbur (化学家)

NMR方法与蛋白质结构测定
1991, Ernst
2002, Wüthrich等

NMR的发现与实现
1943, Stern
1944, Rabi
1952, Purcell & Bloch

核磁共振的六次诺贝尔奖: 科学技术的创新

17
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什么是自旋？ 什么是自旋? 



19

自旋角动量和磁矩

Isotope /2
1H 42.58
13C 10.71
15N -4.32

自旋角动量和磁矩 
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•在基态下核自旋是无序的， 彼此之间没有能量差。它们的能态是简并的:

• 由于原子核具有核磁矩，当外加一个强磁场时（Bo）, 核磁矩的取向会与
外磁场平行或反平行:

• 取向与外磁场平行核的数目总是比取向反平行的核稍多.

磁场中I=1/2的核（能量自旋状态） 𝑩𝟎

=  h / 4

a

b

𝜶⟩

𝜷⟩
𝑩𝟎

𝑬𝜶/𝜷 = ∓ ½ ℏ ȉ 𝜸 ȉ 𝑩𝟎

∆𝑬 = ℏ ȉ 𝜸 ȉ 𝑩𝟎

磁场中I=1/2的核(能量自旋状态) 
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能量与布居数（能量吸收理论）

a

b

𝜶⟩

𝜷⟩
𝑩𝟎

𝑬𝜶/𝜷 = ∓ ½ ℏ ȉ 𝜸 ȉ 𝑩𝟎

∆𝑬 = ℏ ȉ 𝜸 ȉ 𝑩𝟎

•每个能级都有不同的布居数（N）, 布居数的差别与能量差有关遵守
Boltzmman分布:

Na / Nb = e DE / kT

• 400 MHz（Bo = 9.5 T）下的1H，能量差为3.8 x 10-5 Kcal / mol

Na / Nb = 1.000064

• 与UV或IR相比，NMR两个能级的布居数差别很小。

能量与布居数(能量吸收理论) 
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能量与灵敏度（能量吸收理论）

a

b

𝜶⟩ 平行

𝜷⟩ 反平行
𝑩𝟎

𝑬𝜶/𝜷 = ∓ ½ ℏ ȉ 𝜸 ȉ 𝑩𝟎

∆𝑬 = ℏ ȉ 𝜸 ȉ 𝑩𝟎

• 这个能量的差就是每个核可以吸收的能量（与信号的强度和灵敏度直接

相关）:

• 磁体的磁场越强 （大的B0），NMR谱仪的灵敏度就越高。

• 具有较大值的核，吸收或发射的能量就越大，也就越灵敏。灵敏度

与m Na - Nb 及“线圈的磁通量”都成正比，这三者都与 成正比，所

以灵敏度与3成正比。

• 如果考虑同位素的天然丰度, 13C (~1%) 的灵敏度要比1H低6400倍。

13C = 6,728 rad / G

1H = 26,753 rad / G

仅仅是  的原因 ， 1H 的

灵敏度就大约是13C的64倍

能量与灵敏度(能量吸收理论) 
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• 能量与频率是相关的，我们可以作一些简单的数学变换：

射频：

能量差： 𝟎

• 对于1H来说，在通常的磁体中 (2.35-18.6 T), 其共振的频率在100-800

MHz之间。对13C, 是其频率的1/4.

• 在解释有些 NMR原理时, 我们需要用到圆周运动。 对于描述圆周运动

并不是一个好的单位。我们把进动（或Lamor）频率定义为 w :

w = 2n  wo =  Bo （弧度）

能量与频率（能量吸收理论）

𝟎

能量与频率(能量吸收理论) 
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w0

磁场中I=1/2的核（电磁感应理论）

进动频率称为Larmor Frequency w0:

磁场中I=1/2的核(电磁感应理论) 

... 但是原子核不是指南针 
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磁场中I=1/2的核（电磁感应理论）- 弛豫

𝟎

𝒊
𝟎

𝟎

弛豫动态平衡

o 与外磁场平行或反平行

o 热各向同性分布

宏观效应-宏观磁化矢量 𝟎

o  和  态能量差

o 波兹曼分布

o 𝟎的大小

磁场中I=1/2的核(电磁感应理论)- 弛豫 
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射频脉冲产生NMR信号

NMR激发需要核自旋体系吸收能量。能量的来源是一个由变化的电场所

产生的振荡的射频电磁辐射。

B1 = C * cos (wot)

Polarization

Coherence

Pulse Free Induction
Decay – FID

B1 Precession Relaxation

射频脉冲产生NMR信号 



磁共振的产生

• 塞曼效应：原子磁矩的空间取向量子化，磁场作用下的附
加能量不同，引起能级分裂。

(1)ΔE ∝ B0；

(2) 1H受到一定频率（v）的电磁辐射，且提供的能量 

=ΔE，则发生共振吸收，产生共振信号。 

Zeeman分裂 NMR实验基本装置

2
J 2贷" 视 & " 视

铝
疣
)
*

兑赁

2023/10/7 27
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NMR谱仪

1. 操作工作站

2. 机柜

3. 超导磁体

4. 前置放大器

5. 探头

6. 室温匀场系统

NMR谱仪 
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传统商用核磁共振谱仪

10T
～300万

15T
～800万

21T
>1000万

1T

传统核磁：向高磁场方向发展

30

超导磁体：价格昂贵 💰💰💰、笨重、磁场不均匀

看得越来越清晰

灵敏度 ∝ B0 
3/2弱信号探测

Bruker Ascend 1.2 GHz NMR
$17.8 million

https://cen.acs.org/business/instrumentation/Bruker-installs-12-GHz-NMR/98/i19


自旋与核磁共振

检查前请准备
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高磁场

超低场

不需要超导磁体，
甚至不需要磁场？i

核磁共振的发展新趋势：从高场到超低场

Bloch Purcell

A. Abragam

成本低、便携式、小型化



Physics Today 66, 4, 44 
(2013)

零场核磁共振



核磁共振发展新趋势：从高场到超低场

超
低
场
核
磁
共
振

无需超导磁体：成本低、便携式、小型化

高分辨率：磁场绝对均匀、弛豫时间长，谱线
线宽~10 mHz

强关联动力学：保留完整的自旋耦合信息

适合特殊研究对象（如顺磁材料）：安全性高

34

<  1 μT 

~ 0.5 Hz
0.01Hz

分辨率

600M谱仪（14T)

零
场
谱
仪



Zeeman Interaction & 
Chemical Shift

0Zeeman BIH I ×= γ

0CS BIH I ××-= σγ

B0= 0

𝝂𝟎 =𝜸𝑩𝟎

Energy level

B0 ≠ 0

Local Interaction (independent of B0)
q Dipole-Dipole coupling

q Quadrupolar coupling

q J-coupling

å
>

××=
NNN

NNNND IDIH
';

''

IVIQHQ ××
-

=
)12(2 II

 e

å
>

××=
NNN

NNNNJ IJIH
';

''

v What is Ultralow 
Field  

Zeeman Interaction < 
Local Interaction

v Liquid Spin ½ 
System

HQ is zero; HD is averaged 
out
Only HJ exists (<kHz)

Electron cloud

J-Coupling

nucleus

NMR: Dominant Interactions  
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40 tesla ZULF

Zeeman Interaction < 
Local Interaction

Zeeman Interaction >> 
Local Interaction
Inductive detection Optical magnetometer

Simplicity
No superconducting 
magnet and frequent 
cryogenic maintenance

Ultra-narrow linewidth
High absolute 
magnetic field 
homogeneity
Untruncated Residua
l Dipolar Couplings 
Rich spin dynamics
……..

From high field to zero- & ultralow field 
Without superconducting 
magnet! 



Need new sensor：Sensitive Magnetometers

Atomic magnetometer could be small and highly sensitive！

MEMS

Inductive 
coil

L

Sensitivity is very poor in low field 

Atomic 
magnetometer
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NMR detector: atomic magnetometer 

87Rb vapor gas

Min Jiang et al. Advanced Quantum Technologies, 2000078 (2020) [Selected as Front Cover]
（选为封面文章）



Pre-polarization Encoding Detection

q Thermal: Permanent magnet
q Parahydrogen
q Dynamical nuclear 

polarization

q Magnetic field gradient 
(Imaging)

q J-coupling (Spectroscopy)

J. Magn. Reson. 270 (2016) 35-49

q Superconducting coil
q Atomic magnetometer

Halbach 
Magnet

Zero- & ultralow field NMR (ZULF) 
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Formic acid zero field NMR signal

Zero- & ultralow field NMR (ZULF) 



ZULF NMR spectrum
M. Jiang, J. Bian, Q. Li et al. Fundamental Research 1 (2021) 68–84 

Fig. 5. Experimental ZULF NMR spectra. The initial spin state is prepared by the guiding field along the z -axis. (a, b) Formic acid (H 13 COOH, where the acidic 
proton is negligible due to rapid exchange). (c, d) Formaldehyde (H 3 13 CCOOH). (e, f) Acetonitrile ( 13 CH 3 13 C 15 N). The spectra are detected in both the absence and 
presence of a magnetic field. 
4.2. Near-zero-field NMR spectroscopy 

Although zero-field NMR spectroscopy can distinguish some chemi- 
cal groups, it still leaves some ambiguity in the determination of chemi- 
cal groups; this ambiguity can be removed by application of small mag- 
netic fields [ 8 , 57 , 58 ]. Here, we introduce investigations on near-zero- 
field NMR spectroscopy, in which the Zeeman interaction can be treated 
as a perturbation to J-couplings. For simplicity, the direction of the ap- 
plied bias field is chosen as the quantization axis ( 𝑧 ), and the sensi- 
tive axis of the atomic magnetometer is changed to 𝑦 . The presence of 
very small magnetic fields results in splitting of the zero-field NMR lines 
( Fig. 5 b, d, f), imparting considerable additional information to that of 
the pure zero-field spectra. The molecular conformations of XA and XA 2 
cannot be distinguished because the zero-field NMR spectra of XA and 
XA 2 both show a single NMR peak (see Section 4.1 ). In contrast, the 
near-zero-field NMR spectra of XA and XA 2 are significantly different. 
We take the XA n spin system as an example for analysis. The system 
Hamiltonian is given by Eq. (1) . To first order in 𝐵 𝑧 , the eigenstates 
are those of the unperturbed Hamiltonian, and the Zeeman shifts of the 
eigenvalues can be read from the diagonal matrix elements of the Zee- 
man perturbation. One finds [ 6 , 8 , 57 , 58 ]: 
ΔE (𝑓 A , 𝑘 A , 𝑚 𝑓 A ) = − ⟨ 𝑓 A 𝑚 𝑓 A |||𝐵 𝑧 (𝛾A 𝐾 A 𝑧 + 𝛾X 𝑆 𝑧 )|||𝑓 A 𝑚 𝑓 A ⟩ 

= − 𝐵 𝑧 ∑
𝑚 𝑘 A , 𝑚 s 

⟨ 
𝑘 A 𝑠 𝑚 𝑘 A 𝑚 s |𝑓 A 𝑚 𝑓 A ⟩ 2 (𝛾A 𝑚 𝑘 A + 𝛾X 𝑚 s ), 

(14) 
where 𝛾A and 𝛾X are the spin A and X gyromagnetic ratios, respec- 
tively, and ⟨𝑘 A 𝑠 𝑚 𝑘 A 𝑚 s |𝑓 A 𝑚 𝑓 A ⟩ is the Clebsch–Gordan coefficient. The 
signal in our experiment is the 𝑦 -component of the magnetization 
𝑀 𝑦 ( 𝑡 ) = 𝑛 Tr [ 𝜌( 𝑡 ) ∑𝑗 𝛾𝑗 𝐼 𝑗𝑦 ] , and the relevant selection rules are 𝑓 A = 0 , ±1 
Δ𝑘 A = 0 , and Δ𝑚 𝑓A = ±1 . Accordingly, one could observe 2( 𝑛 − 2 𝑘 ) res- 
onance lines centered at 𝜈0 , with frequencies 
⎧ 
⎪ 
⎪ 
⎪ 
⎨ 
⎪ 
⎪ 
⎪ ⎩ 

𝜈
𝑓 A ′ , 𝑚 𝑓 A ±1; 𝑘 A 
𝑓 A , 𝑚 𝑓 A ; 𝑘 A = 𝜈0 + Δ𝜈, 
𝜈0 = 1 2 𝐽 AX ( 1 + 𝑛 − 2 𝑘 ) , 
Δ𝜈 = [ 

2 𝑚 𝑓 A (− 𝛾A + 𝛾X )
1 + 𝑛 − 2 𝑘 ± ( 𝑛 − 2 𝑘 ) 𝛾A + 𝛾X 

1 + 𝑛 − 2 𝑘 
] 
𝐵 𝑧 , 

(15) 

where 𝜈0 is the frequency of the resonance line in zero field (see 
Section 4.1 ) and Δ𝜈 implies Zeeman splitting. For the example of 𝑛 = 1 , 
a doublet (see Fig. 5 b) for the transition between states with 𝑓 A = 1 and 
𝑓 A = 0 : 
𝜈1 , ±1 0 , 0 = 𝐽 ± 𝐵 𝑧 (𝛾A + 𝛾X )∕2 . (16) 

More examples can be found in refs. [ 8 , 57 ]. Some samples have ex- 
perimentally detected near-zero-field NMR spectra, such as formic acid 
(H 13 COOH), formaldehyde ( 13 CH 2 O), methanol ( 13 CH 3 OH), acetoni- 
trile ( 13 CH 3 CN), and fully labeled acetonitrile ( 13 CH 3 13 C 15 N) [ 7 , 8 , 32 ]. 
4.3. Two-dimensional NMR spectroscopy 

Spectral complexity increases rapidly with spin-system size. The de- 
velopment of two-dimensional spectroscopy is a major factor in the 
analytical power of NMR, allowing the resolution of more crowded 
spectra. Additionally, many pulse sequences exist that enable the map- 
ping of coupling networks, the simplification of spectral assignment, 
and structure elucidation. In liquid-state analytical chemistry, multiple- 
quantum coherence filters combined with two-dimensional detection 
techniques provide one of the standard ways to map coupling networks 
[1] . Recently, Sjolander et al. [ 44 , 45 ] introduced a technique of two- 
dimensional correlation and single- and multiple-quantum experiments 
in the context of liquid-state zero-field J-spectroscopy. For example, at 
zero field, the spectrum of ethanol appears as a mixture of 13 C iso- 
topomers, and correlation spectroscopy is useful in separating the two 
composite spectra, as shown in Fig. 6 . Two-dimensional spectroscopy 
further improves the high resolution attained in zero-field NMR because 
selection rules on the coherence-transfer pathways allow for the separa- 
tion of otherwise overlapping resonances into distinct cross-peaks [44] . 
4.4. Asymmetric NMR spectroscopy 

It has been extensively demonstrated that the ultralow-field NMR sig- 
nals recorded with atomic magnetometers occasionally differ from the 
expected values through distortion of a few tens of percent [ 8 , 12 , 32 , 48–
50 ]. Ultralow-field NMR spectra of even simple samples such as formic 
acid (containing 13 C–H 1 spin pairs) can suffer from severely asymmetric 
amplitudes ( Fig. 7 ), differing greatly from those predicted by the stan- 
dard NMR theory [ 8 , 57 , 58 ]. Fig. 7 shows the experimentally observed 
NMR spectra of some samples that clearly exhibit asymmetric character- 
istics in their spectral amplitudes. For example, the relative NMR peak 
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p对几十种化学物质进行测量，可清晰分辨出不同物质
p建立零磁场和超低场NMR数据库
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“ …设 计 一 种 全 新
的基于两通道SERF
磁力计的装置，能
够有效降低该装置
对外界磁场噪声的
干扰…”

“梯度计提升无需
磁体的磁共振”

M. Jiang et al., Phys. Rev. Appl. 11 (2019) (编辑推荐)

梯度探测零场核磁共振谱仪

首次采用原子梯度磁力计，提升信噪比1个量级



“非对称性”：近零场NMR谱的新特征
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u g因子符号测量
Min Jiang et al. Advanced Quantum Technologies, 2000078 (2020)
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response functions, and satisfy the following relations

Ax(𝜈, Bz)∕Ay(𝜈, Bz) =
(gs𝜇B)Bz√

Γ2 + (2𝜋𝜈)2q2
(3)

ΔΦ ≡ Φx(𝜈, Bz) − Φy(𝜈, Bz) = arctan
(
−
2𝜋q𝜈
Γ

)
(4)

In our experiments, the optical rotation angle of probe laser is
proportional to the atomic Px polarization along the direction of
propagation (see Figure 1), thus we only focus on Px and the par-
tial response matrix Υx(𝜈, Bz) ≡ [Υxx(𝜈, Bz),Υxy(𝜈, Bz)]. Υx(𝜈, Bz)
is time-independent and only depends on the parameters of
the atomic magnetometer. According to Equation (2), it clearly
shows that the output signal Px is a weighted superposition of
the x and y components of the magnetic field with the differ-
ent amplitude and phase responses if Ax(𝜈, Bz) ≠ 0,Ay(𝜈, Bz) ≠ 0
and Φx(𝜈, Bz) ≠ Φy(𝜈, Bz). For slowly changing magnetic fields
(i.e., 𝜈→0), we reach the quasi-steady-state solution, that is,
Φx(𝜈, Bz) = Φy(𝜈, Bz) = 0. It is also clearly seen, from Equa-
tions (3) and (4), that the dynamic response solution in Equa-
tion (2) deviates from the quasi-steady-state one when the con-
dition of slowly changing is violated. As we show below, this dy-
namic response feature will bring new experimental phenomena
which cannot be explained through the quasi-static assumption.

2.2. Interference Effect in Atomic Magnetometer

Figure 2a schematically shows the basic interference effect result-
ing from the response of atomic magnetometer in Equation (2).
The output signal of the atomic magnetometer s(t) = 𝛼Px(t) is an
oscillating signal. Here, the proportionality constant 𝛼 summa-
rizes, for example, amplifier gains and conversion factors of de-
tectors (see Section I, Supporting Information). The amplitude
of the oscillating s(t) signal is

S2tot = (S2x + S2y )(1 + 𝜒 cosΔ𝜙) (5)

where Sx = Sx(𝜈, Bz) = 𝛼Ax(𝜈, Bz)Bx0 and Sy = Sy(𝜈, Bz) =
𝛼Ay(𝜈, Bz)By0, respectively, denote the amplitude of the output
oscillating signal when there only exists the x- or y-component
in the input magnetic field B(t). The term “𝜒 cosΔ𝜙” represents
the interference effect when the x- and y-components are both
nonzero. Here, the interference phase Δ𝜙 = ΔΦ + (𝜃x0 − 𝜃y0)
and the interference contrast 𝜒 ≡ 2SxSy∕(S2x + S2y ). Notice that
the interference effect vanishes when Sx = 0 or Sy = 0 or
Δ𝜙 = ±𝜋∕2. The details of the interference effect depend on
both the response matrix and the input magnetic field (or the
detected magnetic field). Importantly, the interference effect
results in a systematic error of measuring magnetic fields when
the interference is not taken into account. For example of our
atomic magnetometer, when a bias field Bz ≈ 600 nT is applied
and two oscillating fields are applied with same amplitudes and
same initial phases, ΔΦ ≈ 𝜋

5
and |𝜒 cosΔΦ| ≈ 0.81 (details are

shown in the part of interference calibration) and accordingly
≈5% systematic error of the oscillating field amplitude results
from the hidden interference effect. When this atomic magne-
tometer is applied to detect NMR signals, we show below that

Figure 2. Interference effect in atomic magnetometry and atomic re-
sponse functions. a) Basics of the quantum sensor resulting in the in-
terference effect: The magnetic field components along the x- and y-axes
both affect the sensor, but the observed signal is given only by the sum
of their contributions, which have different sensitivities (amplitudes Ax ,
Ay) and phases (Φx ,Φy). b) Experimental amplitude responses Ax and Ay
as functions of Bz. c) The phase difference between the phase response
Φx(𝜈, Bz) and Φy(𝜈, Bz) as a function of Bz. Here, 𝜈 is chosen as 222 Hz
for demonstration.

there is a few tens of percent distortion on NMR peak intensities
due to the interference. Thus, it is worthy to evaluating the
interference in atomic magnetometers before they are used
as detectors.
Our work provides a standard approach to detecting and char-

acterizing the interference phenomenon in, but not limited to,
atomic magnetometers. Unlike the common approaches that
only test the single-axis performance through applying a single-
axis calibration field,[32,34 ] we measure the performance of mag-
netometers under multiple oscillating magnetic fields. In this
way we can obtain hidden dynamic response of magnetometers
and extract the important information about the interference ef-
fect. As the responsematrixΥx(𝜈, Bz) is constant for certain 𝜈 and
Bz, Υx(𝜈, Bz) can be experimentally calibrated for a given setup
by the following measurements. An oscillating magnetic field
B0cos(2𝜋𝜈t) is, respectively, applied to the magnetometer along
the 𝜉 axis as a reference input, and then the amplitude S𝜉(𝜈, Bz) of
the output signal is recorded as a function of the bias field Bz (see
Section II and Figure S5, Supporting Information). One can fur-
ther sweep the frequency 𝜈 of the input oscillating field to obtain
Υx(𝜈, Bz) at arbitrary 𝜈. Figure 2b shows the experimental mea-
surements for the amplitude responses A𝜉(𝜈, Bz) versus different
bias fieldBz at 𝜈 = 222Hz.We observe that Ax(𝜈, Bz) andAy(𝜈, Bz)
are both non-zero in certain range of Bz around zero. This il-
lustrates that the atomic magnetometer could be simultaneously
sensitive to the magnetic fields along the x and y axes. The center
of symmetry, that is, themagnetic fieldwhere Ay(𝜈, Bz) reaches its
maximum and Ax(𝜈, Bz) = 0, is slightly shifted away from zero.
This is because the total magnetic field acting on the 87Rb atoms

Adv. Quantum Technol. 2020, 2000078 © 2020Wiley-VCH GmbH2000078 (3 of 8)
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response functions, and satisfy the following relations

Ax(𝜈, Bz)∕Ay(𝜈, Bz) =
(gs𝜇B)Bz√

Γ2 + (2𝜋𝜈)2q2
(3)

ΔΦ ≡ Φx(𝜈, Bz) − Φy(𝜈, Bz) = arctan
(
−
2𝜋q𝜈
Γ

)
(4)

In our experiments, the optical rotation angle of probe laser is
proportional to the atomic Px polarization along the direction of
propagation (see Figure 1), thus we only focus on Px and the par-
tial response matrix Υx(𝜈, Bz) ≡ [Υxx(𝜈, Bz),Υxy(𝜈, Bz)]. Υx(𝜈, Bz)
is time-independent and only depends on the parameters of
the atomic magnetometer. According to Equation (2), it clearly
shows that the output signal Px is a weighted superposition of
the x and y components of the magnetic field with the differ-
ent amplitude and phase responses if Ax(𝜈, Bz) ≠ 0,Ay(𝜈, Bz) ≠ 0
and Φx(𝜈, Bz) ≠ Φy(𝜈, Bz). For slowly changing magnetic fields
(i.e., 𝜈→0), we reach the quasi-steady-state solution, that is,
Φx(𝜈, Bz) = Φy(𝜈, Bz) = 0. It is also clearly seen, from Equa-
tions (3) and (4), that the dynamic response solution in Equa-
tion (2) deviates from the quasi-steady-state one when the con-
dition of slowly changing is violated. As we show below, this dy-
namic response feature will bring new experimental phenomena
which cannot be explained through the quasi-static assumption.

2.2. Interference Effect in Atomic Magnetometer

Figure 2a schematically shows the basic interference effect result-
ing from the response of atomic magnetometer in Equation (2).
The output signal of the atomic magnetometer s(t) = 𝛼Px(t) is an
oscillating signal. Here, the proportionality constant 𝛼 summa-
rizes, for example, amplifier gains and conversion factors of de-
tectors (see Section I, Supporting Information). The amplitude
of the oscillating s(t) signal is

S2tot = (S2x + S2y )(1 + 𝜒 cosΔ𝜙) (5)

where Sx = Sx(𝜈, Bz) = 𝛼Ax(𝜈, Bz)Bx0 and Sy = Sy(𝜈, Bz) =
𝛼Ay(𝜈, Bz)By0, respectively, denote the amplitude of the output
oscillating signal when there only exists the x- or y-component
in the input magnetic field B(t). The term “𝜒 cosΔ𝜙” represents
the interference effect when the x- and y-components are both
nonzero. Here, the interference phase Δ𝜙 = ΔΦ + (𝜃x0 − 𝜃y0)
and the interference contrast 𝜒 ≡ 2SxSy∕(S2x + S2y ). Notice that
the interference effect vanishes when Sx = 0 or Sy = 0 or
Δ𝜙 = ±𝜋∕2. The details of the interference effect depend on
both the response matrix and the input magnetic field (or the
detected magnetic field). Importantly, the interference effect
results in a systematic error of measuring magnetic fields when
the interference is not taken into account. For example of our
atomic magnetometer, when a bias field Bz ≈ 600 nT is applied
and two oscillating fields are applied with same amplitudes and
same initial phases, ΔΦ ≈ 𝜋

5
and |𝜒 cosΔΦ| ≈ 0.81 (details are

shown in the part of interference calibration) and accordingly
≈5% systematic error of the oscillating field amplitude results
from the hidden interference effect. When this atomic magne-
tometer is applied to detect NMR signals, we show below that

Figure 2. Interference effect in atomic magnetometry and atomic re-
sponse functions. a) Basics of the quantum sensor resulting in the in-
terference effect: The magnetic field components along the x- and y-axes
both affect the sensor, but the observed signal is given only by the sum
of their contributions, which have different sensitivities (amplitudes Ax ,
Ay) and phases (Φx ,Φy). b) Experimental amplitude responses Ax and Ay
as functions of Bz. c) The phase difference between the phase response
Φx(𝜈, Bz) and Φy(𝜈, Bz) as a function of Bz. Here, 𝜈 is chosen as 222 Hz
for demonstration.

there is a few tens of percent distortion on NMR peak intensities
due to the interference. Thus, it is worthy to evaluating the
interference in atomic magnetometers before they are used
as detectors.
Our work provides a standard approach to detecting and char-

acterizing the interference phenomenon in, but not limited to,
atomic magnetometers. Unlike the common approaches that
only test the single-axis performance through applying a single-
axis calibration field,[32,34 ] we measure the performance of mag-
netometers under multiple oscillating magnetic fields. In this
way we can obtain hidden dynamic response of magnetometers
and extract the important information about the interference ef-
fect. As the responsematrixΥx(𝜈, Bz) is constant for certain 𝜈 and
Bz, Υx(𝜈, Bz) can be experimentally calibrated for a given setup
by the following measurements. An oscillating magnetic field
B0cos(2𝜋𝜈t) is, respectively, applied to the magnetometer along
the 𝜉 axis as a reference input, and then the amplitude S𝜉(𝜈, Bz) of
the output signal is recorded as a function of the bias field Bz (see
Section II and Figure S5, Supporting Information). One can fur-
ther sweep the frequency 𝜈 of the input oscillating field to obtain
Υx(𝜈, Bz) at arbitrary 𝜈. Figure 2b shows the experimental mea-
surements for the amplitude responses A𝜉(𝜈, Bz) versus different
bias fieldBz at 𝜈 = 222Hz.We observe that Ax(𝜈, Bz) andAy(𝜈, Bz)
are both non-zero in certain range of Bz around zero. This il-
lustrates that the atomic magnetometer could be simultaneously
sensitive to the magnetic fields along the x and y axes. The center
of symmetry, that is, themagnetic fieldwhere Ay(𝜈, Bz) reaches its
maximum and Ax(𝜈, Bz) = 0, is slightly shifted away from zero.
This is because the total magnetic field acting on the 87Rb atoms
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response functions, and satisfy the following relations

Ax(𝜈, Bz)∕Ay(𝜈, Bz) =
(gs𝜇B)Bz√

Γ2 + (2𝜋𝜈)2q2
(3)

ΔΦ ≡ Φx(𝜈, Bz) − Φy(𝜈, Bz) = arctan
(
−
2𝜋q𝜈
Γ

)
(4)

In our experiments, the optical rotation angle of probe laser is
proportional to the atomic Px polarization along the direction of
propagation (see Figure 1), thus we only focus on Px and the par-
tial response matrix Υx(𝜈, Bz) ≡ [Υxx(𝜈, Bz),Υxy(𝜈, Bz)]. Υx(𝜈, Bz)
is time-independent and only depends on the parameters of
the atomic magnetometer. According to Equation (2), it clearly
shows that the output signal Px is a weighted superposition of
the x and y components of the magnetic field with the differ-
ent amplitude and phase responses if Ax(𝜈, Bz) ≠ 0,Ay(𝜈, Bz) ≠ 0
and Φx(𝜈, Bz) ≠ Φy(𝜈, Bz). For slowly changing magnetic fields
(i.e., 𝜈→0), we reach the quasi-steady-state solution, that is,
Φx(𝜈, Bz) = Φy(𝜈, Bz) = 0. It is also clearly seen, from Equa-
tions (3) and (4), that the dynamic response solution in Equa-
tion (2) deviates from the quasi-steady-state one when the con-
dition of slowly changing is violated. As we show below, this dy-
namic response feature will bring new experimental phenomena
which cannot be explained through the quasi-static assumption.

2.2. Interference Effect in Atomic Magnetometer

Figure 2a schematically shows the basic interference effect result-
ing from the response of atomic magnetometer in Equation (2).
The output signal of the atomic magnetometer s(t) = 𝛼Px(t) is an
oscillating signal. Here, the proportionality constant 𝛼 summa-
rizes, for example, amplifier gains and conversion factors of de-
tectors (see Section I, Supporting Information). The amplitude
of the oscillating s(t) signal is

S2tot = (S2x + S2y )(1 + 𝜒 cosΔ𝜙) (5)

where Sx = Sx(𝜈, Bz) = 𝛼Ax(𝜈, Bz)Bx0 and Sy = Sy(𝜈, Bz) =
𝛼Ay(𝜈, Bz)By0, respectively, denote the amplitude of the output
oscillating signal when there only exists the x- or y-component
in the input magnetic field B(t). The term “𝜒 cosΔ𝜙” represents
the interference effect when the x- and y-components are both
nonzero. Here, the interference phase Δ𝜙 = ΔΦ + (𝜃x0 − 𝜃y0)
and the interference contrast 𝜒 ≡ 2SxSy∕(S2x + S2y ). Notice that
the interference effect vanishes when Sx = 0 or Sy = 0 or
Δ𝜙 = ±𝜋∕2. The details of the interference effect depend on
both the response matrix and the input magnetic field (or the
detected magnetic field). Importantly, the interference effect
results in a systematic error of measuring magnetic fields when
the interference is not taken into account. For example of our
atomic magnetometer, when a bias field Bz ≈ 600 nT is applied
and two oscillating fields are applied with same amplitudes and
same initial phases, ΔΦ ≈ 𝜋

5
and |𝜒 cosΔΦ| ≈ 0.81 (details are

shown in the part of interference calibration) and accordingly
≈5% systematic error of the oscillating field amplitude results
from the hidden interference effect. When this atomic magne-
tometer is applied to detect NMR signals, we show below that

Figure 2. Interference effect in atomic magnetometry and atomic re-
sponse functions. a) Basics of the quantum sensor resulting in the in-
terference effect: The magnetic field components along the x- and y-axes
both affect the sensor, but the observed signal is given only by the sum
of their contributions, which have different sensitivities (amplitudes Ax ,
Ay) and phases (Φx ,Φy). b) Experimental amplitude responses Ax and Ay
as functions of Bz. c) The phase difference between the phase response
Φx(𝜈, Bz) and Φy(𝜈, Bz) as a function of Bz. Here, 𝜈 is chosen as 222 Hz
for demonstration.

there is a few tens of percent distortion on NMR peak intensities
due to the interference. Thus, it is worthy to evaluating the
interference in atomic magnetometers before they are used
as detectors.
Our work provides a standard approach to detecting and char-

acterizing the interference phenomenon in, but not limited to,
atomic magnetometers. Unlike the common approaches that
only test the single-axis performance through applying a single-
axis calibration field,[32,34 ] we measure the performance of mag-
netometers under multiple oscillating magnetic fields. In this
way we can obtain hidden dynamic response of magnetometers
and extract the important information about the interference ef-
fect. As the responsematrixΥx(𝜈, Bz) is constant for certain 𝜈 and
Bz, Υx(𝜈, Bz) can be experimentally calibrated for a given setup
by the following measurements. An oscillating magnetic field
B0cos(2𝜋𝜈t) is, respectively, applied to the magnetometer along
the 𝜉 axis as a reference input, and then the amplitude S𝜉(𝜈, Bz) of
the output signal is recorded as a function of the bias field Bz (see
Section II and Figure S5, Supporting Information). One can fur-
ther sweep the frequency 𝜈 of the input oscillating field to obtain
Υx(𝜈, Bz) at arbitrary 𝜈. Figure 2b shows the experimental mea-
surements for the amplitude responses A𝜉(𝜈, Bz) versus different
bias fieldBz at 𝜈 = 222Hz.We observe that Ax(𝜈, Bz) andAy(𝜈, Bz)
are both non-zero in certain range of Bz around zero. This il-
lustrates that the atomic magnetometer could be simultaneously
sensitive to the magnetic fields along the x and y axes. The center
of symmetry, that is, themagnetic fieldwhere Ay(𝜈, Bz) reaches its
maximum and Ax(𝜈, Bz) = 0, is slightly shifted away from zero.
This is because the total magnetic field acting on the 87Rb atoms
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response functions, and satisfy the following relations

Ax(𝜈, Bz)∕Ay(𝜈, Bz) =
(gs𝜇B)Bz√

Γ2 + (2𝜋𝜈)2q2
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ΔΦ ≡ Φx(𝜈, Bz) − Φy(𝜈, Bz) = arctan
(
−
2𝜋q𝜈
Γ

)
(4)

In our experiments, the optical rotation angle of probe laser is
proportional to the atomic Px polarization along the direction of
propagation (see Figure 1), thus we only focus on Px and the par-
tial response matrix Υx(𝜈, Bz) ≡ [Υxx(𝜈, Bz),Υxy(𝜈, Bz)]. Υx(𝜈, Bz)
is time-independent and only depends on the parameters of
the atomic magnetometer. According to Equation (2), it clearly
shows that the output signal Px is a weighted superposition of
the x and y components of the magnetic field with the differ-
ent amplitude and phase responses if Ax(𝜈, Bz) ≠ 0,Ay(𝜈, Bz) ≠ 0
and Φx(𝜈, Bz) ≠ Φy(𝜈, Bz). For slowly changing magnetic fields
(i.e., 𝜈→0), we reach the quasi-steady-state solution, that is,
Φx(𝜈, Bz) = Φy(𝜈, Bz) = 0. It is also clearly seen, from Equa-
tions (3) and (4), that the dynamic response solution in Equa-
tion (2) deviates from the quasi-steady-state one when the con-
dition of slowly changing is violated. As we show below, this dy-
namic response feature will bring new experimental phenomena
which cannot be explained through the quasi-static assumption.

2.2. Interference Effect in Atomic Magnetometer

Figure 2a schematically shows the basic interference effect result-
ing from the response of atomic magnetometer in Equation (2).
The output signal of the atomic magnetometer s(t) = 𝛼Px(t) is an
oscillating signal. Here, the proportionality constant 𝛼 summa-
rizes, for example, amplifier gains and conversion factors of de-
tectors (see Section I, Supporting Information). The amplitude
of the oscillating s(t) signal is

S2tot = (S2x + S2y )(1 + 𝜒 cosΔ𝜙) (5)

where Sx = Sx(𝜈, Bz) = 𝛼Ax(𝜈, Bz)Bx0 and Sy = Sy(𝜈, Bz) =
𝛼Ay(𝜈, Bz)By0, respectively, denote the amplitude of the output
oscillating signal when there only exists the x- or y-component
in the input magnetic field B(t). The term “𝜒 cosΔ𝜙” represents
the interference effect when the x- and y-components are both
nonzero. Here, the interference phase Δ𝜙 = ΔΦ + (𝜃x0 − 𝜃y0)
and the interference contrast 𝜒 ≡ 2SxSy∕(S2x + S2y ). Notice that
the interference effect vanishes when Sx = 0 or Sy = 0 or
Δ𝜙 = ±𝜋∕2. The details of the interference effect depend on
both the response matrix and the input magnetic field (or the
detected magnetic field). Importantly, the interference effect
results in a systematic error of measuring magnetic fields when
the interference is not taken into account. For example of our
atomic magnetometer, when a bias field Bz ≈ 600 nT is applied
and two oscillating fields are applied with same amplitudes and
same initial phases, ΔΦ ≈ 𝜋

5
and |𝜒 cosΔΦ| ≈ 0.81 (details are

shown in the part of interference calibration) and accordingly
≈5% systematic error of the oscillating field amplitude results
from the hidden interference effect. When this atomic magne-
tometer is applied to detect NMR signals, we show below that

Figure 2. Interference effect in atomic magnetometry and atomic re-
sponse functions. a) Basics of the quantum sensor resulting in the in-
terference effect: The magnetic field components along the x- and y-axes
both affect the sensor, but the observed signal is given only by the sum
of their contributions, which have different sensitivities (amplitudes Ax ,
Ay) and phases (Φx ,Φy). b) Experimental amplitude responses Ax and Ay
as functions of Bz. c) The phase difference between the phase response
Φx(𝜈, Bz) and Φy(𝜈, Bz) as a function of Bz. Here, 𝜈 is chosen as 222 Hz
for demonstration.

there is a few tens of percent distortion on NMR peak intensities
due to the interference. Thus, it is worthy to evaluating the
interference in atomic magnetometers before they are used
as detectors.
Our work provides a standard approach to detecting and char-

acterizing the interference phenomenon in, but not limited to,
atomic magnetometers. Unlike the common approaches that
only test the single-axis performance through applying a single-
axis calibration field,[32,34 ] we measure the performance of mag-
netometers under multiple oscillating magnetic fields. In this
way we can obtain hidden dynamic response of magnetometers
and extract the important information about the interference ef-
fect. As the responsematrixΥx(𝜈, Bz) is constant for certain 𝜈 and
Bz, Υx(𝜈, Bz) can be experimentally calibrated for a given setup
by the following measurements. An oscillating magnetic field
B0cos(2𝜋𝜈t) is, respectively, applied to the magnetometer along
the 𝜉 axis as a reference input, and then the amplitude S𝜉(𝜈, Bz) of
the output signal is recorded as a function of the bias field Bz (see
Section II and Figure S5, Supporting Information). One can fur-
ther sweep the frequency 𝜈 of the input oscillating field to obtain
Υx(𝜈, Bz) at arbitrary 𝜈. Figure 2b shows the experimental mea-
surements for the amplitude responses A𝜉(𝜈, Bz) versus different
bias fieldBz at 𝜈 = 222Hz.We observe that Ax(𝜈, Bz) andAy(𝜈, Bz)
are both non-zero in certain range of Bz around zero. This il-
lustrates that the atomic magnetometer could be simultaneously
sensitive to the magnetic fields along the x and y axes. The center
of symmetry, that is, themagnetic fieldwhere Ay(𝜈, Bz) reaches its
maximum and Ax(𝜈, Bz) = 0, is slightly shifted away from zero.
This is because the total magnetic field acting on the 87Rb atoms
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response functions, and satisfy the following relations

Ax(𝜈, Bz)∕Ay(𝜈, Bz) =
(gs𝜇B)Bz√

Γ2 + (2𝜋𝜈)2q2
(3)

ΔΦ ≡ Φx(𝜈, Bz) − Φy(𝜈, Bz) = arctan
(
−
2𝜋q𝜈
Γ

)
(4)

In our experiments, the optical rotation angle of probe laser is
proportional to the atomic Px polarization along the direction of
propagation (see Figure 1), thus we only focus on Px and the par-
tial response matrix Υx(𝜈, Bz) ≡ [Υxx(𝜈, Bz),Υxy(𝜈, Bz)]. Υx(𝜈, Bz)
is time-independent and only depends on the parameters of
the atomic magnetometer. According to Equation (2), it clearly
shows that the output signal Px is a weighted superposition of
the x and y components of the magnetic field with the differ-
ent amplitude and phase responses if Ax(𝜈, Bz) ≠ 0,Ay(𝜈, Bz) ≠ 0
and Φx(𝜈, Bz) ≠ Φy(𝜈, Bz). For slowly changing magnetic fields
(i.e., 𝜈→0), we reach the quasi-steady-state solution, that is,
Φx(𝜈, Bz) = Φy(𝜈, Bz) = 0. It is also clearly seen, from Equa-
tions (3) and (4), that the dynamic response solution in Equa-
tion (2) deviates from the quasi-steady-state one when the con-
dition of slowly changing is violated. As we show below, this dy-
namic response feature will bring new experimental phenomena
which cannot be explained through the quasi-static assumption.

2.2. Interference Effect in Atomic Magnetometer

Figure 2a schematically shows the basic interference effect result-
ing from the response of atomic magnetometer in Equation (2).
The output signal of the atomic magnetometer s(t) = 𝛼Px(t) is an
oscillating signal. Here, the proportionality constant 𝛼 summa-
rizes, for example, amplifier gains and conversion factors of de-
tectors (see Section I, Supporting Information). The amplitude
of the oscillating s(t) signal is

S2tot = (S2x + S2y )(1 + 𝜒 cosΔ𝜙) (5)

where Sx = Sx(𝜈, Bz) = 𝛼Ax(𝜈, Bz)Bx0 and Sy = Sy(𝜈, Bz) =
𝛼Ay(𝜈, Bz)By0, respectively, denote the amplitude of the output
oscillating signal when there only exists the x- or y-component
in the input magnetic field B(t). The term “𝜒 cosΔ𝜙” represents
the interference effect when the x- and y-components are both
nonzero. Here, the interference phase Δ𝜙 = ΔΦ + (𝜃x0 − 𝜃y0)
and the interference contrast 𝜒 ≡ 2SxSy∕(S2x + S2y ). Notice that
the interference effect vanishes when Sx = 0 or Sy = 0 or
Δ𝜙 = ±𝜋∕2. The details of the interference effect depend on
both the response matrix and the input magnetic field (or the
detected magnetic field). Importantly, the interference effect
results in a systematic error of measuring magnetic fields when
the interference is not taken into account. For example of our
atomic magnetometer, when a bias field Bz ≈ 600 nT is applied
and two oscillating fields are applied with same amplitudes and
same initial phases, ΔΦ ≈ 𝜋

5
and |𝜒 cosΔΦ| ≈ 0.81 (details are

shown in the part of interference calibration) and accordingly
≈5% systematic error of the oscillating field amplitude results
from the hidden interference effect. When this atomic magne-
tometer is applied to detect NMR signals, we show below that

Figure 2. Interference effect in atomic magnetometry and atomic re-
sponse functions. a) Basics of the quantum sensor resulting in the in-
terference effect: The magnetic field components along the x- and y-axes
both affect the sensor, but the observed signal is given only by the sum
of their contributions, which have different sensitivities (amplitudes Ax ,
Ay) and phases (Φx ,Φy). b) Experimental amplitude responses Ax and Ay
as functions of Bz. c) The phase difference between the phase response
Φx(𝜈, Bz) and Φy(𝜈, Bz) as a function of Bz. Here, 𝜈 is chosen as 222 Hz
for demonstration.

there is a few tens of percent distortion on NMR peak intensities
due to the interference. Thus, it is worthy to evaluating the
interference in atomic magnetometers before they are used
as detectors.
Our work provides a standard approach to detecting and char-

acterizing the interference phenomenon in, but not limited to,
atomic magnetometers. Unlike the common approaches that
only test the single-axis performance through applying a single-
axis calibration field,[32,34 ] we measure the performance of mag-
netometers under multiple oscillating magnetic fields. In this
way we can obtain hidden dynamic response of magnetometers
and extract the important information about the interference ef-
fect. As the responsematrixΥx(𝜈, Bz) is constant for certain 𝜈 and
Bz, Υx(𝜈, Bz) can be experimentally calibrated for a given setup
by the following measurements. An oscillating magnetic field
B0cos(2𝜋𝜈t) is, respectively, applied to the magnetometer along
the 𝜉 axis as a reference input, and then the amplitude S𝜉(𝜈, Bz) of
the output signal is recorded as a function of the bias field Bz (see
Section II and Figure S5, Supporting Information). One can fur-
ther sweep the frequency 𝜈 of the input oscillating field to obtain
Υx(𝜈, Bz) at arbitrary 𝜈. Figure 2b shows the experimental mea-
surements for the amplitude responses A𝜉(𝜈, Bz) versus different
bias fieldBz at 𝜈 = 222Hz.We observe that Ax(𝜈, Bz) andAy(𝜈, Bz)
are both non-zero in certain range of Bz around zero. This il-
lustrates that the atomic magnetometer could be simultaneously
sensitive to the magnetic fields along the x and y axes. The center
of symmetry, that is, themagnetic fieldwhere Ay(𝜈, Bz) reaches its
maximum and Ax(𝜈, Bz) = 0, is slightly shifted away from zero.
This is because the total magnetic field acting on the 87Rb atoms
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response functions, and satisfy the following relations

Ax(𝜈, Bz)∕Ay(𝜈, Bz) =
(gs𝜇B)Bz√

Γ2 + (2𝜋𝜈)2q2
(3)

ΔΦ ≡ Φx(𝜈, Bz) − Φy(𝜈, Bz) = arctan
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−
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Γ

)
(4)

In our experiments, the optical rotation angle of probe laser is
proportional to the atomic Px polarization along the direction of
propagation (see Figure 1), thus we only focus on Px and the par-
tial response matrix Υx(𝜈, Bz) ≡ [Υxx(𝜈, Bz),Υxy(𝜈, Bz)]. Υx(𝜈, Bz)
is time-independent and only depends on the parameters of
the atomic magnetometer. According to Equation (2), it clearly
shows that the output signal Px is a weighted superposition of
the x and y components of the magnetic field with the differ-
ent amplitude and phase responses if Ax(𝜈, Bz) ≠ 0,Ay(𝜈, Bz) ≠ 0
and Φx(𝜈, Bz) ≠ Φy(𝜈, Bz). For slowly changing magnetic fields
(i.e., 𝜈→0), we reach the quasi-steady-state solution, that is,
Φx(𝜈, Bz) = Φy(𝜈, Bz) = 0. It is also clearly seen, from Equa-
tions (3) and (4), that the dynamic response solution in Equa-
tion (2) deviates from the quasi-steady-state one when the con-
dition of slowly changing is violated. As we show below, this dy-
namic response feature will bring new experimental phenomena
which cannot be explained through the quasi-static assumption.

2.2. Interference Effect in Atomic Magnetometer

Figure 2a schematically shows the basic interference effect result-
ing from the response of atomic magnetometer in Equation (2).
The output signal of the atomic magnetometer s(t) = 𝛼Px(t) is an
oscillating signal. Here, the proportionality constant 𝛼 summa-
rizes, for example, amplifier gains and conversion factors of de-
tectors (see Section I, Supporting Information). The amplitude
of the oscillating s(t) signal is

S2tot = (S2x + S2y )(1 + 𝜒 cosΔ𝜙) (5)

where Sx = Sx(𝜈, Bz) = 𝛼Ax(𝜈, Bz)Bx0 and Sy = Sy(𝜈, Bz) =
𝛼Ay(𝜈, Bz)By0, respectively, denote the amplitude of the output
oscillating signal when there only exists the x- or y-component
in the input magnetic field B(t). The term “𝜒 cosΔ𝜙” represents
the interference effect when the x- and y-components are both
nonzero. Here, the interference phase Δ𝜙 = ΔΦ + (𝜃x0 − 𝜃y0)
and the interference contrast 𝜒 ≡ 2SxSy∕(S2x + S2y ). Notice that
the interference effect vanishes when Sx = 0 or Sy = 0 or
Δ𝜙 = ±𝜋∕2. The details of the interference effect depend on
both the response matrix and the input magnetic field (or the
detected magnetic field). Importantly, the interference effect
results in a systematic error of measuring magnetic fields when
the interference is not taken into account. For example of our
atomic magnetometer, when a bias field Bz ≈ 600 nT is applied
and two oscillating fields are applied with same amplitudes and
same initial phases, ΔΦ ≈ 𝜋
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and |𝜒 cosΔΦ| ≈ 0.81 (details are

shown in the part of interference calibration) and accordingly
≈5% systematic error of the oscillating field amplitude results
from the hidden interference effect. When this atomic magne-
tometer is applied to detect NMR signals, we show below that

Figure 2. Interference effect in atomic magnetometry and atomic re-
sponse functions. a) Basics of the quantum sensor resulting in the in-
terference effect: The magnetic field components along the x- and y-axes
both affect the sensor, but the observed signal is given only by the sum
of their contributions, which have different sensitivities (amplitudes Ax ,
Ay) and phases (Φx ,Φy). b) Experimental amplitude responses Ax and Ay
as functions of Bz. c) The phase difference between the phase response
Φx(𝜈, Bz) and Φy(𝜈, Bz) as a function of Bz. Here, 𝜈 is chosen as 222 Hz
for demonstration.

there is a few tens of percent distortion on NMR peak intensities
due to the interference. Thus, it is worthy to evaluating the
interference in atomic magnetometers before they are used
as detectors.
Our work provides a standard approach to detecting and char-

acterizing the interference phenomenon in, but not limited to,
atomic magnetometers. Unlike the common approaches that
only test the single-axis performance through applying a single-
axis calibration field,[32,34 ] we measure the performance of mag-
netometers under multiple oscillating magnetic fields. In this
way we can obtain hidden dynamic response of magnetometers
and extract the important information about the interference ef-
fect. As the responsematrixΥx(𝜈, Bz) is constant for certain 𝜈 and
Bz, Υx(𝜈, Bz) can be experimentally calibrated for a given setup
by the following measurements. An oscillating magnetic field
B0cos(2𝜋𝜈t) is, respectively, applied to the magnetometer along
the 𝜉 axis as a reference input, and then the amplitude S𝜉(𝜈, Bz) of
the output signal is recorded as a function of the bias field Bz (see
Section II and Figure S5, Supporting Information). One can fur-
ther sweep the frequency 𝜈 of the input oscillating field to obtain
Υx(𝜈, Bz) at arbitrary 𝜈. Figure 2b shows the experimental mea-
surements for the amplitude responses A𝜉(𝜈, Bz) versus different
bias fieldBz at 𝜈 = 222Hz.We observe that Ax(𝜈, Bz) andAy(𝜈, Bz)
are both non-zero in certain range of Bz around zero. This il-
lustrates that the atomic magnetometer could be simultaneously
sensitive to the magnetic fields along the x and y axes. The center
of symmetry, that is, themagnetic fieldwhere Ay(𝜈, Bz) reaches its
maximum and Ax(𝜈, Bz) = 0, is slightly shifted away from zero.
This is because the total magnetic field acting on the 87Rb atoms
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response functions, and satisfy the following relations

Ax(𝜈, Bz)∕Ay(𝜈, Bz) =
(gs𝜇B)Bz√

Γ2 + (2𝜋𝜈)2q2
(3)

ΔΦ ≡ Φx(𝜈, Bz) − Φy(𝜈, Bz) = arctan
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−
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In our experiments, the optical rotation angle of probe laser is
proportional to the atomic Px polarization along the direction of
propagation (see Figure 1), thus we only focus on Px and the par-
tial response matrix Υx(𝜈, Bz) ≡ [Υxx(𝜈, Bz),Υxy(𝜈, Bz)]. Υx(𝜈, Bz)
is time-independent and only depends on the parameters of
the atomic magnetometer. According to Equation (2), it clearly
shows that the output signal Px is a weighted superposition of
the x and y components of the magnetic field with the differ-
ent amplitude and phase responses if Ax(𝜈, Bz) ≠ 0,Ay(𝜈, Bz) ≠ 0
and Φx(𝜈, Bz) ≠ Φy(𝜈, Bz). For slowly changing magnetic fields
(i.e., 𝜈→0), we reach the quasi-steady-state solution, that is,
Φx(𝜈, Bz) = Φy(𝜈, Bz) = 0. It is also clearly seen, from Equa-
tions (3) and (4), that the dynamic response solution in Equa-
tion (2) deviates from the quasi-steady-state one when the con-
dition of slowly changing is violated. As we show below, this dy-
namic response feature will bring new experimental phenomena
which cannot be explained through the quasi-static assumption.

2.2. Interference Effect in Atomic Magnetometer

Figure 2a schematically shows the basic interference effect result-
ing from the response of atomic magnetometer in Equation (2).
The output signal of the atomic magnetometer s(t) = 𝛼Px(t) is an
oscillating signal. Here, the proportionality constant 𝛼 summa-
rizes, for example, amplifier gains and conversion factors of de-
tectors (see Section I, Supporting Information). The amplitude
of the oscillating s(t) signal is

S2tot = (S2x + S2y )(1 + 𝜒 cosΔ𝜙) (5)

where Sx = Sx(𝜈, Bz) = 𝛼Ax(𝜈, Bz)Bx0 and Sy = Sy(𝜈, Bz) =
𝛼Ay(𝜈, Bz)By0, respectively, denote the amplitude of the output
oscillating signal when there only exists the x- or y-component
in the input magnetic field B(t). The term “𝜒 cosΔ𝜙” represents
the interference effect when the x- and y-components are both
nonzero. Here, the interference phase Δ𝜙 = ΔΦ + (𝜃x0 − 𝜃y0)
and the interference contrast 𝜒 ≡ 2SxSy∕(S2x + S2y ). Notice that
the interference effect vanishes when Sx = 0 or Sy = 0 or
Δ𝜙 = ±𝜋∕2. The details of the interference effect depend on
both the response matrix and the input magnetic field (or the
detected magnetic field). Importantly, the interference effect
results in a systematic error of measuring magnetic fields when
the interference is not taken into account. For example of our
atomic magnetometer, when a bias field Bz ≈ 600 nT is applied
and two oscillating fields are applied with same amplitudes and
same initial phases, ΔΦ ≈ 𝜋
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≈5% systematic error of the oscillating field amplitude results
from the hidden interference effect. When this atomic magne-
tometer is applied to detect NMR signals, we show below that

Figure 2. Interference effect in atomic magnetometry and atomic re-
sponse functions. a) Basics of the quantum sensor resulting in the in-
terference effect: The magnetic field components along the x- and y-axes
both affect the sensor, but the observed signal is given only by the sum
of their contributions, which have different sensitivities (amplitudes Ax ,
Ay) and phases (Φx ,Φy). b) Experimental amplitude responses Ax and Ay
as functions of Bz. c) The phase difference between the phase response
Φx(𝜈, Bz) and Φy(𝜈, Bz) as a function of Bz. Here, 𝜈 is chosen as 222 Hz
for demonstration.

there is a few tens of percent distortion on NMR peak intensities
due to the interference. Thus, it is worthy to evaluating the
interference in atomic magnetometers before they are used
as detectors.
Our work provides a standard approach to detecting and char-

acterizing the interference phenomenon in, but not limited to,
atomic magnetometers. Unlike the common approaches that
only test the single-axis performance through applying a single-
axis calibration field,[32,34 ] we measure the performance of mag-
netometers under multiple oscillating magnetic fields. In this
way we can obtain hidden dynamic response of magnetometers
and extract the important information about the interference ef-
fect. As the responsematrixΥx(𝜈, Bz) is constant for certain 𝜈 and
Bz, Υx(𝜈, Bz) can be experimentally calibrated for a given setup
by the following measurements. An oscillating magnetic field
B0cos(2𝜋𝜈t) is, respectively, applied to the magnetometer along
the 𝜉 axis as a reference input, and then the amplitude S𝜉(𝜈, Bz) of
the output signal is recorded as a function of the bias field Bz (see
Section II and Figure S5, Supporting Information). One can fur-
ther sweep the frequency 𝜈 of the input oscillating field to obtain
Υx(𝜈, Bz) at arbitrary 𝜈. Figure 2b shows the experimental mea-
surements for the amplitude responses A𝜉(𝜈, Bz) versus different
bias fieldBz at 𝜈 = 222Hz.We observe that Ax(𝜈, Bz) andAy(𝜈, Bz)
are both non-zero in certain range of Bz around zero. This il-
lustrates that the atomic magnetometer could be simultaneously
sensitive to the magnetic fields along the x and y axes. The center
of symmetry, that is, themagnetic fieldwhere Ay(𝜈, Bz) reaches its
maximum and Ax(𝜈, Bz) = 0, is slightly shifted away from zero.
This is because the total magnetic field acting on the 87Rb atoms
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Figure 1. Diagramof experimental setup for an atomicmagnetometer and
ultralow-field NMR spectrometer. BE, beam expander; LP, linear polarizer;
PD, photodiode; PEM, photoelastic modulator. As shown in the inset, the
NMR sample is located at a distance of 1mm above the Rb vapor cell. See
the text and Section I, Supporting Information and Appendix A for details.

battery cells.[41 ] Therefore, there is a pressing need for a subtle
analysis of the relevant physical processes and achieving a
precise detection model in atomic magnetometry.
In this work, we uncover a hitherto unexplained interference

effect in atomic magnetometry, which causes a significant
systematic effect to deteriorate the accuracy of measuring mag-
netic fields. Unlike the common approach that takes quasi-steady
approximation,[32–37 ] our work investigates the dynamic response
of atomic magnetometers, which is the essential origin of the
interference effect. We present a standard approach to detecting
and characterizing the interference in atomic magnetometers,
and show that it provides a very precise prediction of the detected
signals by taking interference effects into account. As applica-
tions of our work, we discuss the effect of the interference for a
variety of applications, for example, in NMR and biomagnetism.
Through our ultralow-field NMR experiments, we demonstrate
the interference of NMR signal fields and provide the first
explanation for the hitherto unexplained asymmetric amplitudes
of resonant lines in NMR spectra, significantly improving the
accuracy for determining the structure and molar concentration
of NMR samples.[35–37 ] Moreover, we show that understanding
the interference behavior greatly increases the information
content of atomic magnetometer signals, for example, the light-
shift field of alkali-metal atoms[42,43 ] and the sign of the Landé
g-factor of nuclear spins. We anticipate that our work to the first
finding of the interference effect in atomic magnetometers will
stimulate interesting new researches for magnetic interference
phenomena in a wide range of magnetometers.

2. Results

2.1. Response Matrix in Atomic Magnetometer

The studied system is an atomic magnetometer (sensitivity ≈
25 fT Hz−1∕2) with a warm 87Rb vapor cell (0.7 × 0.7 × 1.0 cm3

and a wall thickness of 1 mm), whose setup is described in
Figure 1. The vapor cell contains 700 torr of N2 in addition to a
small amount of 87Rb metal, placed inside a five-layer mu-metal
magnetic shield to screen out the ambient magnetic field. A

circularly polarized laser beam (795 nm, 5mW) optically pumps
the 87Rb atoms along the z direction, while a linearly polarized
probe laser (780 nm, 1 mW) traveling along the x direction
provides a Faraday rotation detection signal for the magnetic
field. Moreover, an uniform magnetic field along the z axis is
applied to induce a Zeeman effect on 87Rb atoms, where the re-
sulting Zeeman precession is much smaller than spin-exchange
rate. More details of the setup are presented in Appendix A and
Section I, Supporting Information.
The electron spin evolution of 87Rb atoms can be described

by a Bloch equation for the electron spin polarization P as
follows[32–34 ]

dP
dt

= 1
q
[𝛀(t) × P + Rop(ẑ − P) − ΓSDP − ΓprP] (1)

where 𝛀(t) = gs𝜇BB(t), gs ≈ 2 is the electron Landé factor, B(t) =
[Bx(t), By(t), Bz] is the applied magnetic field including to be mea-
sured Bx(t) and By(t) along x and y direction and a static bias
Bz along z direction, 𝜇B is the Bohr magneton, q is the nuclear
slowing-down factor that takes into account the effect of the nu-
clear spin on the electronic spin,[44 ] Rop is the optical pumping
rate due to the pump laser and causes spin relaxation because
the absorption of a pump beam photon changes the atomic an-
gular momentum, ẑ is the unit vector along the z axis, ΓSD is the
relaxation rate due to spin-destruction collisions,[32 ] and Γpr is the
rate of depolarization due to the probe beam. Then, the total spin
relaxation rate is Γ = Rop + ΓSD + Γpr.
For slowly changing magnetic fields B(t), one can obtain the

quasi-steady-state solution of Equation (1), which was used in
earlier works.[32–36 ] Unlike the common approach that takes
quasi-steady approximation, we consider a more general case
B(t) = [Bx0 cos(2𝜋𝜈t + 𝜃x0), By0 cos(2𝜋𝜈t + 𝜃y0), Bz] where the
quasi-steady-state solution might be invalid and the dynamic
response solution must be taken into account. Although our
considered case is simple, it can be applied in a wide range
of applications, from biomagnetic measurement (𝜈 ≈ 1 to
40 Hz)[17,38 ] and detection of signals in NMR and magnetic
resonance imaging (𝜈 ≈ 1 to 300 Hz)[19–23 ] to paleomagnetism
(𝜈 ≈ 1 to 100Hz)[15 ] and searches for axion dark matter (𝜈 ≈ 1 to
100Hz).[28–31 ] Here, Bx0, By0 are assumed to be so small that they
cause only a perturbation on the atomic polarization P. Thus,
atomic magnetometer can be seen as a linear system and we can
describe its response in a form of linear-response theory (see
Appendix B and Section II, Supporting Information):

[
Px

Py

]
=
[
Υxx(𝜈, Bz) Υxy(𝜈, Bz)

Υyx(𝜈, Bz) Υyy(𝜈, Bz)

]
⋅

[ 1
2
Bx0ei(2𝜋𝜈t+𝜃x0)

1
2
By0e

i(2𝜋𝜈t+𝜃y0)

]
+ c.c. (2)

with Υxx(𝜈, Bz) = Ax(𝜈, Bz)eiΦx (𝜈,Bz) and Υxy(𝜈, Bz) =
Ay(𝜈, Bz)e

iΦy(𝜈,Bz). The index x and y are permutation symmetric,
suggesting Υyy(𝜈, Bz) = Υxx(𝜈, Bz) and Υyx(𝜈, Bz) = Υxy(𝜈, Bz).
The response matrix Υ(𝜈, Bz) builds up the relationship between
the output signal of the atomic magnetometer and the input
magnetic field [Bx0 cos(2𝜋𝜈t + 𝜃x0), By0 cos(2𝜋𝜈t + 𝜃y0)]. A𝜉(𝜈, Bz)
andΦ𝜉(𝜈, Bz) (𝜉 = x, y) are, respectively, the amplitude and phase
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response functions, and satisfy the following relations

Ax(𝜈, Bz)∕Ay(𝜈, Bz) =
(gs𝜇B)Bz√

Γ2 + (2𝜋𝜈)2q2
(3)

ΔΦ ≡ Φx(𝜈, Bz) − Φy(𝜈, Bz) = arctan
(
−
2𝜋q𝜈
Γ

)
(4)

In our experiments, the optical rotation angle of probe laser is
proportional to the atomic Px polarization along the direction of
propagation (see Figure 1), thus we only focus on Px and the par-
tial response matrix Υx(𝜈, Bz) ≡ [Υxx(𝜈, Bz),Υxy(𝜈, Bz)]. Υx(𝜈, Bz)
is time-independent and only depends on the parameters of
the atomic magnetometer. According to Equation (2), it clearly
shows that the output signal Px is a weighted superposition of
the x and y components of the magnetic field with the differ-
ent amplitude and phase responses if Ax(𝜈, Bz) ≠ 0,Ay(𝜈, Bz) ≠ 0
and Φx(𝜈, Bz) ≠ Φy(𝜈, Bz). For slowly changing magnetic fields
(i.e., 𝜈→0), we reach the quasi-steady-state solution, that is,
Φx(𝜈, Bz) = Φy(𝜈, Bz) = 0. It is also clearly seen, from Equa-
tions (3) and (4), that the dynamic response solution in Equa-
tion (2) deviates from the quasi-steady-state one when the con-
dition of slowly changing is violated. As we show below, this dy-
namic response feature will bring new experimental phenomena
which cannot be explained through the quasi-static assumption.

2.2. Interference Effect in Atomic Magnetometer

Figure 2a schematically shows the basic interference effect result-
ing from the response of atomic magnetometer in Equation (2).
The output signal of the atomic magnetometer s(t) = 𝛼Px(t) is an
oscillating signal. Here, the proportionality constant 𝛼 summa-
rizes, for example, amplifier gains and conversion factors of de-
tectors (see Section I, Supporting Information). The amplitude
of the oscillating s(t) signal is

S2tot = (S2x + S2y )(1 + 𝜒 cosΔ𝜙) (5)

where Sx = Sx(𝜈, Bz) = 𝛼Ax(𝜈, Bz)Bx0 and Sy = Sy(𝜈, Bz) =
𝛼Ay(𝜈, Bz)By0, respectively, denote the amplitude of the output
oscillating signal when there only exists the x- or y-component
in the input magnetic field B(t). The term “𝜒 cosΔ𝜙” represents
the interference effect when the x- and y-components are both
nonzero. Here, the interference phase Δ𝜙 = ΔΦ + (𝜃x0 − 𝜃y0)
and the interference contrast 𝜒 ≡ 2SxSy∕(S2x + S2y ). Notice that
the interference effect vanishes when Sx = 0 or Sy = 0 or
Δ𝜙 = ±𝜋∕2. The details of the interference effect depend on
both the response matrix and the input magnetic field (or the
detected magnetic field). Importantly, the interference effect
results in a systematic error of measuring magnetic fields when
the interference is not taken into account. For example of our
atomic magnetometer, when a bias field Bz ≈ 600 nT is applied
and two oscillating fields are applied with same amplitudes and
same initial phases, ΔΦ ≈ 𝜋

5
and |𝜒 cosΔΦ| ≈ 0.81 (details are

shown in the part of interference calibration) and accordingly
≈5% systematic error of the oscillating field amplitude results
from the hidden interference effect. When this atomic magne-
tometer is applied to detect NMR signals, we show below that

Figure 2. Interference effect in atomic magnetometry and atomic re-
sponse functions. a) Basics of the quantum sensor resulting in the in-
terference effect: The magnetic field components along the x- and y-axes
both affect the sensor, but the observed signal is given only by the sum
of their contributions, which have different sensitivities (amplitudes Ax ,
Ay) and phases (Φx ,Φy). b) Experimental amplitude responses Ax and Ay
as functions of Bz. c) The phase difference between the phase response
Φx(𝜈, Bz) and Φy(𝜈, Bz) as a function of Bz. Here, 𝜈 is chosen as 222 Hz
for demonstration.

there is a few tens of percent distortion on NMR peak intensities
due to the interference. Thus, it is worthy to evaluating the
interference in atomic magnetometers before they are used
as detectors.
Our work provides a standard approach to detecting and char-

acterizing the interference phenomenon in, but not limited to,
atomic magnetometers. Unlike the common approaches that
only test the single-axis performance through applying a single-
axis calibration field,[32,34 ] we measure the performance of mag-
netometers under multiple oscillating magnetic fields. In this
way we can obtain hidden dynamic response of magnetometers
and extract the important information about the interference ef-
fect. As the responsematrixΥx(𝜈, Bz) is constant for certain 𝜈 and
Bz, Υx(𝜈, Bz) can be experimentally calibrated for a given setup
by the following measurements. An oscillating magnetic field
B0cos(2𝜋𝜈t) is, respectively, applied to the magnetometer along
the 𝜉 axis as a reference input, and then the amplitude S𝜉(𝜈, Bz) of
the output signal is recorded as a function of the bias field Bz (see
Section II and Figure S5, Supporting Information). One can fur-
ther sweep the frequency 𝜈 of the input oscillating field to obtain
Υx(𝜈, Bz) at arbitrary 𝜈. Figure 2b shows the experimental mea-
surements for the amplitude responses A𝜉(𝜈, Bz) versus different
bias fieldBz at 𝜈 = 222Hz.We observe that Ax(𝜈, Bz) andAy(𝜈, Bz)
are both non-zero in certain range of Bz around zero. This il-
lustrates that the atomic magnetometer could be simultaneously
sensitive to the magnetic fields along the x and y axes. The center
of symmetry, that is, themagnetic fieldwhere Ay(𝜈, Bz) reaches its
maximum and Ax(𝜈, Bz) = 0, is slightly shifted away from zero.
This is because the total magnetic field acting on the 87Rb atoms
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response functions, and satisfy the following relations

Ax(𝜈, Bz)∕Ay(𝜈, Bz) =
(gs𝜇B)Bz√

Γ2 + (2𝜋𝜈)2q2
(3)

ΔΦ ≡ Φx(𝜈, Bz) − Φy(𝜈, Bz) = arctan
(
−
2𝜋q𝜈
Γ

)
(4)

In our experiments, the optical rotation angle of probe laser is
proportional to the atomic Px polarization along the direction of
propagation (see Figure 1), thus we only focus on Px and the par-
tial response matrix Υx(𝜈, Bz) ≡ [Υxx(𝜈, Bz),Υxy(𝜈, Bz)]. Υx(𝜈, Bz)
is time-independent and only depends on the parameters of
the atomic magnetometer. According to Equation (2), it clearly
shows that the output signal Px is a weighted superposition of
the x and y components of the magnetic field with the differ-
ent amplitude and phase responses if Ax(𝜈, Bz) ≠ 0,Ay(𝜈, Bz) ≠ 0
and Φx(𝜈, Bz) ≠ Φy(𝜈, Bz). For slowly changing magnetic fields
(i.e., 𝜈→0), we reach the quasi-steady-state solution, that is,
Φx(𝜈, Bz) = Φy(𝜈, Bz) = 0. It is also clearly seen, from Equa-
tions (3) and (4), that the dynamic response solution in Equa-
tion (2) deviates from the quasi-steady-state one when the con-
dition of slowly changing is violated. As we show below, this dy-
namic response feature will bring new experimental phenomena
which cannot be explained through the quasi-static assumption.

2.2. Interference Effect in Atomic Magnetometer

Figure 2a schematically shows the basic interference effect result-
ing from the response of atomic magnetometer in Equation (2).
The output signal of the atomic magnetometer s(t) = 𝛼Px(t) is an
oscillating signal. Here, the proportionality constant 𝛼 summa-
rizes, for example, amplifier gains and conversion factors of de-
tectors (see Section I, Supporting Information). The amplitude
of the oscillating s(t) signal is

S2tot = (S2x + S2y )(1 + 𝜒 cosΔ𝜙) (5)

where Sx = Sx(𝜈, Bz) = 𝛼Ax(𝜈, Bz)Bx0 and Sy = Sy(𝜈, Bz) =
𝛼Ay(𝜈, Bz)By0, respectively, denote the amplitude of the output
oscillating signal when there only exists the x- or y-component
in the input magnetic field B(t). The term “𝜒 cosΔ𝜙” represents
the interference effect when the x- and y-components are both
nonzero. Here, the interference phase Δ𝜙 = ΔΦ + (𝜃x0 − 𝜃y0)
and the interference contrast 𝜒 ≡ 2SxSy∕(S2x + S2y ). Notice that
the interference effect vanishes when Sx = 0 or Sy = 0 or
Δ𝜙 = ±𝜋∕2. The details of the interference effect depend on
both the response matrix and the input magnetic field (or the
detected magnetic field). Importantly, the interference effect
results in a systematic error of measuring magnetic fields when
the interference is not taken into account. For example of our
atomic magnetometer, when a bias field Bz ≈ 600 nT is applied
and two oscillating fields are applied with same amplitudes and
same initial phases, ΔΦ ≈ 𝜋
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and |𝜒 cosΔΦ| ≈ 0.81 (details are

shown in the part of interference calibration) and accordingly
≈5% systematic error of the oscillating field amplitude results
from the hidden interference effect. When this atomic magne-
tometer is applied to detect NMR signals, we show below that

Figure 2. Interference effect in atomic magnetometry and atomic re-
sponse functions. a) Basics of the quantum sensor resulting in the in-
terference effect: The magnetic field components along the x- and y-axes
both affect the sensor, but the observed signal is given only by the sum
of their contributions, which have different sensitivities (amplitudes Ax ,
Ay) and phases (Φx ,Φy). b) Experimental amplitude responses Ax and Ay
as functions of Bz. c) The phase difference between the phase response
Φx(𝜈, Bz) and Φy(𝜈, Bz) as a function of Bz. Here, 𝜈 is chosen as 222 Hz
for demonstration.

there is a few tens of percent distortion on NMR peak intensities
due to the interference. Thus, it is worthy to evaluating the
interference in atomic magnetometers before they are used
as detectors.
Our work provides a standard approach to detecting and char-

acterizing the interference phenomenon in, but not limited to,
atomic magnetometers. Unlike the common approaches that
only test the single-axis performance through applying a single-
axis calibration field,[32,34 ] we measure the performance of mag-
netometers under multiple oscillating magnetic fields. In this
way we can obtain hidden dynamic response of magnetometers
and extract the important information about the interference ef-
fect. As the responsematrixΥx(𝜈, Bz) is constant for certain 𝜈 and
Bz, Υx(𝜈, Bz) can be experimentally calibrated for a given setup
by the following measurements. An oscillating magnetic field
B0cos(2𝜋𝜈t) is, respectively, applied to the magnetometer along
the 𝜉 axis as a reference input, and then the amplitude S𝜉(𝜈, Bz) of
the output signal is recorded as a function of the bias field Bz (see
Section II and Figure S5, Supporting Information). One can fur-
ther sweep the frequency 𝜈 of the input oscillating field to obtain
Υx(𝜈, Bz) at arbitrary 𝜈. Figure 2b shows the experimental mea-
surements for the amplitude responses A𝜉(𝜈, Bz) versus different
bias fieldBz at 𝜈 = 222Hz.We observe that Ax(𝜈, Bz) andAy(𝜈, Bz)
are both non-zero in certain range of Bz around zero. This il-
lustrates that the atomic magnetometer could be simultaneously
sensitive to the magnetic fields along the x and y axes. The center
of symmetry, that is, themagnetic fieldwhere Ay(𝜈, Bz) reaches its
maximum and Ax(𝜈, Bz) = 0, is slightly shifted away from zero.
This is because the total magnetic field acting on the 87Rb atoms
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response functions, and satisfy the following relations

Ax(𝜈, Bz)∕Ay(𝜈, Bz) =
(gs𝜇B)Bz√

Γ2 + (2𝜋𝜈)2q2
(3)

ΔΦ ≡ Φx(𝜈, Bz) − Φy(𝜈, Bz) = arctan
(
−
2𝜋q𝜈
Γ

)
(4)

In our experiments, the optical rotation angle of probe laser is
proportional to the atomic Px polarization along the direction of
propagation (see Figure 1), thus we only focus on Px and the par-
tial response matrix Υx(𝜈, Bz) ≡ [Υxx(𝜈, Bz),Υxy(𝜈, Bz)]. Υx(𝜈, Bz)
is time-independent and only depends on the parameters of
the atomic magnetometer. According to Equation (2), it clearly
shows that the output signal Px is a weighted superposition of
the x and y components of the magnetic field with the differ-
ent amplitude and phase responses if Ax(𝜈, Bz) ≠ 0,Ay(𝜈, Bz) ≠ 0
and Φx(𝜈, Bz) ≠ Φy(𝜈, Bz). For slowly changing magnetic fields
(i.e., 𝜈→0), we reach the quasi-steady-state solution, that is,
Φx(𝜈, Bz) = Φy(𝜈, Bz) = 0. It is also clearly seen, from Equa-
tions (3) and (4), that the dynamic response solution in Equa-
tion (2) deviates from the quasi-steady-state one when the con-
dition of slowly changing is violated. As we show below, this dy-
namic response feature will bring new experimental phenomena
which cannot be explained through the quasi-static assumption.

2.2. Interference Effect in Atomic Magnetometer

Figure 2a schematically shows the basic interference effect result-
ing from the response of atomic magnetometer in Equation (2).
The output signal of the atomic magnetometer s(t) = 𝛼Px(t) is an
oscillating signal. Here, the proportionality constant 𝛼 summa-
rizes, for example, amplifier gains and conversion factors of de-
tectors (see Section I, Supporting Information). The amplitude
of the oscillating s(t) signal is

S2tot = (S2x + S2y )(1 + 𝜒 cosΔ𝜙) (5)

where Sx = Sx(𝜈, Bz) = 𝛼Ax(𝜈, Bz)Bx0 and Sy = Sy(𝜈, Bz) =
𝛼Ay(𝜈, Bz)By0, respectively, denote the amplitude of the output
oscillating signal when there only exists the x- or y-component
in the input magnetic field B(t). The term “𝜒 cosΔ𝜙” represents
the interference effect when the x- and y-components are both
nonzero. Here, the interference phase Δ𝜙 = ΔΦ + (𝜃x0 − 𝜃y0)
and the interference contrast 𝜒 ≡ 2SxSy∕(S2x + S2y ). Notice that
the interference effect vanishes when Sx = 0 or Sy = 0 or
Δ𝜙 = ±𝜋∕2. The details of the interference effect depend on
both the response matrix and the input magnetic field (or the
detected magnetic field). Importantly, the interference effect
results in a systematic error of measuring magnetic fields when
the interference is not taken into account. For example of our
atomic magnetometer, when a bias field Bz ≈ 600 nT is applied
and two oscillating fields are applied with same amplitudes and
same initial phases, ΔΦ ≈ 𝜋

5
and |𝜒 cosΔΦ| ≈ 0.81 (details are

shown in the part of interference calibration) and accordingly
≈5% systematic error of the oscillating field amplitude results
from the hidden interference effect. When this atomic magne-
tometer is applied to detect NMR signals, we show below that

Figure 2. Interference effect in atomic magnetometry and atomic re-
sponse functions. a) Basics of the quantum sensor resulting in the in-
terference effect: The magnetic field components along the x- and y-axes
both affect the sensor, but the observed signal is given only by the sum
of their contributions, which have different sensitivities (amplitudes Ax ,
Ay) and phases (Φx ,Φy). b) Experimental amplitude responses Ax and Ay
as functions of Bz. c) The phase difference between the phase response
Φx(𝜈, Bz) and Φy(𝜈, Bz) as a function of Bz. Here, 𝜈 is chosen as 222 Hz
for demonstration.

there is a few tens of percent distortion on NMR peak intensities
due to the interference. Thus, it is worthy to evaluating the
interference in atomic magnetometers before they are used
as detectors.
Our work provides a standard approach to detecting and char-

acterizing the interference phenomenon in, but not limited to,
atomic magnetometers. Unlike the common approaches that
only test the single-axis performance through applying a single-
axis calibration field,[32,34 ] we measure the performance of mag-
netometers under multiple oscillating magnetic fields. In this
way we can obtain hidden dynamic response of magnetometers
and extract the important information about the interference ef-
fect. As the responsematrixΥx(𝜈, Bz) is constant for certain 𝜈 and
Bz, Υx(𝜈, Bz) can be experimentally calibrated for a given setup
by the following measurements. An oscillating magnetic field
B0cos(2𝜋𝜈t) is, respectively, applied to the magnetometer along
the 𝜉 axis as a reference input, and then the amplitude S𝜉(𝜈, Bz) of
the output signal is recorded as a function of the bias field Bz (see
Section II and Figure S5, Supporting Information). One can fur-
ther sweep the frequency 𝜈 of the input oscillating field to obtain
Υx(𝜈, Bz) at arbitrary 𝜈. Figure 2b shows the experimental mea-
surements for the amplitude responses A𝜉(𝜈, Bz) versus different
bias fieldBz at 𝜈 = 222Hz.We observe that Ax(𝜈, Bz) andAy(𝜈, Bz)
are both non-zero in certain range of Bz around zero. This il-
lustrates that the atomic magnetometer could be simultaneously
sensitive to the magnetic fields along the x and y axes. The center
of symmetry, that is, themagnetic fieldwhere Ay(𝜈, Bz) reaches its
maximum and Ax(𝜈, Bz) = 0, is slightly shifted away from zero.
This is because the total magnetic field acting on the 87Rb atoms
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response functions, and satisfy the following relations

Ax(𝜈, Bz)∕Ay(𝜈, Bz) =
(gs𝜇B)Bz√

Γ2 + (2𝜋𝜈)2q2
(3)

ΔΦ ≡ Φx(𝜈, Bz) − Φy(𝜈, Bz) = arctan
(
−
2𝜋q𝜈
Γ

)
(4)

In our experiments, the optical rotation angle of probe laser is
proportional to the atomic Px polarization along the direction of
propagation (see Figure 1), thus we only focus on Px and the par-
tial response matrix Υx(𝜈, Bz) ≡ [Υxx(𝜈, Bz),Υxy(𝜈, Bz)]. Υx(𝜈, Bz)
is time-independent and only depends on the parameters of
the atomic magnetometer. According to Equation (2), it clearly
shows that the output signal Px is a weighted superposition of
the x and y components of the magnetic field with the differ-
ent amplitude and phase responses if Ax(𝜈, Bz) ≠ 0,Ay(𝜈, Bz) ≠ 0
and Φx(𝜈, Bz) ≠ Φy(𝜈, Bz). For slowly changing magnetic fields
(i.e., 𝜈→0), we reach the quasi-steady-state solution, that is,
Φx(𝜈, Bz) = Φy(𝜈, Bz) = 0. It is also clearly seen, from Equa-
tions (3) and (4), that the dynamic response solution in Equa-
tion (2) deviates from the quasi-steady-state one when the con-
dition of slowly changing is violated. As we show below, this dy-
namic response feature will bring new experimental phenomena
which cannot be explained through the quasi-static assumption.

2.2. Interference Effect in Atomic Magnetometer

Figure 2a schematically shows the basic interference effect result-
ing from the response of atomic magnetometer in Equation (2).
The output signal of the atomic magnetometer s(t) = 𝛼Px(t) is an
oscillating signal. Here, the proportionality constant 𝛼 summa-
rizes, for example, amplifier gains and conversion factors of de-
tectors (see Section I, Supporting Information). The amplitude
of the oscillating s(t) signal is

S2tot = (S2x + S2y )(1 + 𝜒 cosΔ𝜙) (5)

where Sx = Sx(𝜈, Bz) = 𝛼Ax(𝜈, Bz)Bx0 and Sy = Sy(𝜈, Bz) =
𝛼Ay(𝜈, Bz)By0, respectively, denote the amplitude of the output
oscillating signal when there only exists the x- or y-component
in the input magnetic field B(t). The term “𝜒 cosΔ𝜙” represents
the interference effect when the x- and y-components are both
nonzero. Here, the interference phase Δ𝜙 = ΔΦ + (𝜃x0 − 𝜃y0)
and the interference contrast 𝜒 ≡ 2SxSy∕(S2x + S2y ). Notice that
the interference effect vanishes when Sx = 0 or Sy = 0 or
Δ𝜙 = ±𝜋∕2. The details of the interference effect depend on
both the response matrix and the input magnetic field (or the
detected magnetic field). Importantly, the interference effect
results in a systematic error of measuring magnetic fields when
the interference is not taken into account. For example of our
atomic magnetometer, when a bias field Bz ≈ 600 nT is applied
and two oscillating fields are applied with same amplitudes and
same initial phases, ΔΦ ≈ 𝜋
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and |𝜒 cosΔΦ| ≈ 0.81 (details are

shown in the part of interference calibration) and accordingly
≈5% systematic error of the oscillating field amplitude results
from the hidden interference effect. When this atomic magne-
tometer is applied to detect NMR signals, we show below that

Figure 2. Interference effect in atomic magnetometry and atomic re-
sponse functions. a) Basics of the quantum sensor resulting in the in-
terference effect: The magnetic field components along the x- and y-axes
both affect the sensor, but the observed signal is given only by the sum
of their contributions, which have different sensitivities (amplitudes Ax ,
Ay) and phases (Φx ,Φy). b) Experimental amplitude responses Ax and Ay
as functions of Bz. c) The phase difference between the phase response
Φx(𝜈, Bz) and Φy(𝜈, Bz) as a function of Bz. Here, 𝜈 is chosen as 222 Hz
for demonstration.

there is a few tens of percent distortion on NMR peak intensities
due to the interference. Thus, it is worthy to evaluating the
interference in atomic magnetometers before they are used
as detectors.
Our work provides a standard approach to detecting and char-

acterizing the interference phenomenon in, but not limited to,
atomic magnetometers. Unlike the common approaches that
only test the single-axis performance through applying a single-
axis calibration field,[32,34 ] we measure the performance of mag-
netometers under multiple oscillating magnetic fields. In this
way we can obtain hidden dynamic response of magnetometers
and extract the important information about the interference ef-
fect. As the responsematrixΥx(𝜈, Bz) is constant for certain 𝜈 and
Bz, Υx(𝜈, Bz) can be experimentally calibrated for a given setup
by the following measurements. An oscillating magnetic field
B0cos(2𝜋𝜈t) is, respectively, applied to the magnetometer along
the 𝜉 axis as a reference input, and then the amplitude S𝜉(𝜈, Bz) of
the output signal is recorded as a function of the bias field Bz (see
Section II and Figure S5, Supporting Information). One can fur-
ther sweep the frequency 𝜈 of the input oscillating field to obtain
Υx(𝜈, Bz) at arbitrary 𝜈. Figure 2b shows the experimental mea-
surements for the amplitude responses A𝜉(𝜈, Bz) versus different
bias fieldBz at 𝜈 = 222Hz.We observe that Ax(𝜈, Bz) andAy(𝜈, Bz)
are both non-zero in certain range of Bz around zero. This il-
lustrates that the atomic magnetometer could be simultaneously
sensitive to the magnetic fields along the x and y axes. The center
of symmetry, that is, themagnetic fieldwhere Ay(𝜈, Bz) reaches its
maximum and Ax(𝜈, Bz) = 0, is slightly shifted away from zero.
This is because the total magnetic field acting on the 87Rb atoms
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零场量子控制研究
Problems for zero field quantum control
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Zero- to ultralow-field nuclear magnetic resonance and its applications, 

Fundamental Research, 1(1):68–84, 2021（综述邀稿）

综述：零场-超低场核磁共振的五大应用方向

l Materials science
l Imaging
l Quantum information
l Quantum devices
l Fundamental physics



第一部分： 自旋和自旋磁共振

p 自旋基本概念

p 核磁共振

p 零场-超低场核磁共振
p 单分子微观磁共振（NV金刚石）



53

电子顺磁共振谱仪

核磁共振谱仪
自旋数

基于系综探测的商用自旋磁共振谱仪

商用磁共振谱仪面向自旋系综样品，通过探测自旋系综(大
于百亿个自旋)的空间及时间平均信号，获取统计平均下的
物质组成和结构的信息。这一技术已被广泛应用于前沿科学
和经济生活的诸多领域，对人类社会产生了意义深远的影响
。 医学 化学 生物 能源 

1017-1010

1012-1010



微观尺度磁共振探测
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传统磁共振 √

10微米10毫米 10纳米 1纳米

大脑组织轮廓 单个红细胞 单个艾滋病毒 单个富勒烯分子

Ø 在不破坏研究对象的前提下提供微观物质内部三维结构信息，对于前
沿科学领域具有极其重要的意义

力探测磁共振 √
看得清 看不清 看不见

单核自旋探测手段
Ø 现有磁共振尚不具备对物质进行微观尺度的灵敏探测和空间分辨能力



性质
• 原子尺度：高空间分辨率
• 室温下的长量子相干时间结合动力学解

耦技术：高灵敏度
• 被测磁信号可转化为自旋量子干涉仪的

相位信息，光学手段读出

由一个替位的氮(Nitrogen)和
一个邻位空位(Vacancy)组成(简称NV色心)

单自旋磁共振：量子钻石探针
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第二章 金刚石中氮 -空位体系

图 2.7 典型的 S 波段共聚集系统示意图。主要包括三个部分：光学共聚焦系统，用于初始
化 NV 自旋态及读出；微波和射频部分，操控自旋量子态；电子学部分，同步整个系统，
如激光、操控脉冲与采样等。

and Twiss 设备，用来测荧光光子的二阶自关联函数

G(2)(τ) =
⟨IPL(t)IPL(t + τ)⟩
⟨IPL(t)⟩2

� (2.9)

IPL(t) 为 t 时刻的荧光强度，⟨⟩ 表示时间平均。单光子源发射的荧光会在
τ = 0 时表现出反聚束的谷 (g(2)(0) = 0)，可以直观的理解为，单光子源不可
能在同一个时刻同时发射两个或以上光子。两个光子源对应的关联函数值为

g(2)(0) = 1/2, N 个光子源为 g(2)(0) = 1 − 1/N [174]。背景会导致 (g(2)(0) 比理论

值要高。

图中的波谱仪用来分析荧光谱。另外，激光还可能用偏振片调节激光偏振

方向而达到最高荧光计数率 [175]，相位板将 NV处的激光场强分布调节成非高斯
的，从而实现突破光学衍射极限的成像 [179,180]。

为了解除 mS = ±1 的简并，可调外磁场（电磁体或永磁体）通常沿着 NV
晶轴方向施加。用于调控 NV 自旋态的微波和射频脉冲通过天线或者共面波导
馈送到 NV 所在的位置。为了提高同样激发功率下的操控速度，波导通常距离
NV 几十微米以内。微波产生的交流电形成线偏场，而操控 NV 所需的是圆偏
场 [176,177]，所以平行于 NV 晶轴的微波场对 NV 的状态没有影响。

实验主要步骤是首先激发激光以约 10 纳米精度扫描有 NV 色心金刚石的
一个区域，每个位置的荧光光子进入 APD 被探测，从而得到位置 -计数率的强
度图，用于定位 NV 色心的位置。图中的亮点就有可能是单个 NV 色心，信号
与背景的比率依赖于实验条件，可以达到 30 左右。根据计数率的高低可以推测
出是单 NV 还是多 NV，二阶关联函数 g(2)(τ) 可以用来确认是否为单发光点，
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1）光学共聚焦系统，用于初始 化 NV 自旋态及读出;
2）微波和射频部分，操控自旋量子态;
3）电子学部分，同步整个系统， 如激光、操控脉冲与采样等。 
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图 2.8 (a) 金刚石单晶中的 NV 共聚焦扫描计数强度图。光斑尺寸约为 300 纳米，受限于
显微镜头的光学衍射极限。最高计数率约为 200kcps(中心红色为最高计数)。(b) 二阶关联
函数证明此发光点为单色心。(c) 测关联函数的 Hanbury-Brown and Twiss 配置。(d) 实验
脉冲序列，两个激光脉冲分别用于对 NV 自旋态初始化和读出，其中的微波和射频脉冲实
现量子态调控。(e) ODMR 连续波谱，5 高斯外场下，两组峰的分裂为 28MHz。每组峰中
的三个小峰是由 NV 电子自旋与氮核自旋超精细耦合产生，耦合强度为 2.2MHz。(f) NV
自旋的 Rabi 振荡。(g)Hahn 回波测得的 NV 的相干时间约为 350µs。相干淬灭和恢复是由
周围 13C 核自旋在外磁场下的 Larmor 进动导致，下文会详细解释。

如果 g(2)(τ) < 1/2 通常可以认为是单发光缺陷。如果两个或多个发光缺陷的荧

光强度不一样，也有可能使 g(2)(τ) < 1/2。

适合实验的 NV 色心通过荧光计数负反馈控制其位置，使其稳定在激发光
焦点处（严格来说，应为高斯光束的束腰），同时进行实验研究。由先验的知

识，我们在合适的频率范围内进行微波扫频，同时激光连续照射，当微波频率

与 NV 色心单电子自旋的塞曼分裂匹配发生共振时，计数率会下降，此频率
-计数率曲线即为 EPR 谱，在 NV 色心体系中，称其为连续波光探测磁共振谱
（ODMR）[178]。图中所示的两个共振峰对应于电子自旋的两个跃迁 mS = 0 到

mS = +1 或 mS = −1。这两个跃迁的频率差可以通过外磁场调节，为 2γeBz。此

方式的 ODMR 谱受到激光和微波的影响，谱线会展宽 [64]，谱分辨率会降低，

代之以脉冲 ODMR 方法，则可以排除这些影响而得到高分辨率的谱。
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Sensing using NV center

1 nucleus is featureless;
2 (or more) have characteristic

N. Zhao, J. L. Hu, S. W. Ho, J. T. K. Wan, & 
RBL, Nature Nanotech. 6, 242 (2011).

Toward single-nucleus detection & single-molecule NMR (@ zero field)

Atomic-scale magnetometry
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Sensing using NV center

up to six individual nuclear spins
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图 5.2 (A) 低能离子注入产生的近表面 NV 作为探针，用于探测金刚石表面液体和固体中
质子的信号。(B) 质子产生的噪声。小系综质子在外磁场中的 Larmor 进动产生幅度和相位
统计涨落的信号。(C) 典型的动力学去耦序列 XY8-N 用于探测此自旋噪声。开始和序列末
端的两个 π/2 构成的 Ramsey 干涉仪用于探测磁噪声。Nπ 个脉冲像滤波器一样，会对特
定频率噪声进行放大，而抑制其它频率噪声分量。(D) 脉冲序列的滤波函数，峰值出现在
频率 1/2τ 处。(E) 通过变化脉冲间的演化时间 τ 测量自旋噪声谱。

综中的质子整体的磁化强度为零，但是其标准偏差并不为零而是等于
√

N=100
个质子。我们认为这些质子沿任意方向统计极化 [134,253]。这些统计极化会导致

在横向平面内存在随机的磁化强度 ⟨Mx⟩, ⟨My⟩，此横向分量在外场作用下会以
特定频率进行 Larmor 进动，从而在 NV 处产生一个 z 方向的周期性磁噪声，
Bz = B(⟨Mx⟩, ⟨My⟩) cos(2πt/τLarmor + φ).

我们用 XY8-N 动力学去耦脉冲序列形成的交变磁强计来探测此周期性
振荡分量 [207,224,250,254–257]（图5.2(C)）。开始的 π/2 脉冲将 NV 制备到相干态
(|0⟩+eiφ|1⟩)/

√
2，其相位 φ对涨落的磁噪声场敏感，从 t=0时刻的 0相位 φ = 0

逐渐演化为非零相位 φ = ∆φ。此最终相位由最后一个 π/2 脉冲转化为布居数探

测。对于此涨落的磁场，此相位 ∆φ 同样会随机变化且其方差为 ⟨(∆φ)2⟩，这个
涨落经过多次平均最终会反映在探测信号对比度上，

C = 2|⟨1|Ψ⟩|2 − 1 = e−⟨(∆φ)2⟩/2.

两个 π/2 脉冲间的 N 个周期性去耦 π 脉冲使相位 ⟨(∆φ)2⟩ 仅对某一特定频
率分量敏感。这种“量子锁相探测”(quantum lock-in detection) [255] 会增强与

去耦脉冲间隔 τ 同步振荡的场的敏感性，同时会抑制其它频率涨落的场。形式

上可以表述为
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⟨(∆φ)2⟩ = γ2
∑∞

n=−∞ S g(νn)S B(νn),
其中，γ = gµB/! 为 NV 电子自旋的旋磁比，νn = n/Nτ, S B(νn) 为噪声场

的能量密度谱分布，滤波函数 S g(νn) 由于去耦周期性去耦序列会在频率 1/2τ

处表现出很强的峰 (图5.2)。对不同的时间间隔 τ 分别做实验，可以得到噪声谱

S B(νn) 的离散分布，从而得到 NV 附近统计极化的核自旋 NMR 谱。

5.3 高阶去耦探测到体内 13C 和体外有机样品中质子信号

图5.3(A) 为我们实验中测到的典型的谱，黄色方块标示的较强的谱信号来
自金刚石内部的 13C 核自旋，峰对应的频率为 13C 在当前磁场下的 Larmor 频
率。而蓝色圆点标示的较弱的信号来自金刚石表面的质子，由于其信号远弱

于 13C，需要用高阶去耦（XY8-160）序列才能测得，其峰位置同样对应 1H 的
Larmor 频率。为了进一步确认，我们做了一系列变磁场的实验，测得不同磁场
作用下噪声谱峰对应的频率，可以图5.3清楚看到，随磁场增加，峰对应的频率
也在逐步增加，通过拟合，得到旋磁比分别为 1.08KHz/G 和 4.25KHz/G，分
别对应 13C 他 1H。

图 5.3 (A) 近表面 NV 探针测到的统计极化核自旋的 NMR 谱。较强的信号来自于金刚石
体内的 13C 核自旋（黄色方块，用 CPMG6 序列测得）；较弱的信号为表面镜头油中的质
子产生（蓝色圆点，用 XY8-160 序列测得）。(B) 两种信号的频率正比于外磁场，斜率即
为各自的旋磁比。

由于自旋探针探测的对象为微观尺度，所以信号依赖于样品在纳米尺度上

的均匀性。因此我们在一系列 NV 探针及不同表面样品上，做了大量实验。我
们大约测了近表面的 400 个 NV 色心，大约有 1/4 的 NV（85 个 [111] 方向的
NV）沿外磁场方向。在这 85 个 NV 中，仅有 8 个 NV 的相干时间在高阶动力
学解耦序列作用下达到 100 微秒量级，此时间尺度可以有效的探测表面的质子。
通过改变金刚石表面的待测样品，其中 5 个 NV 得到了明确的来自表面的信号
(如图5.4所示)。
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个质子。我们认为这些质子沿任意方向统计极化 [134,253]。这些统计极化会导致

在横向平面内存在随机的磁化强度 ⟨Mx⟩, ⟨My⟩，此横向分量在外场作用下会以
特定频率进行 Larmor 进动，从而在 NV 处产生一个 z 方向的周期性磁噪声，
Bz = B(⟨Mx⟩, ⟨My⟩) cos(2πt/τLarmor + φ).

我们用 XY8-N 动力学去耦脉冲序列形成的交变磁强计来探测此周期性
振荡分量 [207,224,250,254–257]（图5.2(C)）。开始的 π/2 脉冲将 NV 制备到相干态
(|0⟩+eiφ|1⟩)/

√
2，其相位 φ对涨落的磁噪声场敏感，从 t=0时刻的 0相位 φ = 0

逐渐演化为非零相位 φ = ∆φ。此最终相位由最后一个 π/2 脉冲转化为布居数探

测。对于此涨落的磁场，此相位 ∆φ 同样会随机变化且其方差为 ⟨(∆φ)2⟩，这个
涨落经过多次平均最终会反映在探测信号对比度上，

C = 2|⟨1|Ψ⟩|2 − 1 = e−⟨(∆φ)2⟩/2.

两个 π/2 脉冲间的 N 个周期性去耦 π 脉冲使相位 ⟨(∆φ)2⟩ 仅对某一特定频
率分量敏感。这种“量子锁相探测”(quantum lock-in detection) [255] 会增强与

去耦脉冲间隔 τ 同步振荡的场的敏感性，同时会抑制其它频率涨落的场。形式

上可以表述为
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频率正比于
外磁场，斜
率即 为各
自的旋磁比 
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单蛋白质分子顺磁共振谱

n 世界上首张单分子顺磁共振谱
n 与传统电子顺磁共振相比

分辨率：  10-3米  -> 10-9米
灵敏度：1010分子  -> 单分子

n 具备室温大气的宽松实验环境，
尤为适合开展活体研究

n 与超高分辨荧光显微技术（2014
年诺贝尔奖）相比，不仅同样能
够提供纳米分辨率的空间定位信
息，还可进一步解析出单个分子
的结构信息和构象变化

Science 347, 1135 (2015)

单蛋白质分子顺磁共振谱



63

原子尺寸探针：

量子钻石探针

技术创新：

动力学解耦提升

探针量子相干时间

原理创新：

单自旋量子干涉仪

单
分
子
磁
共
振

关键问题突破：
“足够近”，“足够灵敏”

n 不断提升探测灵敏度
• 实现核自旋小系综探测
Science 339, 561 (2013) (国际合作)
• 实现单核自旋对探测和结构解析
Nature Physics 10, 21 (2014)
• 实现单核自旋灵敏度探测
Nature Communications 5, 4703 (2014)
(国际合作）

n 纳米尺度微波磁场矢量重构
Nature Communications 6, 6631 (2015)

n 单生物大分子结构与动力学
Science 347, 1135 (2015)

科学成果验证

实现室温纳米尺度磁共振探测



早期磁共振设备

首张磁共振
成像图

早期磁共振成像的发展

首张大脑磁共振
成像图

首张傅里叶变换
后的图像

1973 1980 1981
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现代核磁共振向更高指标迈进

目前医用7T-MRI仪器的
最优分辨率约为0.5毫米

“点亮”肺部（武汉物数所）高分辨率磁共振图像
（澳大利亚昆士兰大学）

朝向高空间分辨率、拓展传统磁共振的应用边界

突破传统磁共振技术在肺部的应
用局限，实现肺部磁共振检测。 65



动态成像（联影医疗）

对于大脑神经实现动态追踪成像，
增加对于脑科学的认知。

现代核磁共振助力精准医疗

精神影像学（四川大学华西医学院）

Brain sciences in China

nature
spotlight

量化大脑特征，在结构、功能和分子
水平，建立一套综合的精神病理学体
系。
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未来应用：量子精准医疗

n 活细胞单分子层面的病理研究

n 各种癌症的早期诊断
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总结

传统高场NMR 零场-超低场NMR 单分子NMR 


