

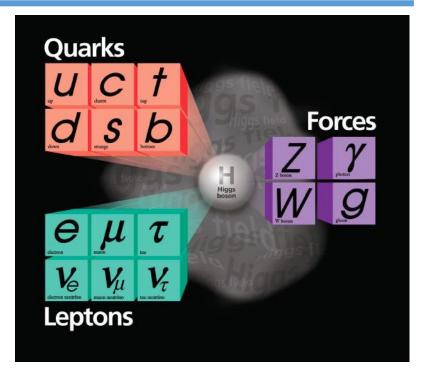
Study of $D^0 \to K^+K^-\omega$ and $K_S^0 - K_L^0$ asymmetry in $D^0 \to \omega K_S^0/K_L^0$ decays on BESIII

Haoran Zhang
Supervisor: Yingchun Zhu, Wenbiao Yan
Thesis Proposal Talk
2025.10.14

Outline

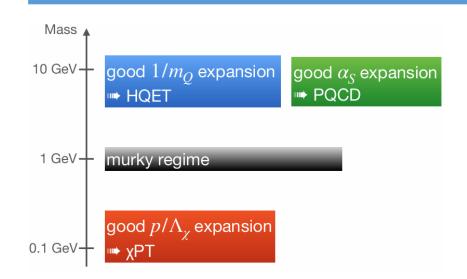
- > Introduction
- \triangleright Partial wave analysis of $D^0 \to K^+K^-\omega$
- > Study of $K_S^0 K_L^0$ asymmetry in the decays $D^0 \to \omega K_S^0$ and $D^0 \to \omega K_L^0$
- > Summery and Prospects

Standard Model (SM)


- SM describes the fundamental particles that make up the visible world of matter and how they interact with each other.
 - > Still need to explain:

Dark matter and dark energy

Mass of neutrinos


• • • • • •

Experiments: test of SM, search for new physics beyond SM SM phenomenology: Bridge between SM and experiments

Peculiarities of Charm

 \square $m_c \sim 1.3 \text{ GeV}/c^2$, neither heavy enough to allow for a sensible heavy quark mass expansion nor light enough for an application of chiral perturbation theory.

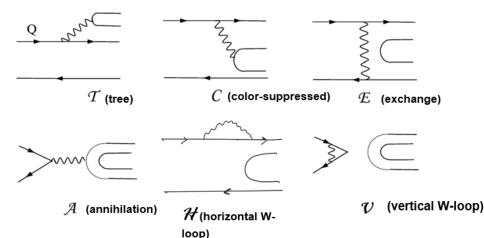
- \square (semi-)leptonic D decays: lattice QCD
- \square *D* decay dominantly into hadronic final states but no *D* meson hadronic decay theory based on QCD yet....

Mode	BR
PP	$\sim 10\%$
VP	$\sim 28\%$
VV	$\sim 10\%$
SP	$\sim 4.2\%$
AP	$\sim 10\%$
TP	$\sim 0.3\%$
2-body	$\sim 63\%$
hadronic	$\sim 84\%$
semileptonic	$\sim 16\%$

P: pseudoscalar meson

V: vector meson

A: axial vector meson


T: tensor meson

D Meson Decays

- Powerful theoretical models for charm hadronic decays: factorization-assisted topological-amplitude(FAT)approach, flavor or topological diagram approach (TDA)
 - > Topological information ---- Extract from experiments
 - > FSIs and non-factorizable contribution


- ☐ Precise measurements to test theories and further understanding:
 - \triangleright Polarization puzzles in $D \rightarrow VV$
 - $\succ K_S^0 K_L^0$ asymmetries in $D \to K^0 M$

• • • • • •

- \Box $D^0 \overline{D}^0$ samples produces at BESIII
 - \geq 20.3 fb^{-1} @ 3.773 GeV
 - ➤ Near *DD* threshold
 - \geq ~73.4M $D^0 \overline{D}{}^0$ pairs

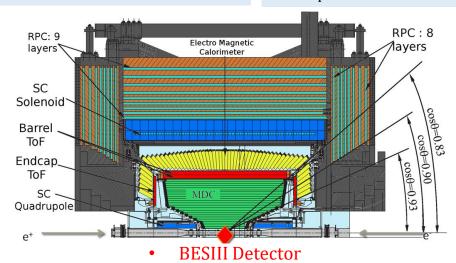
BEPCII and **BESIII**

Double ring: e^+ and e^- Cross angle: 22 mrad E_{cm} : 1.84 - 4.95 GeV

Peak luminosity: 1.1×10^{33} cm⁻²s⁻¹ @ $\psi(3770)$

Electromagnetic Calorimeter

CsI(Tl): L = 28 cm


- Barrel $\sigma_E/E = 2.5\%$ @ 1 GeV
- Endcap $\sigma_E/E = 5.0\%$ @ 1 GeV

Muon Counter

RPC

Barrel: 9 layers Endcaps: 8 layers

• $\sigma_{\text{spatial}} = 1.48 \text{ cm}$

Main Drift Chamber

Small cell, 43 layer

- $\sigma_{xy} = 130 \; \mu m$
- $dE/dx \sim 6\%$
- $\sigma_p/p = 0.5\% \ \text{@ 1 GeV}/c$

Time Of Flight

Plastic scintillator

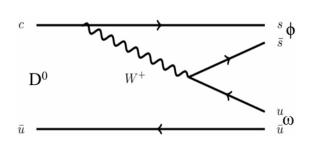
- $\sigma_T(\text{barrel}) = 68 \text{ ps}$
- σ_T (endcap) = 110 ps (update to 60 ps with MRPC)

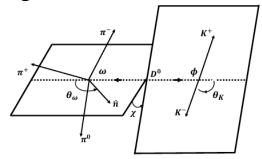
Work I

Partial wave analysis of $D^0 \to K^+K^-\omega$

- \square Polarization puzzles in $M \rightarrow VV$:
 - $\triangleright B \rightarrow VV[1][2]: (V = \phi, K^*, \rho \text{ and } \omega)$
 - Tree-dominated: Transverse polarization amplitudes suffer from the helicity-flipping suppression at the order of Λ_{QCD}/m_b . $f_L^{theor.} \sim 1 O(\Lambda_{QCD}/m_b)$ confrimed by $B^0 \to \rho^+ \rho^-$, $B^+ \to \rho^+ \rho^0$; indicated the helicity conservation in $B \to VV$.
 - Penguin-dominated or FSI : $f_L^{B \to \phi K^*} \sim 0.5$.

Comparison of the FAT approach experimental results

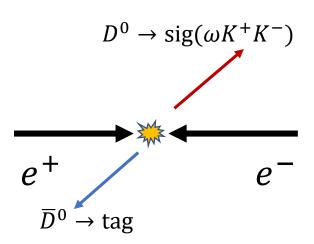

Mode	$\mathcal{B}(10^{-6})$	$f_L(\%)$	$f_{\perp}(\%)$	ϕ_{\parallel} (rad)	ϕ_{\perp} (rad)
$B^-\to \rho^-\rho^0$	21.7 ± 5.1	95.5 ± 1.5	2.22 ± 0.64	-0.09 ± 0.05	-0.09 ± 0.05
Expt.	24.0 ± 1.9	95 ± 1.6			
$\overline{B}_0 \to \rho^+ \rho^-$	29.5 ± 6.5	92.6 ± 1.6	3.65 ± 0.91	-0.27 ± 0.08	-0.27 ± 0.08
Expt.	27.7 ± 1.9	$99.0^{+2.1}_{-1.9}$			
$\overline{B}^0 \to \rho^0 \rho^0$	0.94 ± 0.49	81.7 ± 10.8	9.21 ± 5.50	-0.04 ± 0.44	-0.03 ± 0.44
Expt.	0.96 ± 0.15	71^{+8}_{-9}			


consist between experiment measurements and theoretical predictions

$\triangleright D \rightarrow VV$:

- Perturbative QCD not valid, naive factorization model [3] and Lorentz invariant-based symmetry model [4] predict f_L not dominant in $D \to VV$ process: $f_L^{\text{theor.}} \sim 0.5^{[3]} 0.33^{[4]}$: $D^0 \to \overline{K}^{*0} \rho^0$.
- $f_L^{D^0 \to \rho^0 \rho^0[5]} = 0.71 \pm 0.04 \pm 0.02$ (FOCUS Collaboration) \to [D] wave dominant.
- In $D^0 \to \omega \phi$ [6], $f_L = 0.00 \pm 0.10 \pm 0.08$, $f_L^{U.L.} < 0.24(95\% \text{ C.L.})$ are given by fitting to angular distributions(BESIII Collaboration) and shows larger difference from $D^0 \to \rho^0 \phi$.

• FSI through $K^{*+}K^{*-}$ or flavor-singlet contributions can lead to different, a more precise PWA result can help to confirm the theoretical models.



- □ Still lack of knowledge about some crucial pieces of dynamics in D decay mechanisms. Polarization of $D \rightarrow VV$ provide valuable information to further understand D decays and non-perturbative QCD. Longitudinal polarization fraction(f_L) is important to test models.
- \square 20 $fb^{-1}e^+e^-$ annihilation data @ 3.773 GeV.
 - ► Larger $D^0 \overline{D}^0$ samples → more precise results
 - ➤ Double-tag method → lower background level
 - \triangleright Extract the S,P,D amplitudes of $D^0 \rightarrow \omega \phi$
- □ Other resonant on invariant mass structures

Dataset

- \square Quantum correlated $D^0\overline{D}^0$ produced at BESIII
 - \triangleright Data:20.3 fb^{-1} @ $E_{cm} = 3.773$ GeV
 - ➤ Inclusive MC: 40× for background study
 - ➤ Signal PHSP MC: 100× for amplitude analysis
 - ➤ Signal DIY MC: 200× for amplitude analysis
- □ Double tag method
 - \triangleright Reconstruct both of $D^0 \overline{D}{}^0$
 - > Tag mode: $\overline{D}^0 \to K^+\pi^-, K^+\pi^-\pi^0, K^+\pi^+\pi^-\pi^- (\sim 25\% \text{ of } D^0 \text{ decay})$

Event Selection - Preliminary Selection

Good charged tracks:

• $|Rxy| \le 1 \text{ cm}, |Rz| \le 10 \text{ cm}, |\cos \theta| \le 0.93$

> Good Photons :

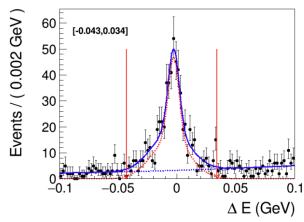
- Barrel: E > 25 MeV, $|\cos\theta| \le 0.8$
- Endcap: $E > 50 \text{ MeV}, 0.86 \le |\cos\theta| \le 0.92$
- EMC time cut: $0 \le T \le 14$ (50ns)
- Angle between shower and charged tracks larger than 10°

> PID(SimplePID package):

- π : Prob (π) > Prob(K)
- K: $Prob(K) > Prob(\pi)$

- \rightarrow π^0 Candidates:
 - $0.115 < M_{\gamma\gamma} < 0.150 \text{ GeV}/c^2, \chi_{1c}^2 < 50$
- \succ Cosmic rays rejection for $\overline{D}{}^0 \to K^+\pi^-$
 - > Tag D Reconstruction:

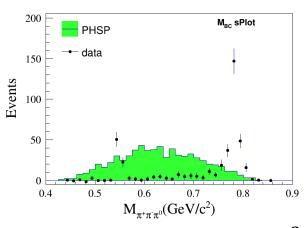
•
$$\Delta E = E_D - E_{Beam}, M_{BC} = \sqrt{\left(E_{Beam}^2 - p_D^2\right)};$$

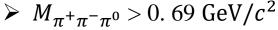

- Minimum $|\Delta E|$ is used to selected best candidate
- ightharpoonup Ks veto for $\overline{D}{}^0 \to K^+\pi^-\pi^+\pi^-$ tag mode:
 - $|M_{\pi^+\pi^-} 0.4976| > 0.03 \text{ GeV}/c^2$.
- ➤ The ST requirement follow the official document (MEMO_D_ST_v4.0.pdf (ihep.ac.cn))

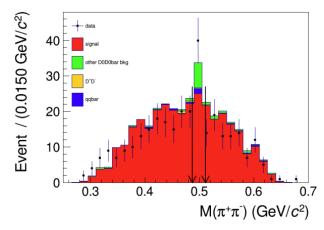
Event Selection - Further Selection

Case 1(Full Reconstruction)

- $\succ \pi^0$ candidate: Minimum $|\Delta E|$ to selected best candidate
- $ightharpoonup 1C(M_{D^0}^{PDG})$ kinematic fit performed

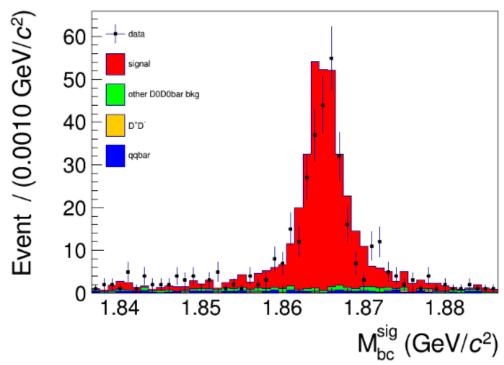

 \triangleright ΔE requirement: (-0.043, 0.035) GeV


Case 2(Miss one Kaon)


- $\succ \pi^0$ candidate: Minimum χ_{1c}^2 to selected best candidate
- \rightarrow M_{BC}^{tag} requirement: (1.859, 1.873) GeV/ c^2
- Rrecoiled D^0 : \vec{P}_{D^0} direction is opposite to ST $\vec{P}_{\overline{D}^0}$

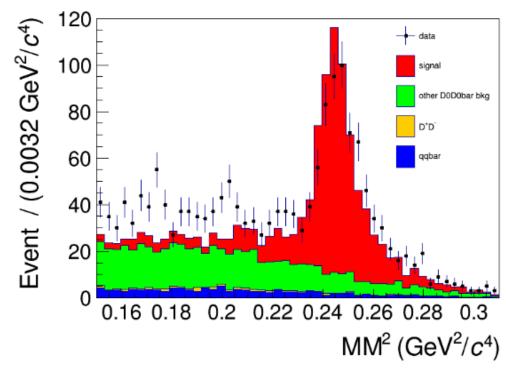
$$|\vec{P}_{D^0}| = \sqrt{(E_{beam}^2 - M_{D^0}^2)}, E_{D^0} = E_{beam}$$

- \rightarrow 4C(\vec{P}_{D^0} , \vec{E}_{D^0}) kinematic fit performed
- $M_{D^0} M_{found} > 0$



ightharpoonup Reject $M_{\pi^+\pi^-} \in (0.487, 0.511) \text{ GeV}/c^2$

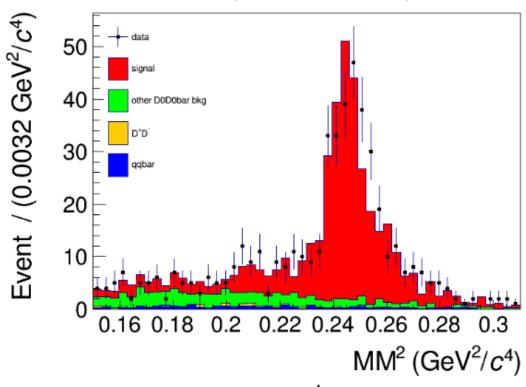
Background Analysis



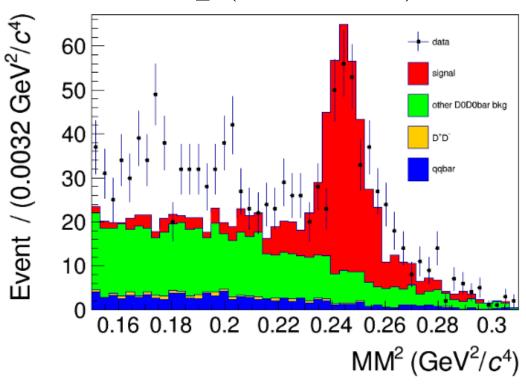
Case 1(Full Reconstruction)

- Signal region: (1.859,1.873); purity~90%
- Extract signal from M_{BC} .

Case 2(Miss one Kaon)



- Signal region: (0.215,0.275); purity~50%
- Extract signal from M_{miss}^2 .


Background Analysis

Case 2_B(Miss one Kaon)

- Charge of founded $K(C_{\text{found }K}^{sig}) = \text{charge of tag}$ Charge of founded $K(C_{\text{found }K}^{sig}) \neq \text{charge of }$ side $K(C_{\kappa}^{\text{tag}})$
- Signal region: (0.215,0.275); purity~80%
- tag side $K(C_{\kappa}^{\text{tag}})$
- Signal region: (0.215,0.275); purity~40%

Introduction of PWA

☐ Likelihood Formula:

- f_s :signal p.d.f
- ω_{sig} : fraction of signal(signal purity)
- p_i : four-momenta of daughter particles
- f_B :background p.d.f

☐ Signal PDF:

$$f_S(p) = \frac{\left| \epsilon_S(p) |A_D(p)|^2 R_3(p) \right|}{\int \epsilon_S(p) |A_D(p)|^2 R_3(p) dp}$$

- $\epsilon_s(p)$:signal efficiency
- $R_3(p)$:phase space factor

■ Amplitude Construction:

Constructed by covariant tensor method

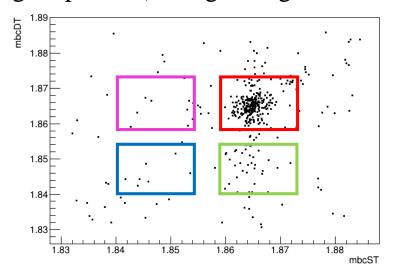
$$A_{D^0}(p) = \sum_i \Lambda_i U_i(p)$$

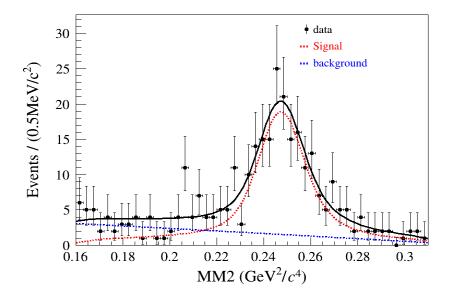
• Λ_i : coupling factor

$$\triangleright U_i(p) = B_{L_D}(p)P_{R_1}(p)B_{L_{R_1}}(p)P_{R_2}(p)B_{L_{R_2}}(p)S_i(p)$$

- B_L : Blatte-Weisskopf barrier factor
- P_R : Propagator of resonance R
- S_i : Spin factor of i-th decay amplitude

$$A_{\overline{D}^0}(p) = \sum_i \Lambda_i \overline{U}_i(p) = \sum_i \Lambda_i U_i(\bar{p})$$


• \bar{p} : CP-conjugate of phase space point p


MC integral

Background Estimation

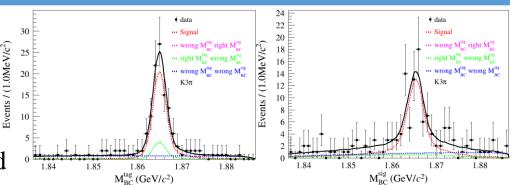
BKG Consistency between Data and Inclusive MC in side-bands. And consistency of inclusive MC(without signal process) in signal region and side-bands is obtained.

□ By Mixed-sample Method:

$$\begin{array}{ll} & M_{K^+K^-}, M_{\pi^+\pi^-\pi^0}, M_{\pi^+\pi^0}, M_{\pi^-\pi^0}, \\ & \theta_{N_{KK},N_{\pi^+\pi^-\pi^0}}, \theta_{N_{\pi^+\pi^-\pi^0},P_{\pi^+\pi^-\pi^0}}, \theta_{P_{\pi^0},P_{\pi^+\pi^-}}, \theta_{P_{K^+},P_{K^-}} \end{array}$$

χ of Data & IncMC	Full reconstruction	Miss one <i>K</i>
$\overline{D}{}^0 \to K^+\pi^-$	-	0.84
$\overline{D}{}^0 \to K^+\pi^-\pi^0$	0.67	-0.33
$\overline{D}{}^0 \to K^+\pi^-\pi^+\pi^-$	1.93	-0.83

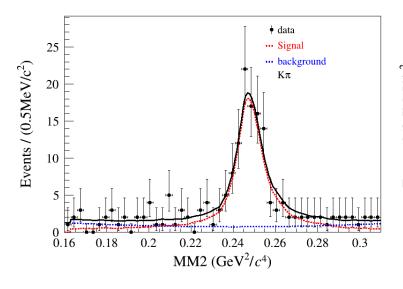
Background Estimation

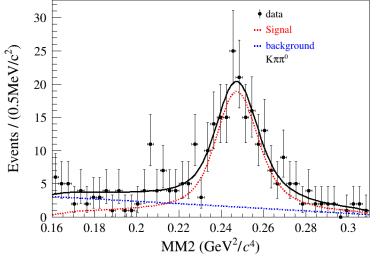

- p.d.f of background $f_B(p)$ is described with Inclusive MC, by performing Machine Learning on DIY MC.
- Eight Variables used:

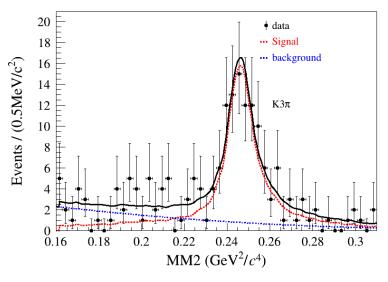
 $M_{K^{+}K^{-}}, M_{\pi^{+}\pi^{-}\pi^{0}}, M_{\pi^{+}\pi^{0}}, M_{\pi^{-}\pi^{0}}, \theta_{N_{KK},N_{\pi^{+}\pi^{-}\pi^{0}}}, \theta_{N_{\pi^{+}\pi^{-}\pi^{0}}}, \theta_{P_{\pi^{0}},P_{\pi^{+}\pi^{-}}}, \theta_{P_{K^{+}},P_{K^{-}}}$ $M_{K^{+}K^{-}}, M_{\pi^{+}\pi^{-}\pi^{0}}, M_{\pi^{+}\pi^{0}}, M_{\pi^{+}\pi^{0}}, \theta_{N_{KK},N_{\pi^{+}\pi^{-}\pi^{0}}}, \theta_{N_{\pi^{+}\pi^{-}\pi^{0}}}, \theta_{P_{\pi^{0}},P_{\pi^{+}\pi^{-}}}, \theta_{P_{K^{+}},P_{K^{-}}}$ $M_{K^{+}K^{-}}, M_{\pi^{+}\pi^{0}}, M_{\pi^{+}\pi^{$

Signal Purity

- Signal: right tag and right signal D^0 , described by DIY MC shape.
- **BKGI:** background with right tag and wrong signal, described by $A_{x1}(x1; m_{x1}, z_{x1}, \rho_{x1}) \times S_{x2}$.
- **BKGII:** background with wrong tag and right signal, described by $A_{x2}(x2; m_{x2}, z_{x2}, \rho_{x2}) \times S_{x1}$
- **BKGIII:** background in diagonal region. $T(x_1 x_2; \mu, \sigma(x_1 + x_2), n) \times A_{x_1}(x_1; m_{x_1}, z'_{x_1}, \rho'_{x_1}) \times A_{x_2}(x_2; m_{x_2}, z'_{x_2}, \rho'_{x_2})$ $T(y; \mu, \sigma, n) = \frac{\Gamma(n/2 + 0.5)}{\sigma \sqrt{n\pi} \Gamma(n/2)} \left[1 + \frac{1}{2} \left(\frac{y \mu}{\sigma} \right)^2 \right]^{\frac{n+1}{2}}$




Tag Mode	N ^{sig} (signal region)	Purity(%)
$K^+\pi^-$	93.5 ± 9.6	99.9 ± 0.0
$K^+\pi^-\pi^0$	154.0 ± 14.2	92.0 ± 6.4
$K^+\pi^-\pi^+\pi^-$	70.8 ± 8.4	85.4 ± 10.6


Signal Purity

- Signal: DIY MC shape $S \otimes Gauss$ function G.
- Background: continuum background, described by 2nd —order Chebyshev polynomials.

Tag Mode	$K^+\pi^-$	$K^+\pi^-\pi^0$	$K^+\pi^-\pi^+\pi^-$
N^{sig} (signal region)	114.7 ± 14.0	181.3 ± 26.2	104.9 ± 14.8
Purity(%)	88.3 ± 5.4	85.2 ± 6.6	87.2 ± 5.8

Amplitude Construction

Spin factor of $\omega \to \pi^+\pi^-\pi^0$:

$$A_{\mu}(\omega) = \varepsilon_{\mu\nu\rho\sigma} p_{\omega}^{\sigma} [t^{\rho}(\pi^{+}\pi^{0}, \pi^{-})t^{\nu}(\pi^{+}\pi^{0}) - t^{\rho}(\pi^{+}\pi^{-}, \pi^{0})t^{\nu}(\pi^{+}\pi^{-}) + t^{\rho}(\pi^{0}\pi^{-}, \pi^{+})t^{\nu}(\pi^{0}\pi^{-})]$$

$D \to S\omega, S \to P_1P_2$	$t^{\mu}(D)A_{\mu}(\omega)$
$D[S] \to V\omega, V \to P_1 P_2$	$P^{\mu\nu}(D)t_{\mu}(V)A_{\nu}(\omega)$
$D[P] \to V\omega, V \to P_1 P_2$	$arepsilon_{\mu u ho\sigma}p_D^\sigma t^ ho(D)t_\mu(V)A_ u(\omega)$
$D[D] \to V\omega, V \to P_1 P_2$	$t_{\mu u}(D)t^{\mu}(V)A^{ u}(\omega)$
$D[P] \to T\omega, T \to P_1 P_2$	$P^{\mu u ho\sigma}(D)t_{\mu u}(T)t_{ ho}(D)A_{ u}(\omega)$
$D[D] \to T\omega, T \to P_1 P_2$	$arepsilon_{\mu u ho\sigma}p_D^\sigma t^{ holpha}(D)t_lpha^ u(T)A^\mu(\omega)$
$D[F] \to T\omega, T \to P_1 P_2$	$t_{\mu u ho}(D)t^{\mu u}(T)A^{ ho}(\omega)$
$D \to PP_1, P[P] \to \omega P_2$	$t^{\mu}(P)A_{\mu}(\omega)$
$D \to AP_1, A[S] \to \omega P_2$	$t^{\mu}(D)P_{\mu\nu}(A)A^{ u}(\omega)$
$D \to AP_1, A[D] \to \omega P_2$	$t^{\mu}(D)t_{\mu u}(A)A^{ u}(\omega)$
$D \to VP_1, V[P] \to \omega P_2$	$t^{\mu}(D)arepsilon_{\mu u ho\sigma}p^{\sigma}_{V}t^{ u}(V)A^{ u}(\omega)$
$D \to PT P_1, PT[P] \to \omega P_2$	$t^{\mu\nu}(D)P_{\mu\nu\rho\sigma}(PT)t^{ ho}(PT)A^{\sigma}(\omega)$
$D \to PT P_1, PT[F] \to \omega P_2$	$t^{\mu u}(D)t_{\mu u ho}(PT)A^{ ho}(\omega)$
$D \to TP_1, T[D] \to \omega P_2$	$t^{\mulpha}(D)arepsilon_{\mu u ho\sigma}p_T^\sigma t_lpha^ ho(T)A^ u(\omega)$

> Spin projection operator

$$P^{(0)}(p_a) = 1$$
,

$$P_{\mu\mu'}^{(1)}(p_a) = -g_{\mu\mu'} + \frac{p_{a\mu}p_{a\mu'}}{p_a^2}$$
,

$$P^{(2)}_{\mu\nu\mu'\nu'}(p_a) = \frac{1}{2} [P^{(1)}_{\mu\mu'}(p_a) P^{(1)}_{\nu\nu'}(p_a) + P^{(1)}_{\mu\nu'}(p_a) P^{(1)}_{\nu\mu'}(p_a)] - \frac{1}{3} P^{(1)}_{\mu\nu}(p_a) P^{(1)}_{\mu'\nu'}(p_a) \; .$$

> Blatt-Weisskopf barrier factor

$$B_0(q) = 1$$
 q: breakup momentum $q_0 = 0.197321/R \ GeV/c$ $R = 5 * 0.197321 \approx 1 \ fm$ for D0 $R = 3 * 0.197321 \approx 0.6 \ fm$ for other resonance

$$q_0 = 0.197321/R \ GeV/c$$

$$R = 3 * 0.197321 \approx 0.6 \, fm \, \text{for}$$

Propagator

Gounaris-Sakurai(GS) formula: $\rho(770)$

Relative Breit-Wigner(RBW): $f_2(1270)$

RBW with constant width $\Gamma(s)$: Other resonances

QC Correction

ightharpoonup Neglect $D^0 - \overline{D}{}^0$ mixing and CPV, the decay rates:

$$\frac{\mathrm{d}\Gamma(f;g)}{\mathrm{d}\Phi} \propto |A_{f\bar{g}}|^2 = |A_f\bar{A}_g - \bar{A}_fA_g|^2$$

 $\triangleright g$ Tag mode, f Signal mode, the decay rate of signal $D \rightarrow f$:

$$\frac{\mathrm{d}\Gamma(D^0\to f)}{\mathrm{d}\Phi_f}\propto |A_f|^2\int |\bar{A}_g|^2\mathrm{d}\Phi_g + |\bar{A}_f|^2\int |A_g|^2\mathrm{d}\Phi_g - A_f\bar{A}_f^*\int \bar{A}_gA_g^*\mathrm{d}\Phi_g - A_f^*\bar{A}_f\int \bar{A}_g^*A_g\mathrm{d}\Phi_g$$

[1] Eur. Phys. J. C 81, no.3, 226 (2021) [2] JHEP 05, 164 (2021)

 \triangleright Decay rate of $D \rightarrow f$ can be rewritten:

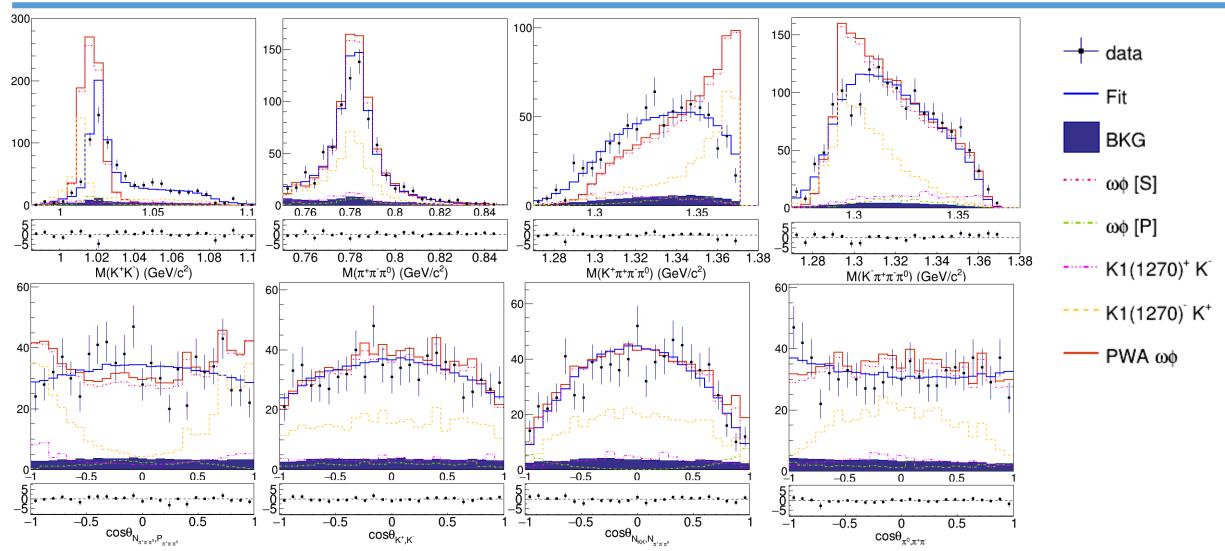
$$\frac{\mathrm{d}\Gamma(D^{0} \to f)}{\mathrm{d}\Phi_{f}} \propto |A_{f}|^{2} + r_{\bar{g}}^{2}|\bar{A}_{f}|^{2} - r_{\bar{g}}R_{\bar{g}}e^{i\delta_{\bar{g}}}A_{f}\bar{A}_{f}^{*} - r_{\bar{g}}R_{\bar{g}}e^{-i\delta_{\bar{g}}}A_{f}^{*}\bar{A}_{f}$$

$$= |A_{f} - r_{\bar{g}}R_{\bar{g}}e^{-i\delta_{\bar{g}}}\bar{A}_{f}|^{2} + r_{\bar{g}}^{2}(1 - R_{\bar{g}}^{2})|\bar{A}_{f}|^{2}.$$

$$r_g^2 = \frac{\int |\bar{A}_g|^2 \mathrm{d}\Phi_g}{\int |A_g|^2 \mathrm{d}\Phi_g}, \qquad R_g e^{-i\delta_g} = \frac{\int A_g^* \bar{A}_g \mathrm{d}\Phi_g}{\sqrt{\int |A_g|^2 \mathrm{d}\Phi_g \int |\bar{A}_g|^2 \mathrm{d}\Phi_g}}$$

Mode	r(%)	R	δ(°)
$K^-\pi^+$	$5.86 \pm 0.02[1]$	1	192.1 ^{+8.6} _{-10.2} [1]
$K^-\pi^+\pi^0$	4.41 ± 0.11 [2]	0.79 ± 0.04 [2]	$196 \pm +11[2!]$
$K^-\pi^+\pi^-\pi^+$	5.50 ± 0.07 [2]	$0.44^{+0.09}_{-0.10}$ [2]	161 ⁺²⁸ [2!]

J ^{PC}	K ⁺ K [−] resonance
0++	$a_0(980), f_0(980), f_0(1370), KK$
1	$\phi(1020), \rho(1450), KK$
2++	$f_2(1270)$


J^P	Kω resonance
0-	K(1460)
1+	$K_1(1270), K_1(1400), K_1(1650)$
1-	Kst(1410)
2-	$K_2(1580)$
2+	Kst(1430)

Amplitude	significance
$\omega\phi[S]$	$> 10\sigma$
$\omega\phi[P]$	3.5σ
$\omega \phi[D]$	2.0σ
$K_1(1270)^+K^-[S]$	5.1σ
$K_1(1270)^-K^+[S]$	8.1σ

Resonance	FF(%)	mag	phase
$\omega \phi[S]$	85.35	1	0
$\omega \phi[P]$	2.11	0.052	0.022
$K_1(1270)^+K^-[S]$	3.70	0.999	-1.602
$K_1(1270)^-K^+[S]$	10.69	1.978	1.286

Fitting Results

Polarization of $D \rightarrow VV$

- □ For $D \rightarrow VV$ decay modes, these decays have a richer structure, as they have three partial-wave or helicity states.
- The polarized decay amplitudes can be expressed in several different but equivalent bases **helicity basis**(H_0, H_+, H_-), **transverse basis**($A_0, A_\perp, A_\parallel$) and can be related to the partial wave amplitudes[S],[P],[D].

$$A_{0} = H_{0} = -\frac{1}{\sqrt{3}}S + \sqrt{\frac{2}{3}}D, \qquad S = \frac{1}{\sqrt{3}}(-A_{0} + \sqrt{2}A_{\parallel}) = \frac{1}{\sqrt{3}}(-H_{0} + H_{+} + H_{-})$$

$$A_{\parallel} = \frac{1}{\sqrt{2}}(H_{+} + H_{-}) = \sqrt{\frac{2}{3}}S + \frac{1}{\sqrt{3}}D \qquad P = A_{\perp} = \frac{1}{\sqrt{2}}(H_{+} - H_{-}),$$

$$A_{\perp} = \frac{1}{\sqrt{2}}(H_{+} - H_{-}) = P, \qquad D = \frac{1}{\sqrt{3}}(\sqrt{2}A_{0} + A_{\parallel}) = \frac{1}{\sqrt{6}}(2H_{0} + H_{+} + H_{-}),$$

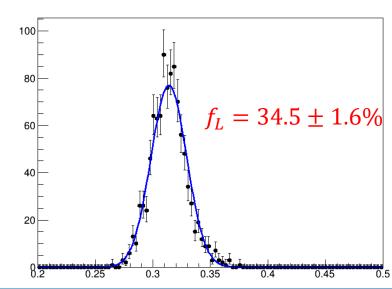
Polarization of $m{D^0} ightarrow m{\omega} m{\phi}$

$$\Box \quad H_{\pm} = \sqrt{\frac{1}{3}} g_{00} \pm \sqrt{\frac{1}{2}} W r g_{11} + \sqrt{\frac{1}{6}} r^2 g_{22}, F_0 = \gamma_1 \gamma_2 (-\sqrt{\frac{1}{3}} g_{00} + \sqrt{\frac{2}{3}} r^2 g_{22})$$

Longitudinal polarization fraction: $f_L = \frac{|H_0|^2}{|H_+ + H_0 + H_-|^2}$ r = 2|q|

|q|: momentum of V in D rest frame

 γ : Lorentz factor of V in D rest frame


W:mass of D

The LS coupling parameters α_i in **covariant tensor** formula can be used by **covariant helicity** formula.

Covariant tensor:
$$\Sigma_{\sigma_1 \sigma_2} |\alpha_0 A(0,0) + \alpha_1 A(1,1) + \alpha_2 A(2,2)|^2$$

Covariant helicity:
$$g_{ii} = f_i \alpha_i \rightarrow H_{\pm} = \sqrt{\frac{1}{3}} f_0 \alpha_0 \pm \sqrt{\frac{1}{2}} W r f_1 \alpha_1 + \sqrt{\frac{1}{6}} r^2 f_2 \alpha_2$$
,

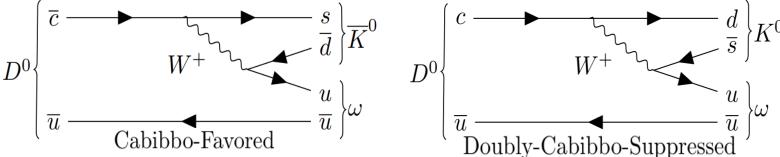
$$H_0 = \gamma_1 \gamma_2 \left(-\sqrt{\frac{1}{3}} f_0 \alpha_0 + \sqrt{\frac{2}{3}} r^2 f_2 \alpha_2 \right)$$

Summary and next to do

- Summary:
 - ✓ Event Selection and Background estimation
 - ✓ Simultaneous Fit with DIY MC
 - \checkmark Calculation of f_L based on PWA result

- Next to do:
 - > Iteration of DIY MC
 - > Finish IO check
 - > Study of systematic uncertainty

Work II


Study of
$$K_S^0 - K_L^0$$
 asymmetry in the decays $D^0 \to \omega K_S^0$ and $D^0 \to \omega K_L^0$

 \square The (quasi-)two-body D meson decays are important for understanding D decay mechanism, according to Glashow-Iliopoulos-Maiani (GIM): $V_{cd}^*V_{ud} + V_{cs}^*V_{us} + V_{cb}^*V_{ub} = 0 \implies \text{CPV}$ in D decays.

For the processes that involving a neutral K meson, Bigi and Yamamoto pointed out that interference between CF and DCS amplitudes in $D \to K^0 M$ can lead to experimentally observable $K_S^0 - K_L^0$

asymmetries.

- \triangleright CPV associated with those interference between CF and DCS amplitudes is studied to be ~10⁻³. PRL 119.181802(2017)
- ightharpoonup Measurement of $K_S^0 K_L^0$ asymmetry $R(D^0) = \frac{\mathcal{B}(D^0 \to K_S^0 X) \mathcal{B}(D^0 \to K_L^0 X)}{\mathcal{B}(D^0 \to K_S^0 X) + \mathcal{B}(D^0 \to K_L^0 X)} \simeq 2r_f \cos \delta_f$, can enable us to determine the amplitude of DCS processes and promote study of CPV.

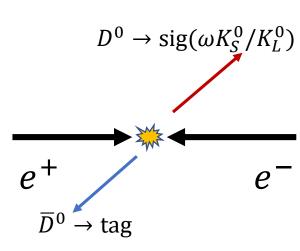
 \square Compare of $R(D^0; X)$ from theories and experiments

▶ Different theoretical predictions (FAT, TDA...) of $R(D^0; X)$ show good consist with $D \to PP$ process but differ from $D \to VP$ process.

 $\gt R(D^0; \omega)$ is calculated with $\mathcal{B}(D^0 \to K_L^0 \omega)$ measured by BESIII using 2.93 fb^{-1} data and $\mathcal{B}(D^0 \to K_S^0 \omega)$ from CLEO, the result shows large difference from FAT and TDA predictions.

 \triangleright Measurement of $\mathcal{B}(D^0 \to K_S^0 \omega)$ and $\mathcal{B}(D^0 \to K_L^0 \omega)$ using a larger data sample can provide more precise results and provide important test of theoretical models.

	D -	→ PP	$D \rightarrow$	VP	
$X = \pi^0, \eta, \eta', \phi, \omega$	π^0	η/η'	φ	ω	
$R(D^0; X)^{[1]}_{FAT}(\%)$		11.3 ± 0.1			
$R(D^0; X)_{\mathrm{F4}}^{[2]}(\%)$	10.7		10.1 ± 2.9	10.6 ± 3.4	
$R(D^0; X)^{[2]}_{F1'}(\%)$	10.7		4.1 ± 2.9	8.9 ± 3.5	
$R(D^0; X)_{exp.}(\%)$	$10.8 \pm 3.5^{[3]}$	$8 \pm 2.3^{[4]}$	$-0.1 \pm 4.7^{[4]}$	$-2.4 \pm 3.1^{[4]}$	

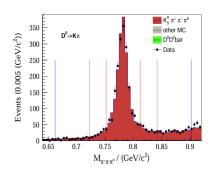

Large difference between theory predictions and experiment measurement

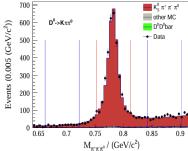
[1] PRD 95,073007(2017), [2] PRD 109,073008(2024), [3] PRL 100,091801(2008), [4] PRD 105,092010(2022).

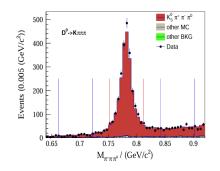
Analysis Strategy

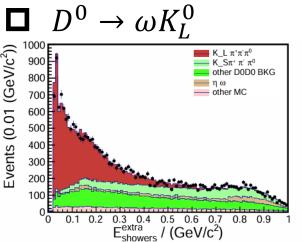
- **D** Data set: 7.93 fb^{-1} at 3.773 GeV:
 - \triangleright High precise measure of $\omega K_S^0/K_L^0$.
 - > Cancel part systematic uncertainties.

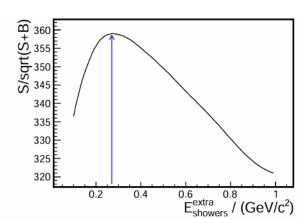
- \square Double Tag Method: $D^0\overline{D}^0$ pair production.
 - $ightharpoonup \overline{D}^0$ reconstructed by tag mode i. (ST)
 - \triangleright D⁰ reconstructed by sig mode $f(\omega K_S^0/K_L^0)$. (DT)


$$\mathcal{B}_{f}^{i} = \frac{N_{DT}^{i} \cdot \epsilon_{tag}^{i}}{N_{ST}^{i} \cdot \epsilon_{tag,sig}^{i} \cdot [1 - \frac{2r_{i}R_{i}\cos\delta^{i}}{1 + r_{f}^{2}}(2F_{+}^{f} - 1)]}; \quad f_{QC}^{f} = \frac{1}{1 - \frac{2r_{i}R_{i}\cos\delta^{i}}{1 + r_{i}^{2}}(2F_{+}^{f} - 1)}.$$

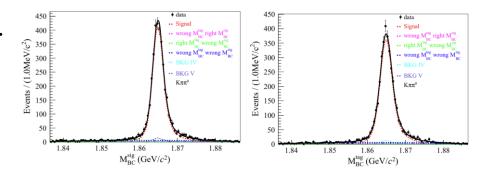

ightharpoonup Tag mode: $\overline{D}^0 \to K^+\pi^-, \overline{D}^0 \to K^+\pi^-\pi^0, \overline{D}^0 \to K^+\pi^-\pi^+\pi^-.$


Background Analysis

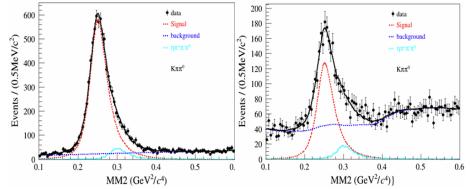

- $\square D^0 \to \omega K_S^0$
 - > Low background level



- Peaking backgrounds non-ω resonance $K_S^0 \pi^+ \pi^- \pi^0$ processes
- Peaking backgrounds: wrong reconstruction of a soft γ of π^0



- \triangleright Suppress background by requiring $E_{showers}^{extra}$
- \triangleright Peaking backgrounds $\omega \eta$
- \triangleright Peaking backgrounds ωK_S^0
- Peaking backgrounds non-ω resonance $K_{S/L}^0 \pi^+ \pi^- \pi^0$ processes
- \triangleright Peaking backgrounds from $q\bar{q}$ process


DT Fitting Method & Results

- \square $D^0 \to \omega K_S^0$: Fully reconstructed; 2D-fit to M_{BC}^{sig} $v.s.M_{BC}^{tag}$.
 - \triangleright Peaking BKGs from $D^0 \to K_S^0 \pi^+ \pi^- \pi^0$: $M_{\pi^+ \pi^- \pi^0}$ side-band.
 - \triangleright Wrong reconstruction of a soft γ of π^0 :MC simulation.
 - Signal shape modeled by MC.

- \square $D^0 \to \omega K_L^0$: Missing mass method; fitting to $M_{miss}^2(MM2)$.
 - \triangleright Lateral peaks from η : MC simulation.
 - \triangleright Peaking BKGs from $D^0 \to K_{S/L}^0 \pi^+ \pi^- \pi^0$: $M_{\pi^+\pi^-\pi^0}$ side-band.
 - Peaking BKGs from $q\bar{q}$: estimated by M_{BC}^{tag} side-band and MC simulation.

Systematic Uncertainty

Source	$D^0 \to K_S^0 \omega(\%)$	$D^0 \to K_L^0 \omega(\%)$
π^{\pm} tracking	1.0	0.8
π^{\pm} PID	0.2	0.2
π^0 reconstruction	1.1	1.1
K_S^0 reconstruction	1.1	_
ST Yields	0.1	0.1
DT Fit	0.5	0.7
QC-correction	0.6	0.5
ω Mass window	0.5	0.7
$N_{\rm charged}^{\rm extra} = 0$	_	0.9
$E_{\gamma}^{\mathrm{extr}a} < 0.27 \mathrm{GeV}$	_	0.4
MC Statistics	0.3	0.3
Quoted BFs	0.7	0.7
Total	2.2	2.2

- A MC study indicates that this interference will affect the BFs of $D^0 \rightarrow \omega K_{S/L}$ with a factor of 3.96%, ,which will be regarded as the third uncertainties in the measurement.

Summary of $D^0 \to \omega K_{S \setminus L}^0$

Results	$\mathcal{B}(D^0 \to K_S^0 \omega) \times 10^{-3}$	$\mathcal{B}(D^0 \to K_L^0 \omega) \times 10^{-3}$	$R(D^0;\omega) \times 10^{-2}$
This work	$11.91 \pm 0.19 \pm 0.26 \pm 0.47$	$10.97 \pm 0.15 \pm 0.28 \pm 0.44$	$4.21 \pm 0.99 \pm 0.88 \pm 2.80$
Previous results	$11.2 \pm 0.4 \pm 0.5$	$11.64 \pm 0.22 \pm 0.28$	-2.4 ± 3.1
F1′	12.7 ± 0.6	10.3 ± 0.5	10.6 ± 3.4
F4	12.5 ± 0.6	10.5 ± 0.5	8.9 ± 3.5

■ Summary

 \checkmark Measurements of $\mathcal{B}(D^0 \to K_S^0 \omega)$, $\mathcal{B}(D^0 \to K_L^0 \omega)$ and $\mathcal{R}(D^0; \omega)$.

✓ Draft already finished and under BESIII referees reviewing

■ Next to do

> Finish the draft review and submit

Summary and Prospects

- \square Work I:PWA of $D^0 \to \omega K^+ K^-$
 - ✓ Obtained amplitude model
 - > IO Check & systemic uncertainty ongoing
- \square Work II: $D^0 \to \omega K_S^0$ and $D^0 \to \omega K_L^0$
 - ✓ Draft under BESIII reviewing.
- ☐ Prospects:
 - > Study of other $D \to VV$ process, e.g. $D^0 \to \omega \omega$

Thank you!

Back UP

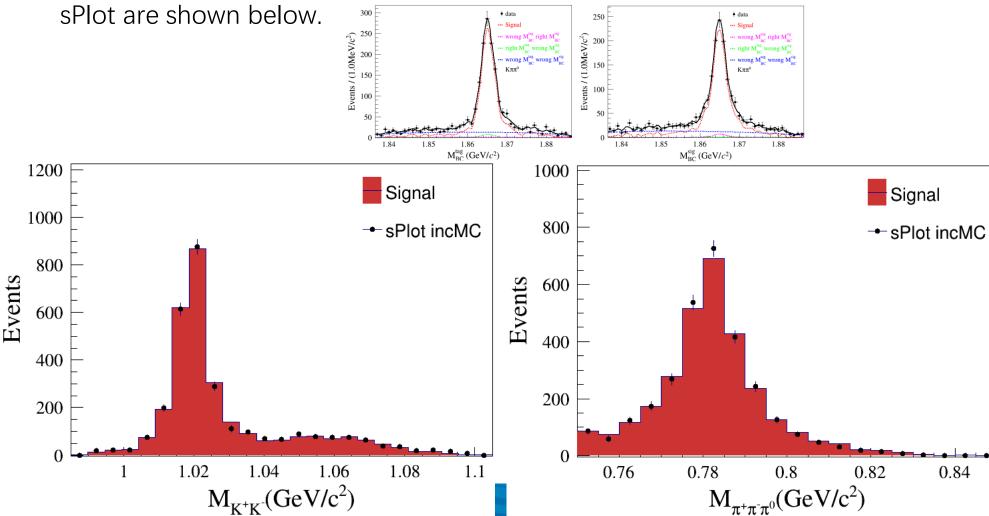
 \triangleright Covariant helicity amplitude for $D \to \phi \omega \to (K^+K^-)(\rho \pi) \to (K^+K^-)(\pi \pi_2 \pi_3)$:

$$H_{\lambda_{\phi},\lambda_{\omega}} = F_{\lambda_{\phi},\lambda_{\omega}}^{JD} D_{\lambda_{D},\lambda_{\phi}-\lambda_{\omega}}^{JD}(\Omega_{D}) \cdot T_{\phi}(m_{\phi}) F_{\lambda_{K^{+}},\lambda_{K^{-}}}^{J\phi} \left(\Omega_{\phi}^{\{D\}}\right) \cdot T_{\omega}(m_{\omega}) F_{\lambda_{\rho},\lambda_{\pi}}^{J\omega} \left(\Omega_{\omega}^{\{D\}}\right) D_{\lambda_{\omega},\lambda_{\rho}-\lambda_{\pi}}^{J\omega} \left(\Omega_{\omega}^{\{D\}}\right) \left(\Omega_{\omega}^{\{D\}}\right) D_{\lambda_{\omega},\lambda_{\rho}-\lambda_{\omega}}^{J\omega} D_{\lambda_{\omega},\lambda_{\rho}-\lambda_{\omega}}^{J\omega} D_{\lambda_{\omega},\lambda_{\rho}-\lambda_{\omega}}^{J\omega} D_{\lambda_{\omega},\lambda_{\rho}-\lambda_{\omega}}^{J\omega} D_{\lambda_{\omega},\lambda_{\rho}-\lambda_{\omega}}^{J\omega} D_{\lambda_{\omega},\lambda_{\rho}-\lambda_{\omega}}^{J\omega} D_{\lambda_{\omega},\lambda_{\omega}-\lambda_{\omega}}^{J\omega} D_{\lambda_{\omega},\lambda_{\omega}-\lambda_{\omega}}^$$

$$T_{\rho}(m_{\rho})F_{\lambda_{\pi_2},\lambda_{\pi_3}}^{J_{\rho}}D_{\lambda_{\rho},\lambda_{\pi_2}-\lambda_{\pi_3}}^{J_{\rho}}$$

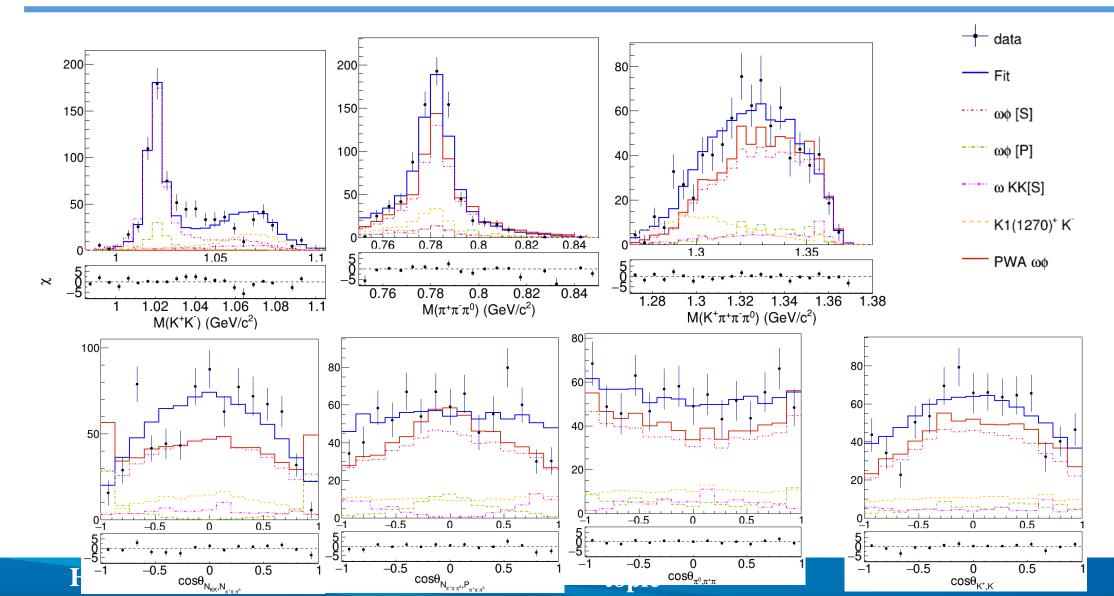
$$J_D = 0 \to \lambda_{\phi} = \lambda_{\omega} \to |A|^2 = \left| \sum_{\lambda_{\phi} \lambda_{\omega}} H_{\lambda_{\phi} \lambda_{\omega}} \right|^2 = |H_{11} + H_{-1-1} + H_{00}|^2$$

$$F_{\pm 1 \pm 1}^{J_D} = \sqrt{\frac{1}{3}} g_{00} \pm \sqrt{\frac{1}{2}} W r g_{11} + \sqrt{\frac{1}{6}} r^2 g_{22}, \ F_{00}^{J_D} = \gamma_1 \gamma_2 (-\sqrt{\frac{1}{3}} g_{00} + \sqrt{\frac{2}{3}} r^2 g_{22}), \ r + 2|q|$$

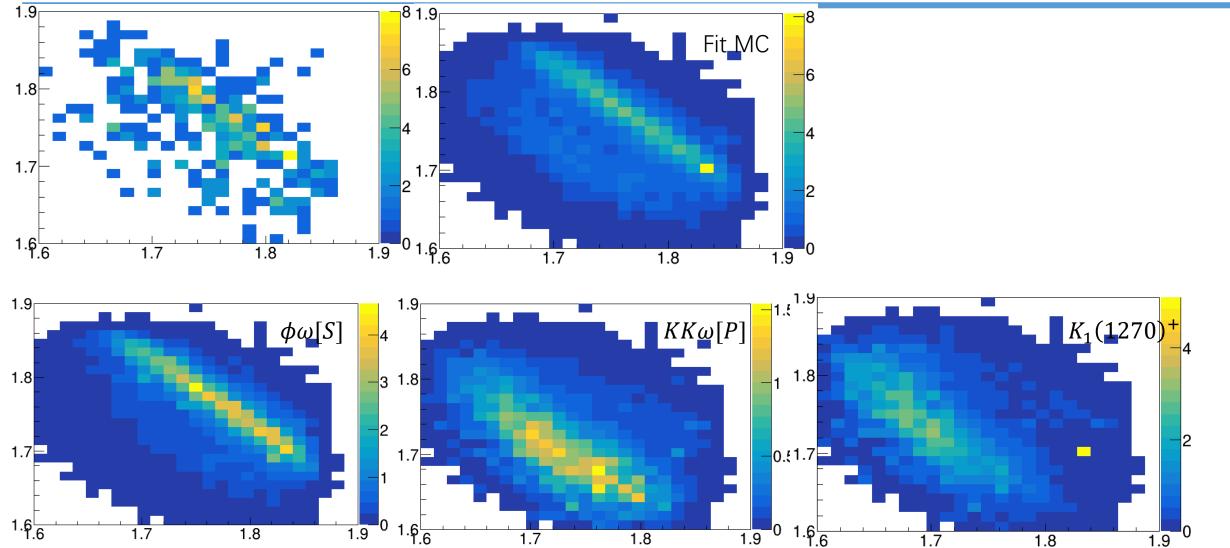

|q|: momentum of V in D rest frame γ : Lorentz factor of V in D rest frame

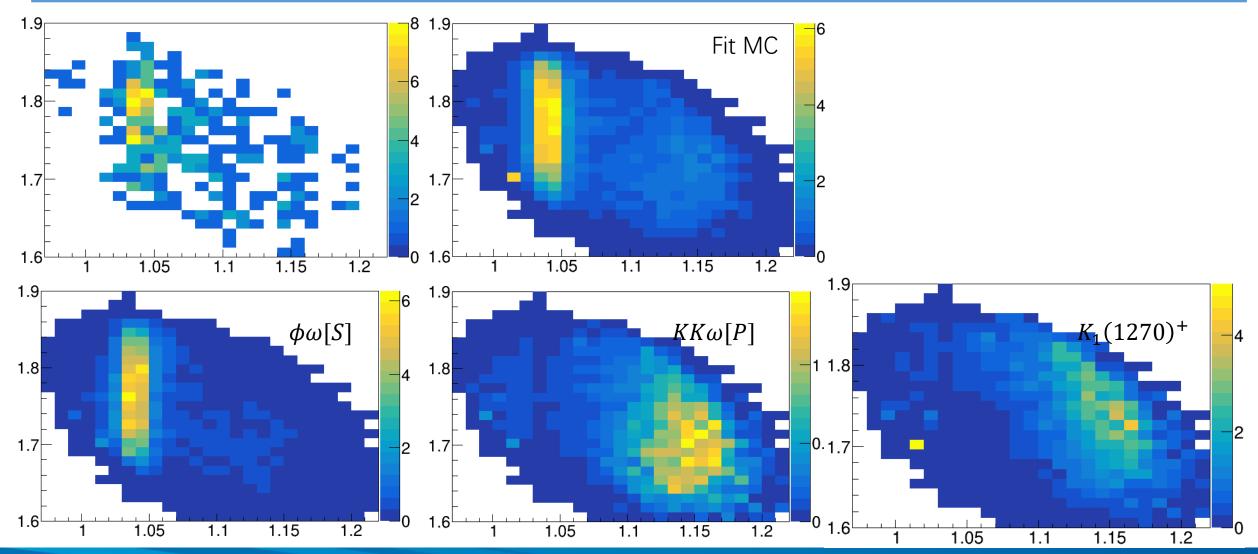
W:mass of D

sPlosPlot on MC — Full Reconstructiont



• To check the reliability of sPlot, 2-D M_{BC} fits are performed on inclusive MC samples. The comparisons between the signal components of inclusive MC and


Fit on sPlot — Full reconstruction



$M_{K^-\pi^+\pi^-\pi^0}^2 v.s.M_{K^+K^-}^2$

Amplitude	$ ilde{c}_k $	$arg(\tilde{c}_k)$ [rad]	Fit fraction [%]
$D^0 \to [\phi(1020)\rho(770)^0]_{L=0}$	1 (fixed)	0 (fixed)	$92.55 \pm 0.46 \pm 0.28$
$D^0 \to [\phi(1020)\omega(782)]_{L=0}$	$0.114 \pm 0.004 \pm 0.003$	$1.30 \pm 0.04 \pm 0.04$	$1.42 \pm 0.11 \pm 0.04$
		Sum of fit fractions	$93.96 \pm 0.40 \pm 0.28$
$D^0 \to [\phi(1020)\rho(770)^0]_{L=1}$	1 (fixed)	0 (fixed)	$83.11 \pm 4.11 \pm 1.70$
$D^0 \to [\phi(1020)\omega(782)]_{L=1}$	$0.254 \pm 0.052 \pm 0.018$	$1.32 \pm 0.19 \pm 0.07$	$4.33 \pm 1.58 \pm 0.52$
		Sum of fit fractions	$87.45 \pm 2.99 \pm 1.78$
$D^0 \to [\phi(1020)\rho(770)^0]_{L=2}$	1 (fixed)	0 (fixed)	$94.64 \pm 1.69 \pm 0.78$
$D^0 \to [\phi(1020)\omega(782)]_{L=2}$	$0.162 \pm 0.032 \pm 0.014$	$1.50 \pm 0.17 \pm 0.06$	$0.71 \pm 0.27 \pm 0.12$
		Sum of fit fractions	$95.35 \pm 1.54 \pm 0.79$
$D^0 \to [K^+K^-]_{L=0} \rho(770)^0$	1 (fixed)	0 (fixed)	$85.41 \pm 5.89 \pm 3.49$
$D^0 \to [K^+K^-]_{L=0}\omega(782)$	$0.494 \pm 0.098 \pm 0.098$	$-0.95 \pm 0.19 \pm 0.15$	$9.24 \pm 3.26 \pm 3.64$
		Sum of fit fractions	$94.65 \pm 5.03 \pm 5.04$
$K_1(1270)^+ \to [\rho(770)^0 K^+]_{L=0}$	1 (fixed)	0 (fixed)	$139.03 \pm 1.98 \pm 3.81$
$K_1(1270)^+ \to [\omega(782)K^+]_{L=0}$	$0.159 \pm 0.012 \pm 0.011$	$1.36 \pm 0.07 \pm 0.06$	$1.52 \pm 0.22 \pm 0.19$
		Sum of fit fractions	$140.55 \pm 1.90 \pm 3.81$

AMPs from LHCb J. High Energy Phys. 02 (2019) 126.

confirm that
$$Brig(D^0 o \omega \phiig) < Br(D^0 o
ho^0\phi)$$