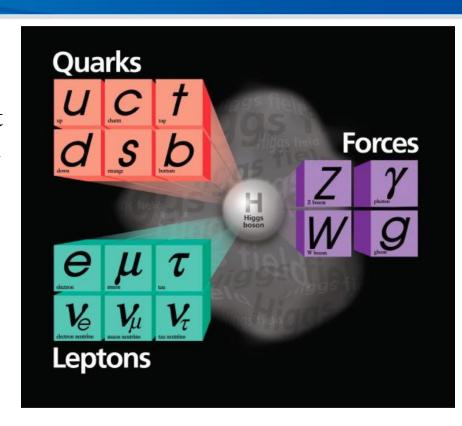


Cross Section Measurements of $e^+e^- \to K^+K^-$ via tagged ISR technique and study of Bose-Einstein correlations by $\pi^0\pi^0$ pairs at BESIII

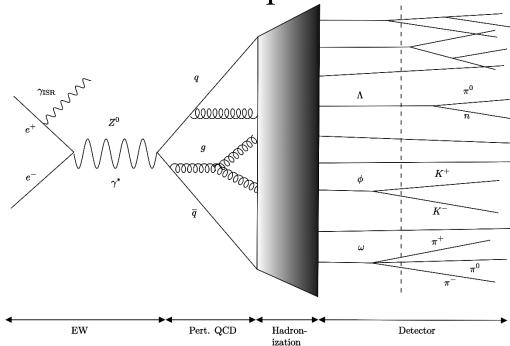
Yijing Wang (王祎景)
Supervisor: Guangshun Huang
Thesis proposal report
October 14, 2025


Outline

- > Introduction
 - Overview
 - Background
 - BEPCII and BESIII
- \triangleright Cross Section Measurements of $e^+e^- \rightarrow K^+K^-$ via tagged ISR technique
 - Motivation
 - Analysis Strategy
 - Results
- > Study of Bose-Einstein Correlations (BEC) by $\pi^0\pi^0$ pairs at BESIII
 - Motivation
 - Analysis Strategy
 - ☐ Challenge and next to do
- Summary and prospect

Introduction

Overview

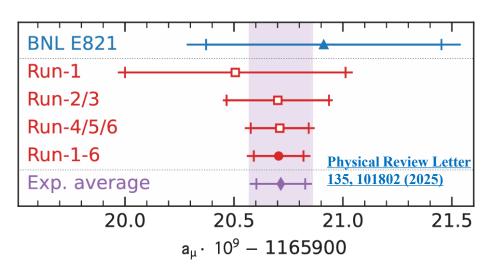

- Standard Model (SM):
 - ✓ Describes the fundamental particles that make up the visible world of matter and how they interact with each other.
 - Strong interaction is an important and secret part in SM
 - Non-point like structure of hadrons
 - Calculate non-perturbatively in low Q^2
 - Picture of production lacks clarity.

Experimental study attaches great importance in strong interaction study!

Overview

Process of hadron production:

- \square QED process (e^+e^- annihilation, ISR process, etc)
- Parton evolution in pQCD
- Non-pQCD hardronization, formation of hadron source
- Production of final hadrons


- The hadron source structure:
 - No reliable theoretical predictions in this field.
 - Bose-Einstein correlations : probe hadron source

- Final hadron production for low energy process:
 - \square Cross section measurement (muon anomaly a_{μ} and hardronic spectrum)
 - Electromagnetic form factor
 - ☐ Fragmentation Function.

Muon anomaly

\succ Measurement of muon anomaly (a_{μ})

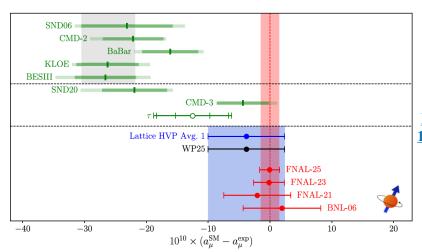
- Precise experimental and theoretical value of a_{μ} : stringent test of the SM.
- High precision experimental value (a_{μ}^{exp}) by Brookhaven National Lab (NML) and Fermilab(FNAL) $\cong 2 \times 10^{-5}\%$
- Precision of theoretical calculations $(a_{\mu}^{SM}) \cong 5 \times 10^{-5}\%$

•	a_{μ}^{SM}	$=a_{\mu}^{\mathit{QED}}$	$+ a_{\mu}^{EW}$	$+a_{\mu}^{Had}$	$(a_{\mu}^{HVP}$	$+ a_{\mu}^{LBL}$)
---	----------------	---------------------------	------------------	------------------	------------------	--------------------	---

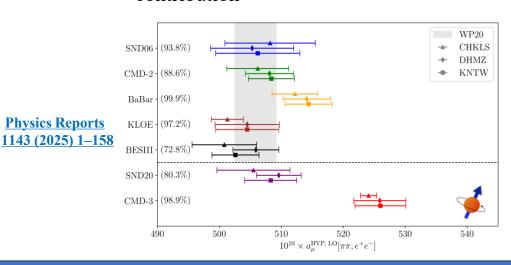
Item	Method	a_{μ}^{SM} portion	δa_{μ}^{SM} portion
a_{μ}^{QED}	perturbative	~99.99%	~0.001%
a_{μ}^{EW} Perturbative		~1ppm	~0.2%
a_{μ}^{HVP}	Non-perturbative	~59ppm	~84%
a_{μ}^{LBL}	Non-perturbative	~1ppm	~16%

- \square a_{μ}^{HVP} is the largest contributor to δa_{μ}^{SM}
- ☐ Two methods are used:
 - Data driven, dispersive approach
 - A first-principle, lattice-QCD

Yijing Wang(王祎景) Introduction


Muon anomaly

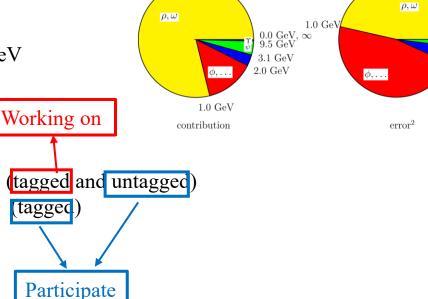
Tension between a_u^{exp} and a_u^{SM}


? How to calculate
$$a_{\mu}^{HVP}$$
 by data driven
$$a_{\mu}^{HVP,LO} = \frac{\alpha^2}{3\pi^2} \int_{m_{\pi}^2}^{+\infty} \frac{ds}{s} \mathbf{R}(\mathbf{s}) K(s)$$

$$R(s) = \frac{\sigma_{had}(s)}{4\pi\alpha^2/(3s)}$$
 is the hadronic R ratio

- ✓ Precise measured data required!
- \lesssim 2 GeV: exclusive final states (2π , 3π , 4π , 2K...)
- Largest contributor: 2π
- III. ≥ 2 GeV: inclusive measurement

- ☐ Prediction given by LQCD shows consistency with the experimental value.
- \Box 5.8 σ tension between data driven prediction (excluding CMD3 results) and a_u^{exp}
- Results by CMD3 larger than others' and consistent with a_u^{exp} caused by the 2π contribution


Muon anomaly

▶BESIII contribution to HVP

- ✓ Published measurements:
 - ISR $e^+e^- \rightarrow \pi^+\pi^-$ cross section: 600 900 MeV, Phys. Lett. B 753, 629-638 (2016)

(tagged)

- R measurement: 2.2324 3.6710 GeV, Phys. Rev. Lett. 128, 062004 (2022)
- Several exclusive channels between 2 and 3 GeV $(\pi^+\pi^-\pi^0, K_SK_L\pi^0, KK\pi\pi, ...)$
- ✓ Preliminary results:
 - ISR $e^+e^- \to \pi^+\pi^-\pi^0\pi^0$. 0.9 to 3.3 GeV
- ✓ On going :
 - ISR $e^+e^- \to K^+K^- : 1.0 \text{ to } 3.2 \text{ GeV}$
 - ISR $e^+e^- \to K_s K_L$: 1.0 to 2.0 GeV

Introduction Yijing Wang(王祎景)

 $0.0~{\rm GeV}, \infty$

3.1 GeV2.0 GeV

Bose-Einstein correlations

>What and why Bose-Einstein correlations

- ☐ Origin: Wave function (WF) of a system of identical bosons symmetric under exchanging
- ☐ Higher probability of finding identical bosons in a small phase-space called

Bose-Einstein correlations (BEC)

■ Space-time structure (sp) described by f(x) $A_{12} = \frac{1}{\sqrt{2}} \sum_{i} (f(x_i)e^{ix_ip_1} f(x_j)e^{ix_jp_2} + f(x_i)e^{ix_ip_2} f(x_j)e^{ix_jp_1})$

■ Probability distributions of two particles:

$$P_{12} \propto \sum (\rho(x_i)\rho(x_j))(1 + e^{ix_ip_1}e^{ix_jp_2}e^{-ix_jp_1}e^{-ix_ip_2}) \sim \int_{-\infty}^{+\infty} dx_j dx_k \rho(x_i)\rho(x_j)[1 + e^{iq\Delta x}] = R^2(0)[1 + \frac{R^2(q)}{R^2(0)}]$$

BEC term

Chin.Phys.C 48 (2024) 11, 113106

Where
$$q = p_1 - p_2$$
, $x = x_k - x_j$, $R(q) = \int dx e^{iqx} \rho(x)$, $\rho(x) = |f(x)|^2$

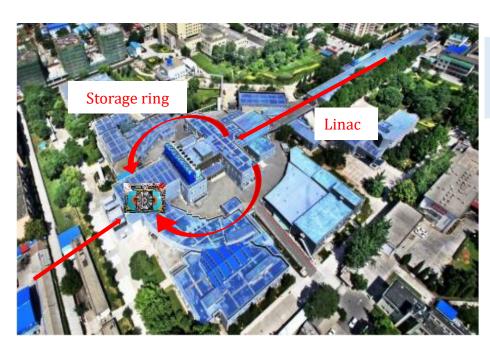
R(0): uncorrelated part, got by unidentical bosons

BEC straightly reflects the space-time structure of source!

Yijing Wang(王祎景) Introduction

Bose-Einstein correlations

\triangleright Modulation and measurement of $R(Q^2)$

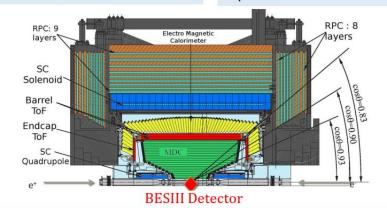

- Two models often used:
 - Gaussian source: $R(Q^2) \propto \lambda e^{-R^2Q^2}$, Exponential source: $R(Q^2) \propto \lambda e^{-RQ}$
 - λ , the correlation coefficient; R is the radius of the hadron source
 - Long distance interaction parameter: $1 + \delta Q^2$
 - Thus $1 + \frac{R(Q^2)}{R(0)} = N(1 + \delta Q^2)(1 + \lambda e^{-R^2Q^2})$ for gaussian source and $N(1 + \delta Q^2)(1 + \lambda e^{-RQ})$ for exponential source
- Measurement method:
 - Using the two identical particle correlation function:

$$C(Q^2) = \frac{\rho(Q^2)}{\rho_0(Q^2)}, \qquad Q^2 = -(q_1 - q_2)^2,$$

 $\rho(Q^2)$: distribution of Q^2 and $\rho_0(Q^2)$: distribution of Q^2 from reference sample

- Reference sample:
 - Like-sign pairs but opposite momentum of one particle (OHP)
 - Like-sign pairs but opposite transverse momentum of one particle(ROTA)
 - Particle pairs in different events (MIX)
 - Mix: mix events randomly
 - MixN: mix events with similar multiplicity of π^0
 - MixE: mix events with similar invariant mass of all π^0
- Double ratio: $R(Q^2) = \frac{C^{data}(Q^2)}{C^{MC}(Q^2)}$ to remove other possible correlations

Beijing Electron and Positron Collider II (BEPCII) Beijing Spectrometer III (BESIII)


 $E_{cm} = 1.84 - 4.95 \text{ GeV}$ Peak luminosity @ $E_{cm} = 3.773 \text{ GeV}$: $1.1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

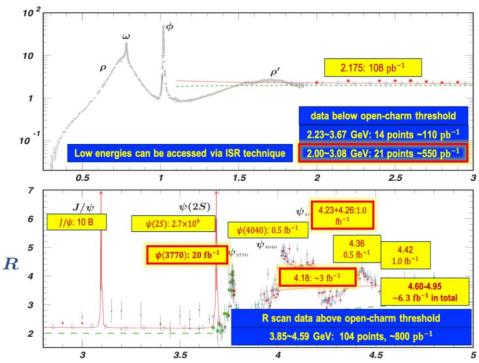
Circumference: 237.53 m Crossing angle: 2×11 mrad

Electromagnetic Calorimeter

CsI(Tl): L = 28 cm Barrel σ_E = 2.5% Endcap σ_E = 5.0%

Muon CounterRPCBarrel: 9 layersEndcaps: 8 layers $\sigma_{spatial}$ =1.48 cm

Main Drift Chamber


Small cell, 43 layer σ_{xy} =130 μm dE/dx ~ 6% σ_{p}/p = 0.5% at 1GeV

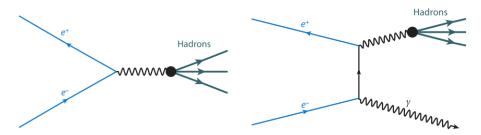
Time Of Flight

Plastic scintillator $\sigma_T(\text{barrel}) = 68 \text{ ps}$ $\sigma_T(\text{endcap}) = 110 \text{ ps}$ (update to 60 ps with MRPC)

Datasets at BESIII

➤ Advantages in BESIII:

✓ Ideal environment to do inclusive/exclusive hardronic study!


- ✓ Large datasets at tau-charm region
- ✓ Both energy scan and ISR methods can be used

I. Energy scan method

- Well-defined c.m. energy, low backgound
- Widely used in inclusive study

II. Initial state radiation method

- Colleting events from threshold to \sqrt{s}
- Widely used in study near threshold

Yijing Wang(王祎景) Introduction 12

Topic1:Cross Section Measurements of $e^+e^- \rightarrow K^+K^-$ via tagged ISR technique

Motivation

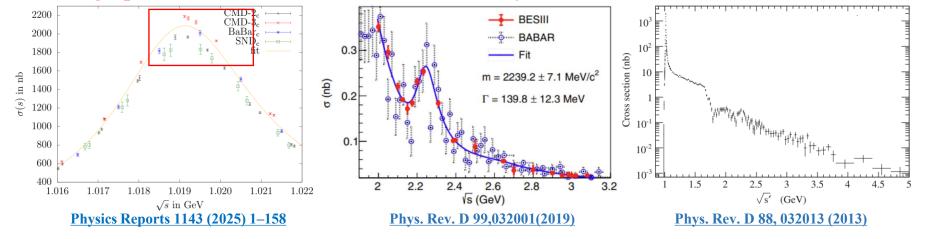
> Why e^+e^- → K^+K^- channel?

☐ The third contribution for HVP

Channel	HVP contribution (10^{-10})	Channel	HVP contribution (10^{-10})
$\pi^+\pi^-$	5078.5 ± 33.8	$\pi^+\pi^-\pi^+\pi^-$	180.3 ± 5.5
$\pi^+\pi^-\pi^0$	462.1 ± 14.5	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	136.8 ± 3.0
K ⁺ K ⁻	230.8 ± 4.4	$K_{S}K_{L}$	128.2 ± 2.4

- The accuracy can be obtained in BESIII with 20 fb⁻¹ datasets at $\psi(3770)$ peak
 - ✓ The most accuracy results are from BaBar

✓ Around $\phi(1020)$: statistical uncertainty with 1.4% \rightarrow $\sim 1.0\%$ \checkmark 1.2 - 2.0 GeV : statistical uncertainty with 2.2% \rightarrow $\sim 1.5\%$


✓ 2.0 - 3.2 GeV : statistical uncertainty with 10% \rightarrow ~4.5%

BESIII expected

Motivation

Puzzle e^+e^- → K^+K^- channel

- Many results focusing on the $\phi(1020)$ peak region (SND, CMD-2, CMD-3, BABAR).
 - □ Tension between the CMD-3's result and other groups', similar with the case for $\pi^+\pi^-$.
 - ☐ High precision cross check could be offered by BESIII

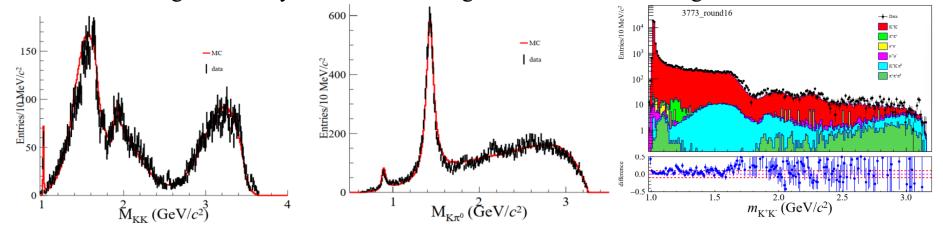
- Also fruitful results beyond the $\phi(1020)$
 - □ Substantial structure is evident in the center-of-mass energy range 1.1-2.4 GeV.
 - New resonance found in results by BESIII from 2.0-3.08 GeV

- □ Data Sets: \sqrt{s} =3.773 and 4.178 GeV, total luminosity: 23.452 fb⁻¹
- Good charged tracks:
 - $|\cos\theta| < 0.93$
 - $V_r < 1 \text{ cm}, |V_z| < 10 \text{ cm}$
 - $p/p_{\text{beam}} < 0.81$, p_{beam} is beam momentum
 - Depth in MUC < 40 cm
 - $N_{\text{Good}} = 2$
- Good photons:
 - EMC time: 0<t<700 ns
 - $|cos\theta_{\gamma}| < 0.8, E_{\gamma} > 25$ MeV for barrel $|cos\theta_{\gamma}| \in (0.86, 0.92), E_{\gamma} > 50$ MeV for end cap
 - Angle from the nearest charged track>20°
 - Good photon with the largest energy is the nominal ISR photon

- $ightharpoonup \operatorname{PID}\left(\frac{dE}{dx} + \operatorname{TOF}\right)$:
 - $K: \operatorname{prob}(K) > \operatorname{prob}(e)$
 - $N_{K^+} = N_{K^-} = 1$
- > Vertex fit and Kinematic fit
 - Successful Vertex fit by two Kaons
 - 4c kinematic fit and $\chi_{4c}^2 < 50$
 - Looping good photon pairs to do 4c kinematic fit, choose the combination with minimum $\chi^2_{2\gamma,min}$
 - $\chi^2_{2\nu,min} > \chi^2_{4c}$
- > Special selection
 - For round03,04, \sqrt{s} =3.773 GeV data the E/p<0.8 for the good charged tracks

Background Analysis

➤ Background types and estimated ratio:

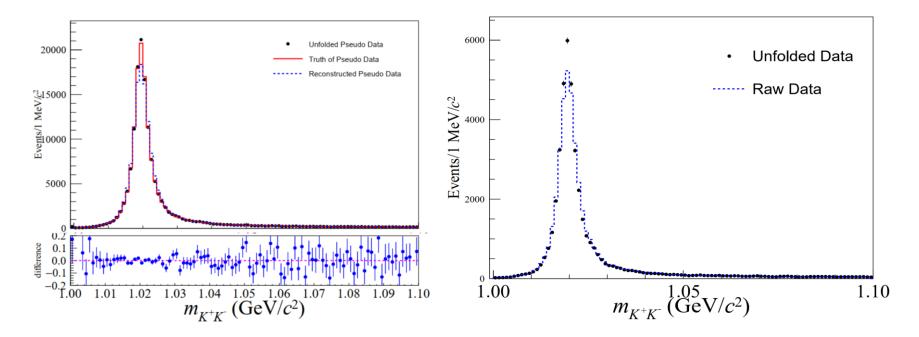

Type of MC	$N_{ m survival}$	ratio of the total background(%)	ratio of data(%)
$e^+e^- \to \pi^+\pi^-(\gamma_{\rm ISR})$	188	13.0	0.3
$e^+e^- \to \mu^+\mu^-(\gamma_{\rm ISR})$	103	7.1	0.2
$e^+e^- o q\overline{q}$	1056	73.2	1.8
$e^+e^- \rightarrow e^+e^-(\gamma_{\rm ISR})$	96	6.7	0.2
$e^+e^- o au^+ au^-(\gamma_{ m ISR})$	0	0.0	0.0
$e^+e^- \rightarrow e^+e^-X$	0	0.0	0.0

- \square Low background level (~3%).
- \square Background besides $q\bar{q}$ are estimated by MC, since those MC are accurate enough.
- \Box $q\bar{q}$ means the hardonic backgrounds (excluding $\pi^+\pi^-\gamma_{ISR}$)

■ The rest main hardronic backgrounds : $K^+K^-\pi^0$ and $\pi^+\pi^-\pi^0$. Others are ignored

Background Analysis

- \triangleright Exclusive study for $K^+K^-\pi^0$
 - 1. Using the FDC package to get a PWA model
 - 2. Generating the MC by ConExc and using it to estimate the background


3.MC is reliable, about 1% in data

- \triangleright Exclusive study for $\pi^+\pi^-\pi^0$
 - 1. Using the PHOKHARA to generate MC to estimate this background
 - 2. Result: about 0.5% in data
- Combined MC describes data well!

Unfolding

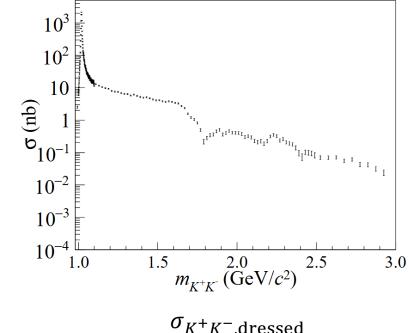
> Why and how to do unfolding?

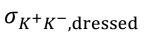
- \square High precision needed near ϕ reasonance
- □ Singular Value Decomposition (SVD) is used to correct the smearing effects.

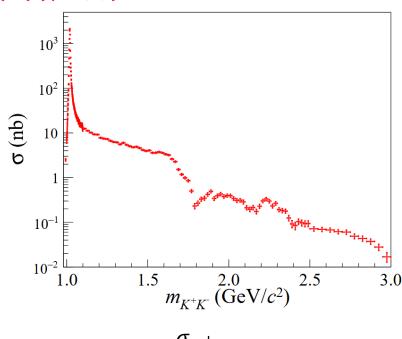
 \square SVD Effectively corrected the smearing effects, especially near the ϕ peak.

Systematic uncertainty

> Systematic uncertainty are listed below ($\sqrt{s} = 3.773$ GeV:


$M_{K^+K^-}$ (GeV) Uncertainty type	Threshold-1.1	1.1-2.5	2.5-3	Method
K [±] tracking efficiency	0.1%	1.2%	2.0%	Control sample: $J/\psi \to K_s K\pi$
K [±] PID efficiency	0.1%	0.8%	2.0%	Control sample: $J/\psi \to K_s K\pi$
Photon efficiency	0.2%	0.2%	0.2%	Control sample: $e^+e^- \rightarrow \mu^+\mu^-\gamma_{ISR}$
MUC efficiency	0.1%	0.4%	1.0%	Control sample: $J/\psi \to K_s K\pi$
Unfolding	0.2%	0.0%	0.0%	Alternative line shape
Kinematic fit	0.5%	0.5%	0.5%	Correct the helicity parameters
VP correction	0.2%	0.2%	0.2%	Given by the theoretical calculation
Luminosity and Radiation function	0.7%	0.7%	0.7%	Given by the theoretical calculation and BESIII nominal result
overall	1.0%	1.7%	3.3%	


Cross section measurement


In each interval, cross section is calculated by:

$$\sigma_{K^{+}K^{-},\text{dressed}}(M_{K^{+}K^{-}}) = \frac{dN_{sig}/dM_{K^{+}K^{-}}}{\epsilon . d\mathcal{L}_{int}/dM_{K^{+}K^{-}}}, \quad \frac{d\mathcal{L}_{int}}{dM_{K^{+}K^{-}}} = W(s. x)\mathcal{L}_{int}$$

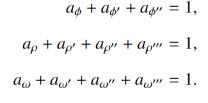
$$\sigma_{K^{+}K^{-},\text{Bare}} = \frac{\sigma_{K^{+}K^{-},\text{dressed}}}{(\alpha(s)/\alpha(0))^{2}}$$

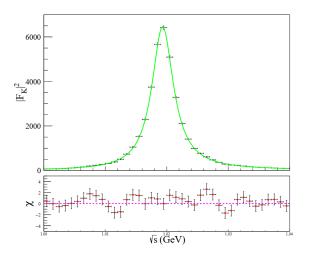
 $\sigma_{K^+K^-, \mathrm{Bare}}$

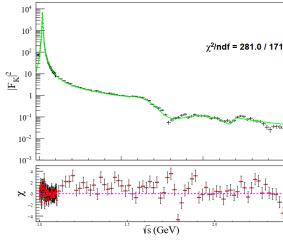
Cross section measurement

> Fit the lineshape

 \square The form factor is correlated to the $\sigma_{K^+K^-,dressed}$ by:

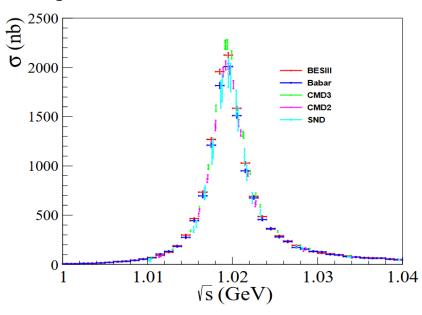

$$|F_k|^2(s') = \frac{3s'}{\pi\alpha^2(0)\beta_K^3} \frac{\sigma_{K^+K^-,dressed}(s')}{c_{FS}}$$
, C_{FS} is the final-state radiation correction factor


☐ The lineshape is fitted by the following model:


$$F_K(s) = \left(a_{\phi}BW_{\phi} + a_{\phi'}BW_{\phi'} + a_{\phi''}BW_{\phi''}\right)/3$$

$$+ \left(a_{\rho}BW_{\rho} + a_{\rho'}BW_{\rho'} + a_{\rho''}BW_{\rho''} + a_{\rho'''}BW_{\rho'''}\right)/2 \quad \text{With constraints}$$

$$+ \left(a_{\omega}BW_{\omega} + a_{\omega'}BW_{\omega'} + a_{\omega''}BW_{\omega''} + a_{\omega'''}BW_{\omega'''}\right)/6$$



- Least χ^2 method is used to fit the line shape
- Reliable parameters of resonance near 2.2 is not obtained for the low statistics

Summary of K^+K^-

\triangleright Summary of K^+K^-

- ✓ Based on 23.452 fb⁻¹ data sets, cross section for process $e^+e^- \rightarrow K^+K^-$ is from $2m_K$ to 3.00 GeV/ c^2 with tagged ISR technique
- ✓ Memo is completed and being reviewed.
- ✓ Between results of BaBar and CMD3's and having improved precision near the $\phi(1020)$ (0.7% for statistics and 1.0% for systematics)
- ✓ Unable to yield reliable parameters of resonance near 2.2 GeV/ c^2 due to low statistics.

Topic2:Study of BEC by $\pi^0\pi^0$ pairs at BESIII

Motivation

>Experiment measurement of BEC

- Studied by different experiments (MARKII, ZEUS, CMS.....)
- ☐ Fruitful results at high energy but rare results at low energy.
- \square Many results by $\pi^{\pm}\pi^{\pm}$ pairs but few by $\pi^{0}\pi^{0}$ pairs

Experiment	\sqrt{s} (GeV)	r (fm)	λ	Exp. type
MARK II	29	0.97 ± 0.11	0.27 ± 0.04	e^+e^-
AMY	58	0.58 ± 0.06	$0.39 {\pm} 0.05$	e^+e^-
OPAL	91	0.79 ± 0.02	$0.85 {\pm} 0.01$	e^+e^-
NA22	21.7	0.83 ± 0.06	$0.33 {\pm} 0.02$	π^+ p
\mathbf{ZEUS}	10.5		0.43 ± 0.09	ep
CMS	900	I	0.63 ± 0.02	pp
CMS	2360		0.66 ± 0.07	pp
ATLAS	13000	2.12 ± 0.08	1.00 ± 0.08	pp p

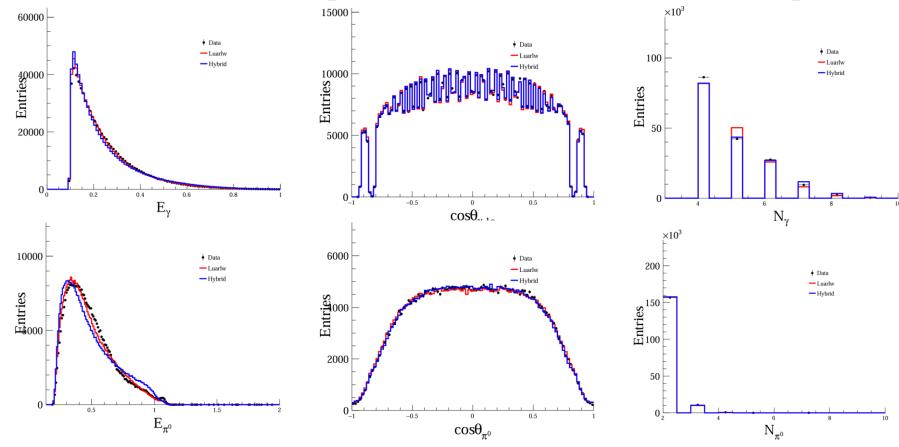
Experiment	, , ,	, ,		Exp. type
L3	91	0.31±0.10	0.16 ± 0.09 0.55 ± 0.15	e ⁺ e ⁻
OPAL	91	0.59±0.11	0.55 ± 0.15	e^+e^-

Results of $\pi^{\pm}\pi^{\pm}$ pairs

Results of $\pi^0\pi^0$ pairs

- ✓ BESIII fill the gap at few GeV region based on the R-scan data from 2.0-3.08 GeV (large primary idenctical $\pi\pi$ pair statistics)
- ✓ Preliminary results: by $\pi^{\pm}\pi^{\pm}$ pairs (Participate)
- \square On going: by $\pi^0\pi^0$ pairs (working on)

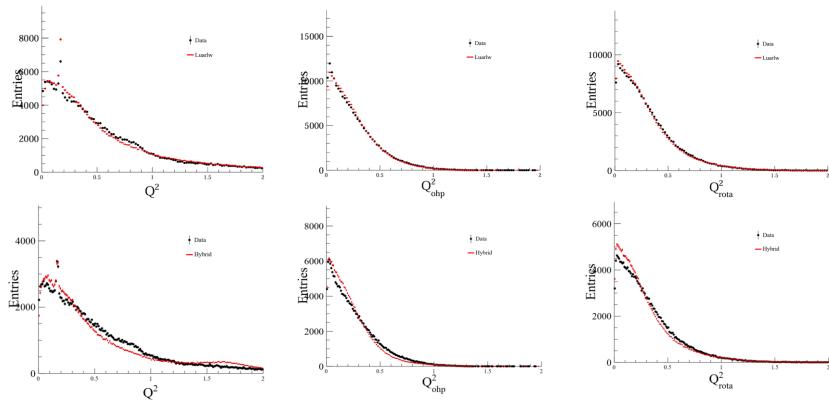
- □ Data Sets: \sqrt{s} =2.125, 2.396, 2.645, 2.900, 3.080 GeV, total luminosity: ~500 pb⁻¹,
- ☐ Two kinds of hadron MC samples used for analysis: Hybrid and Luarlw
- Good charged tracks
 - $|\cos\theta| < 0.93$


•
$$|\cos\theta| < 0.93$$

• $V_r < 0.5 \text{ cm}, |V_z| < 5 \text{ cm}$
• $p/p_{\text{beam}} < 0.94, p_{\text{beam}} \text{ is beam momentum}$
• $\chi_{\text{prob}} = \left(\left|\frac{dE}{dx_{\text{measured}}} - \frac{dE}{dx_{\text{proton}}}\right|\right)/\sigma_{\text{proton}} > 10$
• $N_{\text{cost}} > 0$

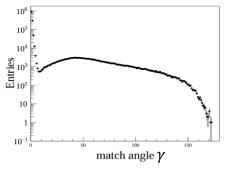
- $N_{\rm good} > 0$
- Good photons:
 - EMC time: 0<t<700 ns
 - $|\cos\theta_{\nu}| < 0.8, E_{\nu} > 25 \text{ MeV for barrel}$ $|\cos\theta_{\nu}| \in (0.86,0.92), E_{\nu} > 50 \text{ MeV for end cap}$
 - $N_{\nu} \geq 4$

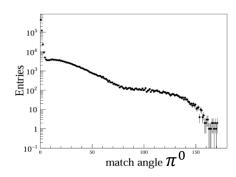
- Veto Bhabha and Di-gamma:
 - Choose the two largest showers in EMC


- $\succ \pi^0$ reconstruction
 - All pairs of photons used to reconstruct π^0 list. For each π^0 : $m_{\pi^0} \in [120,150]$ MeV
 - 1C kinematic fit applied to each $\pi 0$.
 - Finding the largest π^0 subset without repeating photon and minimum $\sum \chi_{1c}^2$
 - $N_{\pi^0} \geq 2$

 \triangleright Distributions of π^0 samples at $\sqrt{s} = 2.396$ GeV as an example

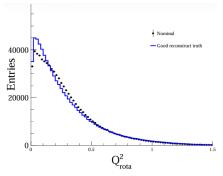
- \square First row is distributions correlated to γ , and second row is π^0 's.
- Black dots are data, blue dots are Hybrid and red dots are Luarlw.

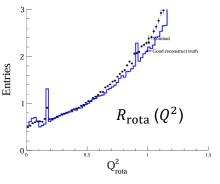

\triangleright Distributions of Q^2

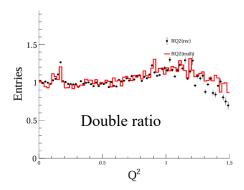


- ☐ First row is distributions of Luarlw, and second row is Hybrid.
- Luarlw could better describe the data.
- ☐ Distinction between data and MC near 0.8.

Study of fake π^0

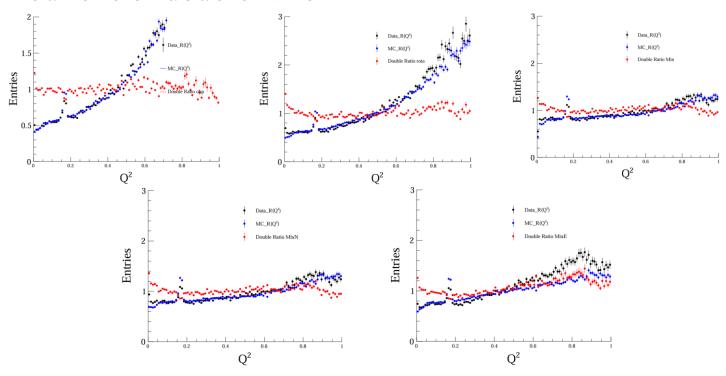

\succ Match of π^0 and photons





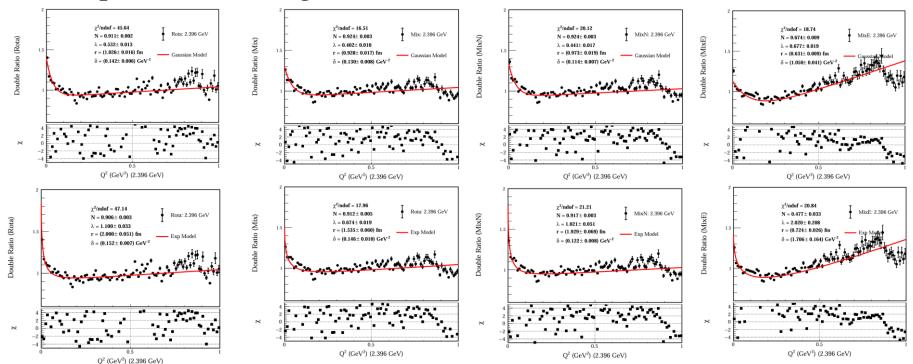
- $R_{\pi_{\text{fake}}^0} = 10\%$, $R_{\gamma_{\text{fake}}} = 12.6\%$, here the "fake" means the truth match angle is larger than 20°
- Mainly caused by the fake photon by charged tracks and difficult to exclude.

Check the effect of fake π^0



- First two pictures: black dots are detector level and blue dots are truth level.
- Third picture: double ratio is got by the two MC. Red is from truth and black is got from detector level.
- Great effect to Q^2 and $R(Q^2)$ distribution, but little to the double ratio.

BEC parameter yield


> Distributions of double ratio

- Peak near 0.18 is caused by the $K_s \to \pi^0 \pi^0$.
- □ Obvious BEC effect can be observed.
- ☐ Unmatch of double ratio when Q2 comes up.

BEC parameter yield

> BEC parameter fitting

- Poor description by fitting results to data by both model
- \square Mainly caused by Q^2 description.
- MC tuning is needed

Summary of BEC

> Summary of BEC

- ✓ Feasibility study has been performed at 2.396 GeV and obvious BEC effect is observed.
- \checkmark Effect of fake π^0 has been checked.

Five Ref. samples have been checked and BEC parameters have been extracted with Rota

and MIX samples.

Channel	Events	Ratio
$\pi^{+}\pi^{-}2\pi^{0}$	94707	30.0%
$\pi^{+}\pi^{-}3\pi^{0}$	43493	13.8%
$\pi^{+}\pi^{-}4\pi^{0}$	23090	5.7%
$\pi^{+}\pi^{-}5\pi^{0}$	17990	1.2%
$2\pi^{+}2\pi^{-}2\pi^{0}$	38970	12.3%
$2\pi^{+}2\pi^{-}3\pi^{0}$	16283	5.1%
$2\pi^{+}2\pi^{-}4\pi^{0}$	9406	3.0%
$\mathcal{K}^{\pm}\pi^{\mp}3\pi^{0}$	7886	2.3%
$\pi^+\pi^-2\pi^0\eta(\eta\to\gamma\gamma)$	6040	1.9%
Sum over	257868	81.6%

- \square Q²distributions of MC couldn't describe data well, MC will be tunned exclusively.
- \square Check the dependences on K_T , which is meaningful for the electron-positron collider.
- Systematic uncertainty and so on.

Summary and prospects

- ✓ Cross section measurement of $e^+e^- \to K^+K^-$ via initial state radiation technique has been completed and memo is being reviewed.
- Study of two-particle Bose-Einstein Correlations just started but has been reported at the BESIII collaboration meeting.
 - MC tuning will be performed.
 - Dependence of K^T or other observable will be studied.
 - More energy points will be used in this analysis
 - Systematic uncertainties will be studied.

Back up

Back up: Selection of $K^+K^-\pi^0$

- Good charged tracks:
 - $|\cos\theta| < 0.93$
 - $V_r < 1 \text{ cm}, |V_z| < 10 \text{ cm}$
 - $N_{\text{Good}} = 2$
- Good photons:
 - EMC time: 0<t<700 ns
 - $|cos\theta_{\gamma}| < 0.8, E_{\gamma} > 25$ MeV for barrel $|cos\theta_{\gamma}| \in (0.86, 0.92), E_{\gamma} > 50$ MeV for end cap
 - Angle from the nearest charged track>10°
 - $N_{\gamma} \geq 2$

- $ightharpoonup PID \left(\frac{dE}{dx} + TOF \right)$:
 - $K: \operatorname{prob}(K) > \operatorname{prob}(\pi), \operatorname{prob}(K) > \operatorname{prob}(p)$
 - $N_{K^+} = N_{K^-} = 1$
- > Vertex fit and Kinematic fit
 - Successful Vertex fit by two Kaons
 - 4c kinematic fit and $\chi_{4c}^2 < 60$
 - Looping single good photon to do 4c kinematic fit, choose the combination with minimum $\chi^2_{\nu,min}$
 - $\chi^2_{\gamma,min} > \chi^2_{4c}$
- > Further selection
 - $M_{2\gamma} \in [120,150] \text{ MeV}$

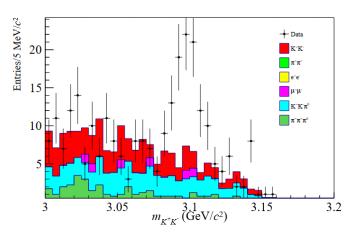
Back up: $J/\psi \rightarrow K^+K^-$

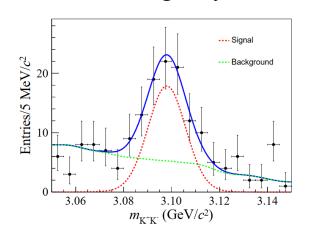
Cross section for ISR production of a narrow resonance (vector meson V), such as J/ψ , decaying in the final state f can be calculated by:

Mod. Phys. Lett. A 14, 2605(1999)

$$\sigma(s) = \frac{12\pi^2\Gamma(V \to e^+e^-)\mathcal{B}(V \to f)}{m_V s}W(s, x_0)$$

- $\Gamma(V \to e^+e^-)$: electronic width of the vector meson V
- m_V : mass of the vector meson V
- $x_0 = 1 m_V^2/s$
- $\mathcal{B}(V \to f)$: branching fraction of V to final state f
- $W(s,x_0)$: probability function for ISR photon emission
- Value of the $\Gamma(V \to e^+e^-)\mathcal{B}(V \to f)$ can be determined by measuring the cross section, then $\mathcal{B}(V \to f)$ can be obtained
- \blacktriangleright Experimentally, cross section of the process $e^+e^- \rightarrow \gamma^{\rm ISR} J/\psi \rightarrow \gamma^{\rm ISR} K^+K^-$ is:

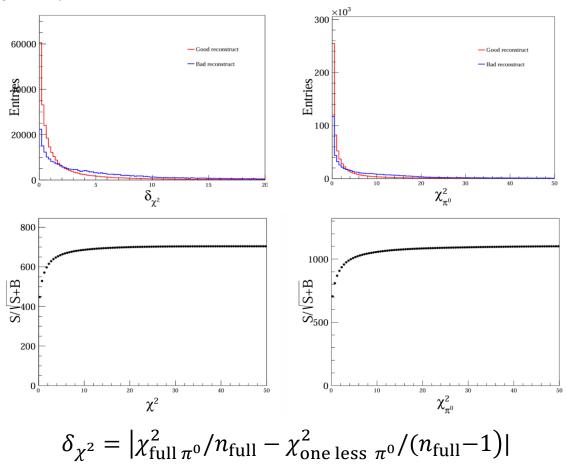

$$\sigma(s) = \frac{N_{J/\psi}}{\varepsilon \cdot \mathcal{L}}$$


- $N_{I/\psi}$: number of J/ψ events
- ε: detection efficiency estimated by 1M MC
- \mathcal{L} : luminosity of data, $\mathcal{L} = 3.1945$ fb

 $e^+e^- \rightarrow \gamma^{\rm ISR} J/\psi$ is generated by VECTORISR; $J/\psi \rightarrow K^+K^-$ is generated by VSS

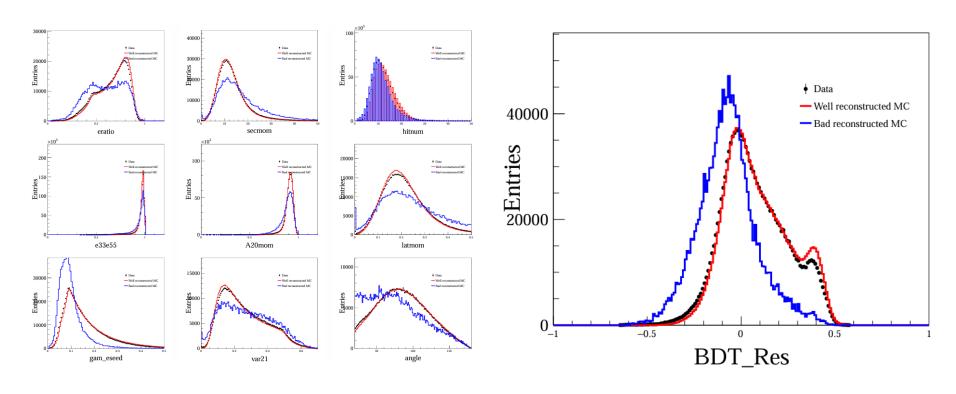
Back up: $J/\psi \rightarrow K^+K^-$

➤ An unbinned maximum likelihood fit used to extract signal yield:


- Total fit= signal model⊗Gaussain+combined background model
- Summary of cross section of $e^+e^- \rightarrow \gamma^{ISR}J/\psi \rightarrow \gamma^{ISR}K^+K^-$:

\sqrt{s} (GeV)	$N_{J/\psi}$	ϵ	$W(s,x_0)$	$\Gamma(J/\psi \to e^+e^-)$ (keV)	$\mathcal{B}(J/\psi \to K^+K^-)$
3.773	71.1±12.7	1.4%	0.171	5.529±0.106	$(2.57 \pm 0.46) \times 10^{-4}$

• PDG: $(2.86 \pm 0.21) \times 10^{-4}$


Back up: efforts to suppress the fake π^0

>Kinematic fit:

Back up: efforts to suppress the fake π^0

➤BDT:

