

BSO for electromagnetic calorimeter R&D on STCF

Rui Sun

University of Science and Technology of China

Supervisor: Haiping Peng

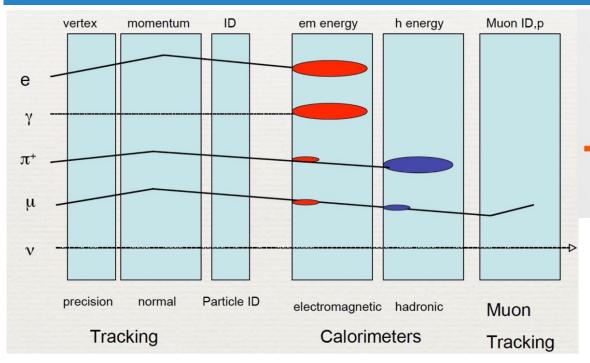
Thesis Proposal Talk

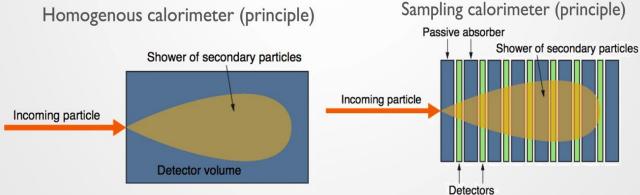
2025.10.14

- **□** Introduction
 - > Electromagnetic calorimeter
- ☐ Super Tau-Charm Facility
 - > Accelerator
 - > Physics
 - Detector

- **□** BSO Research
 - ➤ Challenges in EMC design and operation
 - > Selection of crystals
 - > BSO properties
 - > EMC design
 - ➤ BSO Performance Test
- ☐ Summary and Prospects

Outline 2 / 25


- **□** Introduction
 - > Electromagnetic calorimeter
- ☐ Super Tau-Charm Facility
 - > Accelerator
 - > Physics
 - > Detector


- ☐ BSO Research
 - > Challenges in EMC design and operation
 - > Selection of crystals
 - > BSO properties
 - > EMC design
 - ➤ BSO Performance Test
- ☐ Summary and Prospects

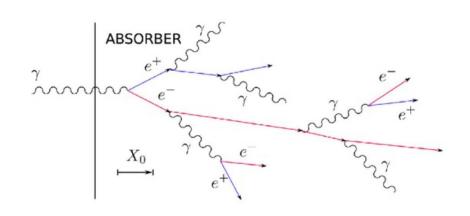
Outline 3 / 25

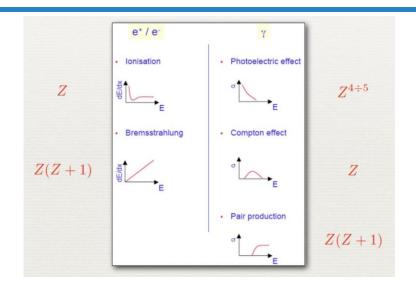
Calorimeter Features

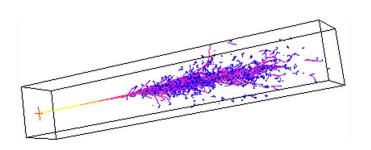
- **□** Sampling Calorimeter
 - Sensitive layers and absorber layers are separated
- ☐ Total-Absorption Calorimeter
 - Sensitive medium is identical to the absorber medium
 - Excellent energy resolution

My topic : EM calorimeter on STCF EM calorimeter

Hadron calorimeter


Sampling Calorimeter


Total Absorption


Calorimeter

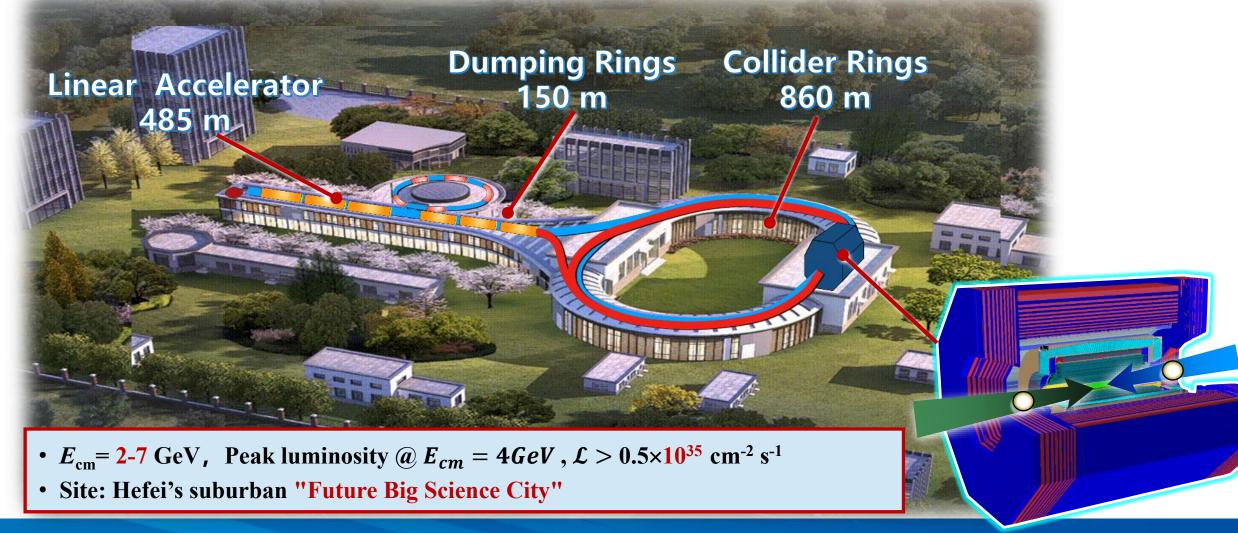
EM Calorimeter Overview

- ➤ Particle interacts with matter (via pair production and bremsstrahlung), generating electromagnetic showers and depositing energy in the calorimeter.
- The calorimeter converts this deposited energy into measurable forms such as charge or light, with the resulting signal being proportional to the energy of the incident particle.

The energy resolution of an EM calorimeter can generally be expressed as:

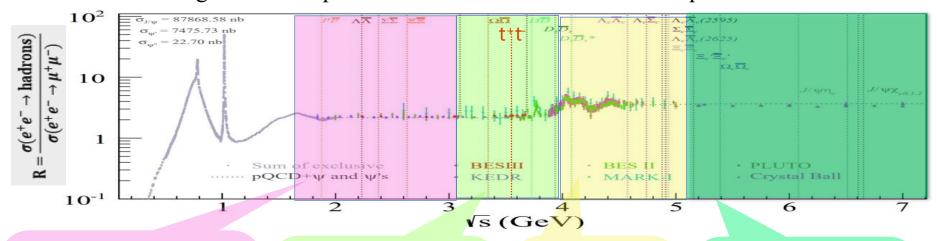
$$rac{\sigma_E}{E} = rac{a}{\sqrt{E}} \oplus rac{b}{E} \oplus c.$$

- $\Rightarrow \frac{a}{\sqrt{E}}$ is the **random term**, related to fluctuations in the shower development and signal conversion processes
- $\geq \frac{b}{E}$ is the **noise term**, primarily contributed by electronic noise
- > c is the **constant term**, independent of the particle's energy, contributed by factors such as non-uniformity of response, calibration errors, and energy leakage



- ☐ Introduction
 - > Electromagnetic calorimeter
- **□** Super Tau-Charm Facility
 - > Accelerator
 - > Physics
 - > Detector

- ☐ BSO Research
 - > Challenges in EMC design and operation
 - > Selection of crystals
 - > BSO properties
 - > EMC design
 - ➤ BSO Performance Test
- ☐ Summary and Prospects



Accelerator 8 / 25

Overview of τ -charm physics

- > Transition region between perturbative and non-perturbative QCD
- Rich resonance structure
- Production of low-background tau leptons and charmed hadrons near their production thresholds.

- Nucleon/Hadron form factors
- •Y(2175) resonance
- Mutltiquark states with s quark
- MLLA/LPHD and QCD sum rule predictions

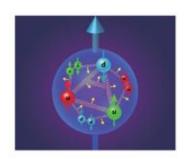
- LH spectroscopy
- •Gluonic and exotic
- LFV and CPV
- Rare/forbidden decays
- •Physics with τ lepton

- XYZ particles
- Physics with D mesons
- f_D and f_{Ds}
- D_0 D_0 mixing
- Charm baryons

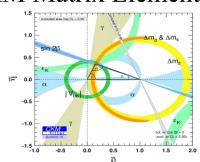
- Di-charmonium state
- New XYZ particle
- •Hidden-charm pentaquark
- Multiquark state
- Charm baryons
- Hadron fragmentation

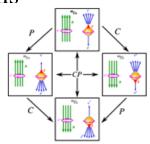
Physics 9 / 2

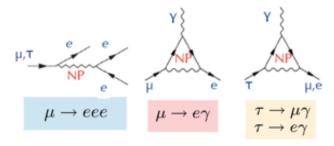
Physics objectives of STCF

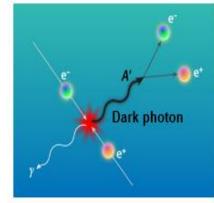


High Statistics, High Precision, Low Background data

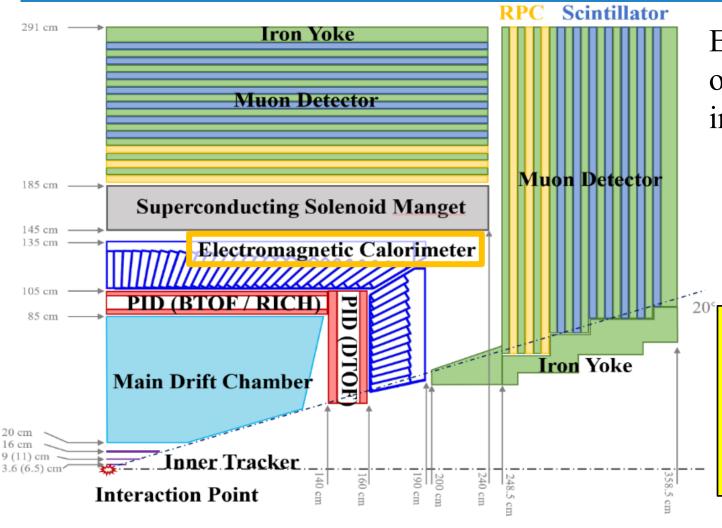

- QCD and Hadron structure
 - Search for Exotic Hadrons


■ Hadron Structure Studies


- > Flavor Physics and CP Violation
 - ☐ Precision Measurements of the CKM Matrix Elements


☐ CP Violation in Leptons and Baryons

- > New Physics Searches
 - Lepton Flavor Violation


☐ Dark Photon Searches

Physics 10 / 25

Electromagnetic Calorimeter : obtaining neutral particle information $(\gamma, n, \bar{n}, K_L)$

- ➤ 4-momentum of photon
- ➤ Neutral particle identification
- > Neutral event timing
- >

Electromagnetic Calorimeter

E range: 0.025 - 2GeV

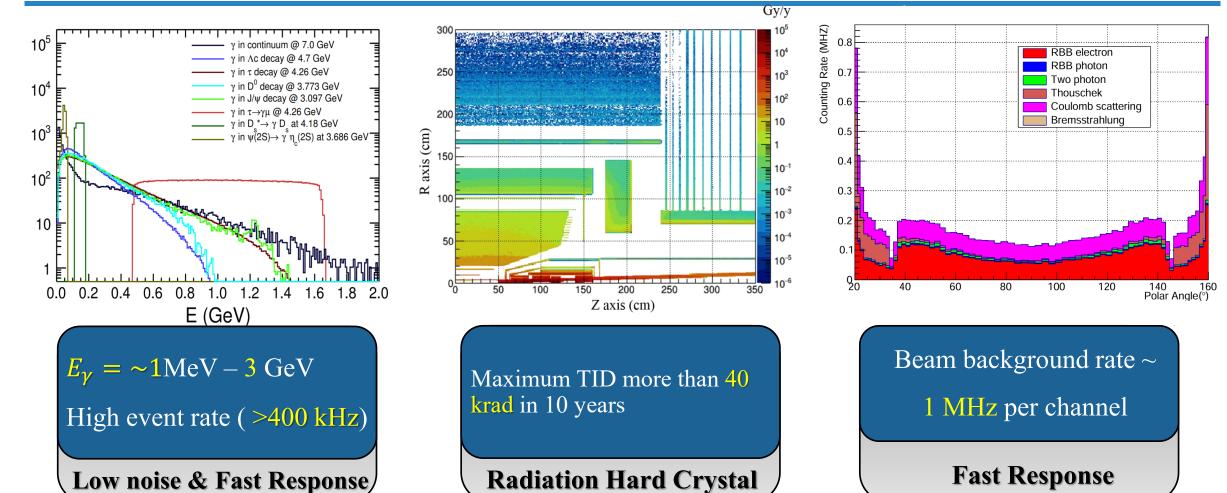
Barrel: $\sigma_E/E=2.5\%$; Endcap: $\sigma_E/E=4.0\%$

Time Resolution: ~300ps

Position Resolution: ~5mm

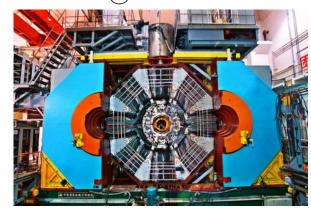
Detector 11 / 2

- ☐ Introduction
 - > Electromagnetic calorimeter
- ☐ Super Tau-Charm Facility
 - > Accelerator
 - > Physics
 - > Detector

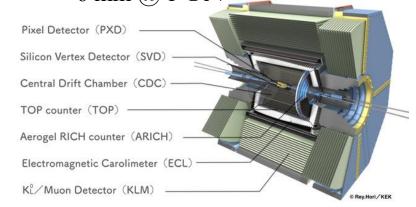

□ BSO Research

- > Challenges in EMC design and operation
- > Selection of crystals
- **BSO** properties
- > EMC design
- **BSO Performance Test**
- ☐ Summary and Prospects

BSO Research 12 / 25



Crystal calorimeter

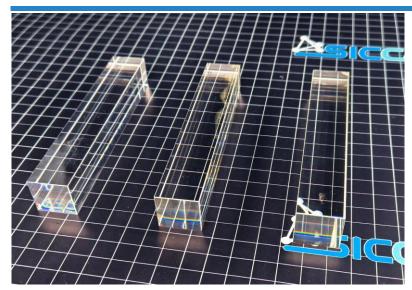


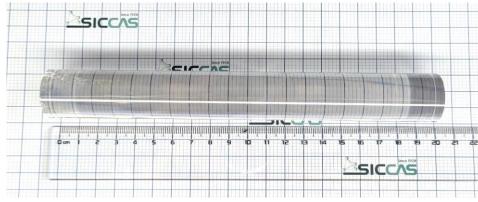
Crystal calorimeters, known for their excellent energy resolution and superior radiation resistance, are a vital choice for electromagnetic calorimeters.

- ➤ BESIII Calorimeter (CsI(Tl) Full-Absorption Type)
 - Energy Range: 20 MeV 2 GeV
 - Energy Resolution:
 Better than 2.5% @ 1 GeV
 - Position Resolution:
 6 mm @ 1 GeV

- ➤ BELLE Calorimeter (CsI(Tl) Full-Absorption Type)
 - Energy Range: 20 MeV 8 GeV
 - Energy Resolution: Better than 2% @ 1 GeV
 - Position Resolution:
 6 mm @ 1 GeV

- ➤ Babar Calorimeter (CsI(Tl) Full-Absorption Type)
 - Energy Range: 15 MeV 8 GeV
 - Energy Resolution: Better than 3% @ 1 GeV
 - Angular Resolution:
 4.16 mrad @ 1 GeV


Selection of Crystal Calorimeters for High-Luminosity Experiments



Crystal	CsI:TI	Csl	BaF ₂	BGO	BSO	LYSO:Ce	PWO/PWO:Y
Density (g/cm ³)	4.51	4.51	4.89	7.13	6.8	7.40	8.3
Melting Point (°C)	621	621	1280	1050	1030	2050	1123
Radiation Length (cm)	1.86	1.86	2.03	1.12	1.15	1.14	0.89
Molière Radius (cm)	3.57	3.57	3.10	2.23	2.33	2.07	2.00
Interaction Length (cm)	39.3	39.3	30.7	22.8	23.4	20.9	20.7
Refractive Index	1.79	1.95	1.50	2.15	2.68	1.82	2.20
Hygroscopicity	Slight	Slight	No	No	No	No	No
Emission Peak (nm)	550	310	300, 220	480	470	402	425, 420
Decay Time (ns)	1220	30, 6	650, 0.9	300	100	40	30,10
Light Yield (ph/MeV)	63,000	1,400 420	13,680 1,560	8,000	2000	32,000	114 40
Temperature Coefficient (%/°C)	0.4	-1.4	-1.9, 0.1	-0.9	1	-0.2	-2.5
Applications in High- Energy Physics Experiments	BaBar BELLE BES III	KTeV, Mu2e, BELLE	TAPS Mu2e-II	L3,EGG, EIC, CEPC,FCC-ee	EIC,CEPC, FCC-ee	COMET, CMS, PIONEER	CMS, ALICE, PANDA, EIC, FCC-ee

BSO properties

Developed by SICCAS, about 20cm length

Decay constant

$$\succ \tau_1 = 2.4ns (6\%)$$

$$\succ \tau_2 = 26ns \ (12\%)$$

$$> \tau_3 = 99ns (82\%)$$

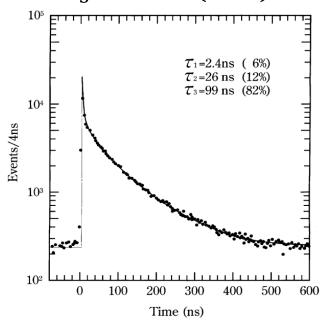
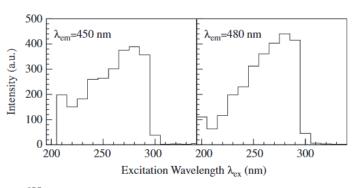



Fig. 8. Luminescence decay time spectrum of BSO.

Luminescence spectrum

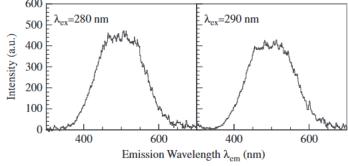


Fig : Each of the upper panels shows an excitation spectrum at an emission wavelength of 450 nm (left) and 480 nm (right), respectively. The lower panels show emission spectra at an excitation wavelength of 280 nm (left)and 290 nm (right).

BSO properties 16 / 25

Crystal	Csl	BSO
Density (g/cm³)	4.51	6.8
Melting Point (°C)	621	1030
Radiation Length (cm)	1.86	1.15
Molière Radius (cm)	3.57	2.33
Interaction Length (cm)	39.3	23.4
Refractive Index	1.95	2.68
Hygroscopicity	Slight	No
Emission Peak (nm)	310	470
Decay Time (ns)	30, 6	100
Light Yield (ph/MeV)	1,400 420	2000
Temperature Coefficient (%/°C)	-1.4	1
Applications in High- Energy Physics Experiments	KTeV, Mu2e, BELLE	EIC,CEPC, FCC-ee

1. Emission Peak

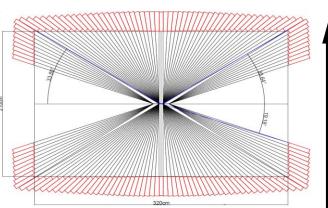
- \triangleright BSO : ~ 470nm (visible)
- ➤ pCsI : ~ 310nm (ultraviolet)

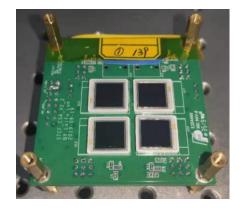
2. Radiation Length and Molière Radius

- ➤ BSO < pCsI, can decrease the crystal size, further improve position resolution
- 3. Cost
 - ➤ Raw materials : Bi₂O₃ and SiO₂ is cheap

4. Mechanical properties

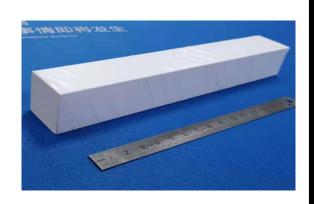
➤ Vickers microhardness of BSO (approximately 7.5 GPa) and its fracture toughness are superior to those of pCsI,

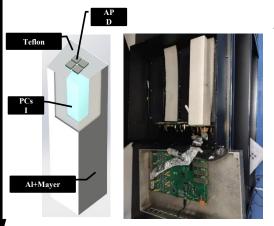

BSO properties 17.


EMC existing design

Compact Geometry

- Non-IP oriented design
- Unit size
 - $15X_0$ length
 - $\circ \sim 1 R_{\mathcal{M}}$ radius




High Q.E. APD & Fast CSA Electronics

- Hamamatsu S8664 APD x4
- Shaping time = 100 ns
- parallel JFET as input stage

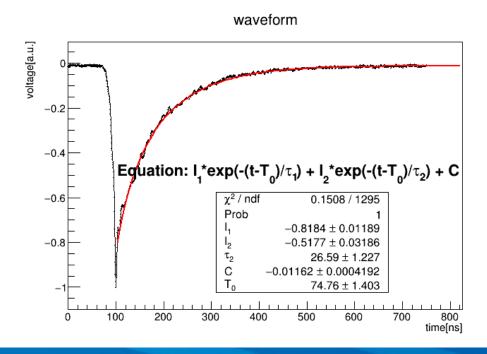
Fast and Radiation Hard Crystal (pCsI)

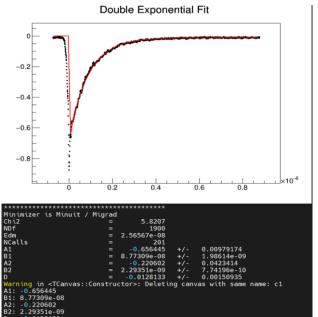
- 30 ns decay time
- Cost-effective
- >10 krad tolerance

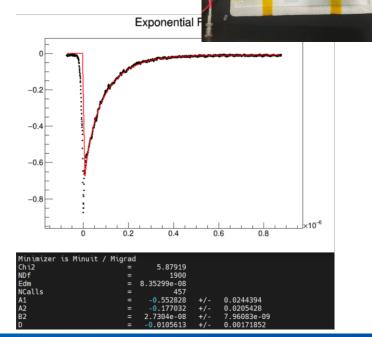
Unit Cosmic Ray Test

- High reflectance Teflon
- L.Y. = 155 p.e./MeV
- Equivalent Noise Energy= 1.2 MeV

EMC design 18 / 25

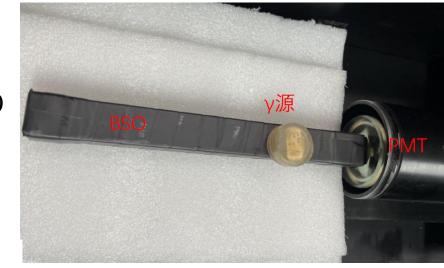

BSO Luminous Component

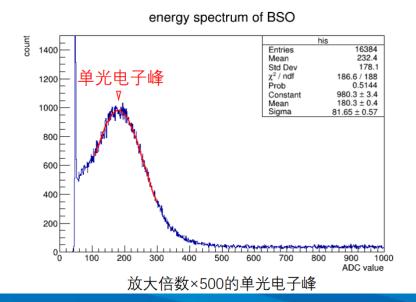


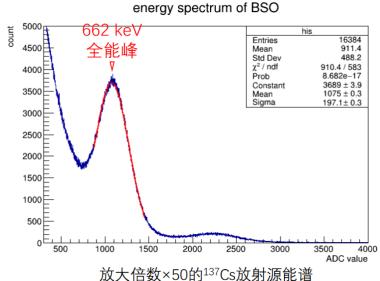

☐ Limited by the number of waveform samples and resolution of PMT, cannot simultaneously fit three

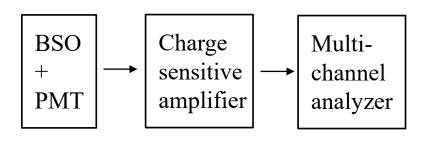
luminous components

■ Next attempt : Single-photon method









- \triangleright Crystal-coupled PMT readout, using a multichannel analyzer to test the energy spectrum of γ radiation sources
- Calculated light output of the BSO crystal is approximately 90 p.e./MeV

- ☐ Introduction
 - > Electromagnetic calorimeter
- ☐ Super Tau-Charm Facility
 - > Accelerator
 - > Physics
 - > Detector

- ☐ BSO Research
 - > Challenges in EMC design and operation
 - > Selection of crystals
 - > BSO properties
 - > EMC design
 - ➤ BSO Performance Test
- **□** Summary and Prospects

- ✓ Introduce the fundamental principles and selection strategies of EMC
- ✓ Demonstrate the unique properties of BSO
- ✓ A simple measurement was conducted on the physical properties of BSO.
- Next step of research :
 - > Software:
 - ☐ Geometric construction based on OSCAR
 - BSO simulation using Geant4
 - EMC simulation based on OSCAR
 - > Hardware:
 - Basic properties of BSO (e.g. light output)
 - Detection system building

Finished: Preliminary measurements of luminescence decay time and light output

Software:

- ➤ 2025.10-2025.11 Complete the geometric construction of BSO under OSCAR
- ➤ 2025.11-2026.04 Simulate energy deposition in a single or a few crystals, analyzing energy and position resolution by using Geant4
- ➤ 2026.04-2026.09 Simulate a large number of electron/positron collision events under OSCAR to test the performance of BSO.

Hardware:

- ➤ 2025.10-2025.12 Preliminary Measurement of BSO Properties
- ➤ 2025.12-2026.06 Construct the detection system and measure BSO's physical properties
- ➤ 2026.06-2026.09 Write paper about BSO properties test, prepare articles for publication

2026.09-2027.03 Write the graduation thesis and prepare for thesis oral defense

Thank you!

Back up