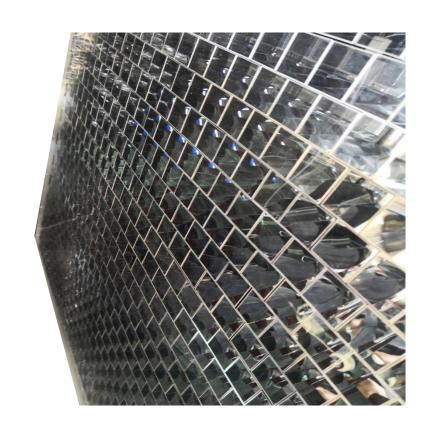


宇宙线地面探测技术发展探讨

曹臻 2022-8-7

中国科学院高能物理研究所四川天府新区宇宙线研究中心



报告内容

・探测器概况

・未来发展探讨

・小结

两类地面探测器阵列和水下C-光探测器装置

成像大气切伦科夫望远镜

• H.E.S.S., MAGIC, VERITAS, CTA

甚高能: >0.1TeV

3-5° 视场

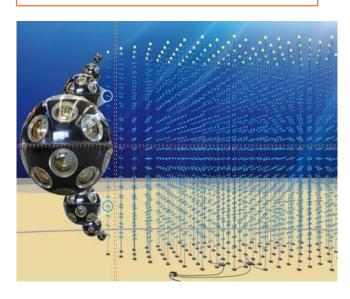
15% 有效观测时间

0.06°-0.17° 空间分辨 | 图科学院高能物理研究所

广延大气簇射阵列

Tibet As-γ, Auger, HAWC, LHAASO

甚高能: >0.1TeV

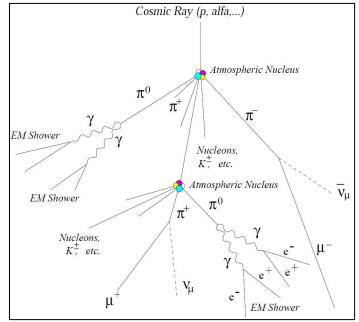

超高能: >0.1PeV

大视场, 100% 有效观测时间

0.1°-1°空间分辨

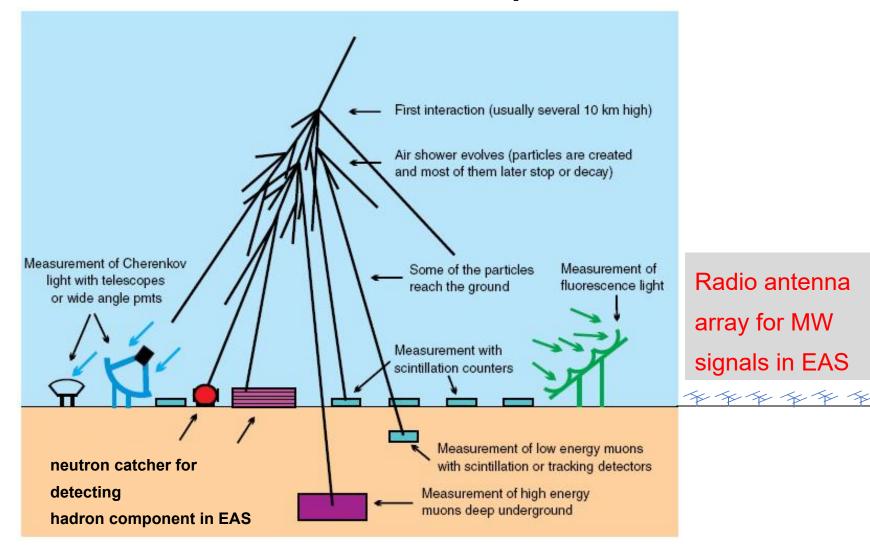
水下中微子望远镜

KM3NeT, GVD, IceCube


能量范围: 10GeV -- PeV

角分辨率: >0.30

大视场, 100% 有效观测时间



Particles in EAS:

- hadron
- µ
- neutrino
- e[±]
- \
- Fluorescence
- Cherenkov light

CR detection techniques

探测器的主要构成

探测介质


纯水

大气

各类闪烁体

RPC、冰

.

光敏探头

传统打拿极PMT

微通道PMT

SiPM

.

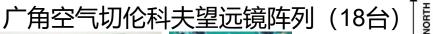
信息输出

电荷

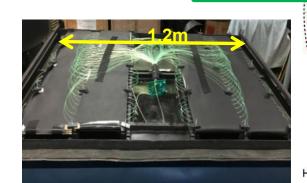
到达时间

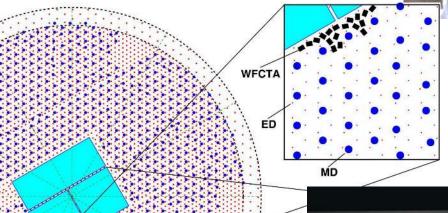
波形

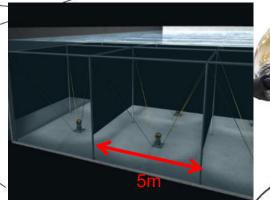
脉冲个数



LHAASO探测器


PMT: 1.5"

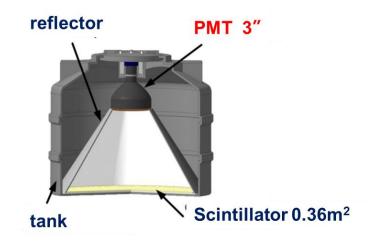



SiPM Winston cone像素

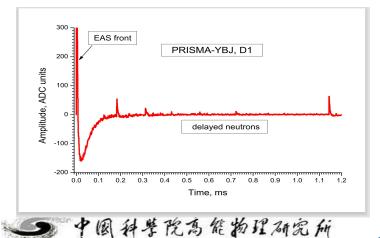
闪烁计数器阵列

水切伦科夫 缪子探测器阵列 (1188个)

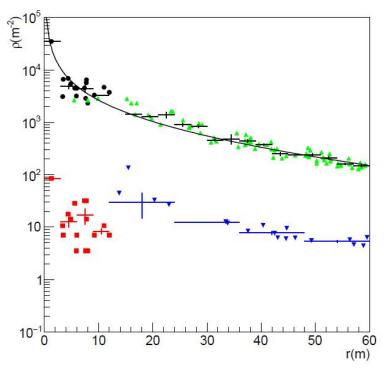
(3120个单元)



(5216个) 中国科学院高能物理研究所



ENDA:探测宇宙线簇射中的强子在地下产生的热中子以及 簇射在近芯区的电子。


• 16台探测器组成的ENDA-16正在LHAASO运行测试

ENDA将有助于LHAASO提高宇宙线成份区分能力,从而得到高精度膝区宇宙线分成份能谱。

混合探测多种次级粒子的横向分布

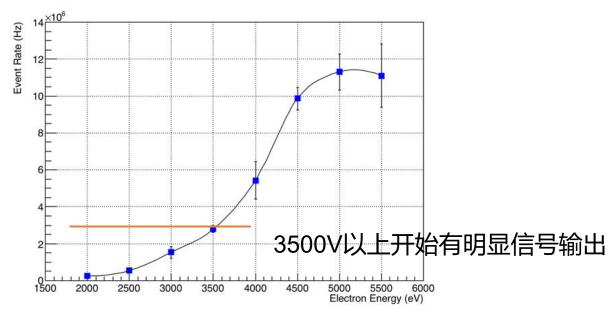
- neutrons by ENDA.
- ▼ muons By KM2A-MD.
- electrons by ENDA.
- ▲ electrons by KM2A-ED.
- NKG function fitting of electrons.

LHAASO主要的四种探测器性能

探测器类型	WCDA 水切伦科夫探测器阵列	KM2A 电磁粒子探测器阵列 缪子探测器阵列	WFCTA 广角切伦科夫望远镜阵列
主要探测对象	光子、电子、µ子	电子、µ子	大气切伦科夫光
关注的物理过程	簇射横向	簇射横向	簇射纵向
主要物理目标	伽玛天文	伽玛天文	宇宙线
主要研究对象	河外源	河内源	宇宙线能谱
主要工作能区	0.1-50 TeV	10-1000 TeV	100 TeV-1 EeV
光敏探头	8in、20in和1.5in、3in PMT 共计6240个 3120个单元	1.5in和 8in PMT 约6400个 5216 ED, 1188 MD	18台望远镜 每台1024个像素,近2万个 SiPM
探测介质	纯水	超级纯净水、塑料闪烁体	大气
空间分布	78000平米	15米、30米间距	

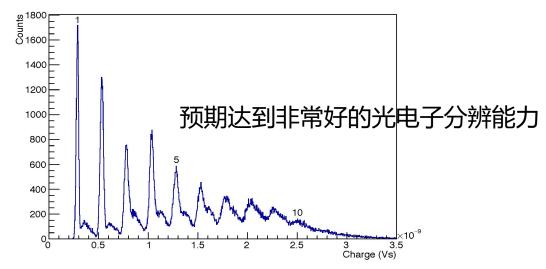
未来探测器光敏器件发展的两个方向

·采用8英寸--20英寸的PMT,单元探测器上可以接收更多的光信号 比如在LHAASO-WCDA上布置了20英寸国产化MCP-PMT


· 应用硅光电倍增管 (SiPM, silicon photomultiplier) 组成的相机在LHAASO-WFCTA上,成倍的增加了有效观测时间

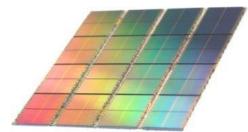
20英寸PMT的进一步发展

拟采用无窗SiPM代替原有倍增极

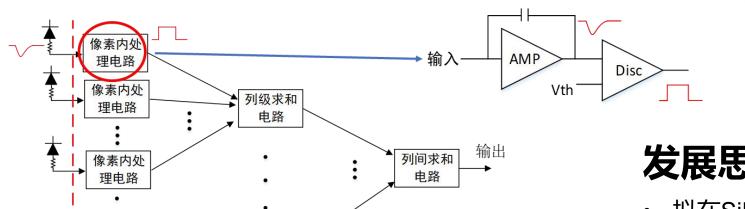

- 性能一致性更好
- 时间性能更好
- 抗磁性能更强

PMT高压和增益的关系

已在20英寸PMT成功内置15mm*15mm的SiPM


直接波形数字化读出的新型Digital-SiPM的研发

在SiPM上,直接进行像素级的0/1输出,并进行叠加


- 采用数字化读出ASIC方案,顺应电子学集成化发展
- 低功耗、高集成化,稳定性和传输速度提高

列级求和

解决因耦合电容过大,信号过宽的问题

尽可能前置的 **Digitization** 布局: 诸多优点!

发展思路:

- 拟在SiPM (50um*50um, 120*120), 直接键合读出电子学芯片,作为一个整 体,直接输出数字化波形(时钟>=200MHz)
- 高能所、中科大和北师大的合作团队。

像素内处

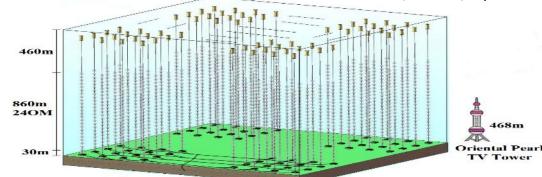
未来应用场景:

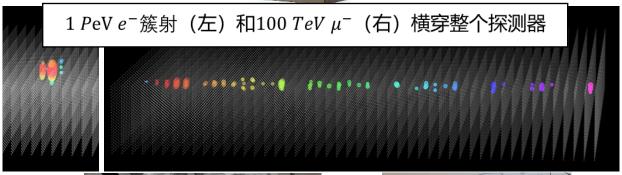
口 深水中微子望远镜

□ 南天 "LHAASO" ——SWGO

口 大型空气Cherenkov望远镜——LACT

口 其他应用


超级中微子望远镜


6公里边长,30立方公里

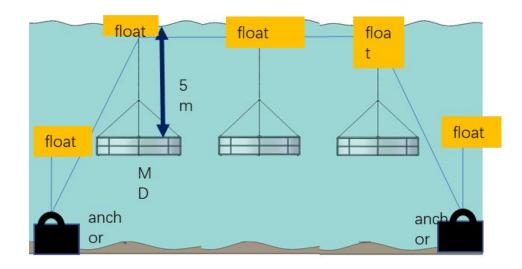
- 瞄准百TeV以上的中微子**单源**灵敏观测
- 结合LHAASO发现的大量的河内PeV伽马光 子源,有望解决宇宙线起源的最后一块拼图。

三大技术发展方向:

- 1,基于GPU的探测器模拟工作,对Geant4过程产生的光学光子进行追踪。
 - 有望提高模拟速度40倍!
- 2,发展更大的光学模组。
 - 采用国产化20英寸PMT
 - 国产化的23英寸玻璃舱
- 3,发展大阵列的时间刻度系统
 - 在光学模组内布置LED阵列
 - 在水体内布置大功率激光装置

17英寸玻 璃舱进行 20MPa耐 压试验

SWGO项目的新探测器研发


将LHAASO-KM2A的成功推广到南半球,在更具重要 发现潜力的南天区开展甚/超高能伽玛射线巡天扫描。

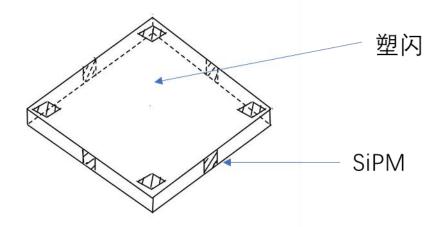
发展muon探测器:

- 布置在水下!
- 将采用5m水深作为电磁成分的屏蔽层
- 可大规模减少基建工程量!

新型光敏探头:

• 薄膜化 (Digital) SiPM

水下MD超纯水水囊2m小样密封实验



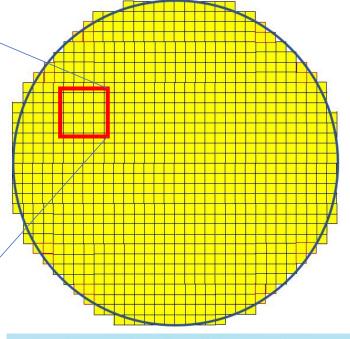
SWGO项目的新探测器研发

电磁粒子单元探测器的主要特点:

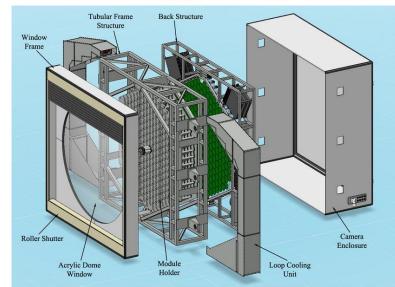
- 水面上布置;
- 光学设计, SiPM读出;
- 太阳能供电。

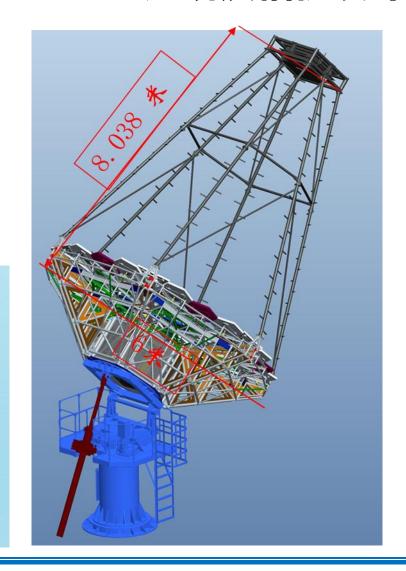
单元探测器的创新点:

拟在闪烁体直接贴合多个SiPM直接读出,无光 传导光纤,极大简化工艺流程。


根据阵列指标要求,ED单元探测器的发展内容:

- 1. 优化闪烁体的面积和厚度;
- 2. 读出端面表面的特殊处理;
- 3. 闪烁体的反射层的选型;
- 4. SiPM和选型、读出位置和动态范围的设计。





LACT 望远镜及相机设计

小结

- 1, LHAASO是观测运行的未来探测器,应用了国际上众多的先进探测技术,在8个能量级上实现了伽马射线和宇宙线的最灵敏观测。
- 2, 依托未来项目需求,将在SiPM,大尺寸PMT等光敏探头有进一步的发展。

3,在未来粒子天体物理实验项目中,将创新性的发展各种探测器及其相关FEE前置化技术。