磁单极子、分数电荷探测

- 关于深空实验的初步讨论

吴雨生

2021.08.23

一页简介

- □ <u>磁单极子</u>、<u>稳定分数电荷粒子</u>等一般被认为可能与基础物理的核心问题相关
 - ▶ 与标准模型电荷量子化相关
 - ▶与宇宙起源早期演化相关(起源、暴涨)
 - ▶ 可以由部分新物理理论预言,例如大统一理论,弦论
- □通常认为这些粒子
 - ▶ 极其稀有(实验寻找结果限制、宇宙学限制等)
 - ▶ 稳定(只带有电磁荷,参与电磁相互作用)

关于磁单极子探测的几页PPT

Where to Find Monopoles

Lightest Monopoles are Stable and pair production (magnetic charge conservation)

Primordial "cosmic" monopole

- Moving freely through outer space
- Accelerated to relativistic speeds by galactic magnetic fields if m < 10¹⁵ GeV

Primordial "stellar" monopole

 Bound in matter before star formation: earth, moon, comet, meteorite

Secondary production

- Inside high-energy cosmic ray
- With high-energy collisions at accelerators

Experiments to look for monopoles:

Cosmic rays

=> limitation: detector size and time of exposure

Bulk matter

=> limitation: sample size

Accelerators

=> limitation: center-of-mass energy

From theory, masses and rates uncertain

Ionization energy loss

Highly ionizing in detector!

For Dirac monopole with $g = g_D$, yield ~1000 larger dE/dx than a MIP with z = 1

Detection: track-etch technique

Passage of highly ionizing particle causes permanent damage in plastic foils

- ⇒ Etching reveals the etch-pit cones, area and height of cones depends on restricted energy loss of the incident particles and of charge Z
- \Rightarrow Can be calibrated with ion beams

Example of cone-height v.s. Z

Detection: extraction method

Strong magnetic field (> 50k G) applied to extract and accelerate monopoles trapped in matter

⇒ Detector telescope measures dE/dx and range

Detection: induction technique

Moving magnetic charge induces electric field

⇒ In combination with a superconducting coil, tiny permanent current occurs and measured

小结

□磁单极子仍未被发现

- ▶除了以上述方法,还有利用核子衰变来探测(GUT MM可以催化稳定 核子如质子衰变)
- ▶ 前面略去了在大型加速器实验上的寻找(和本讨论相关度不太,且质心能量仅 TeV)
- ▶ 亦有宇宙学限制,如Parker Bound等
- ▶ 各类综述文献均有实验限制的总结, 例如PDG2018

Figure 117.1: Upper flux limits for (left) GUT monopoles as a function of β (right) Monopoles as a function of mass for $\beta > 0.05$.

相对而言MM的寻找还有很大空间

MM的信号有特点一般 信噪比好,因而**接受度** 是核心

对于深空探测而言,优 势可能还是月壤就地取 材探测?

关于分数电荷的几页PPT

Potential Sources of FCP

☐ From outside the earth

- ✓ Produced in early universe, lightest ones likely stable, and concentrated on bulk matter
- ✓ Or produced in present universe, travel to earth as cosmic rays
- ✓ Or produced as cosmic rays interact with atmosphere

☐ Produced with Accelerator

- ✓ Pair production of FCPs, e.g. Drell-Yan process
- ✓ Probing mass range limited by C.M.E.
- ✓ Can be searched for with fixtarget, e⁺e⁻ and hadron colliders

Experimental Probes

Particles or bulk-matter samples to be examined

Measure

via classic motion measurement (F = qE); Camera, Laser/CCD (bulk matter)

via ionization energy loss in the detectors (accelerator, cosmic rays)

For both cases, tricky to probe small charges

$$\frac{-dE}{dX} = K z^{2} \frac{Z}{A} \frac{1}{\beta^{2}} \left[\frac{1}{2} \ln \frac{2m_{e} c^{2} \beta^{2} \gamma^{2} T_{max}}{I^{2}} - \beta^{2} - \frac{\delta}{2} - \frac{C}{Z} \right]$$

Experimental Results

MACRO Experiment arXiv:hep-ex/0402006v1

- ❖ FCPs were searched for as lightly ionizing particles, for total run time (1989 2000)
- Streamer tube tracker + Liquid scintillator for FCP searches

Experimental Results

More recent: CDMS-II Underground, Soudan mine in Minnesota, U.S.

Main focus was for WIMP

Low-threshold solid-state detectors in an array to detect very lightly ionizing particles from cosmic rays,

- → Sensitive to 1/200 < q < 1/6e
- → No positive results
- → Upgrade ongoing to SuperCDMS

Bulk Matter in a Nutshell

Method	Material	Sample (mg)	Nucleons
Ferromagnetic levitometer	Steel	3.7	2.4×10^{21}
Ferromagnetic levitometer	Tungsten	3.0	1.4×10^{21}
Ferromagnetic levitometer	Niobium	6.5	4.2×10^{21}
Ferromagnetic levitometer	Meteorite	2.8	1.8×10^{21}
Ferromagnetic levitometer	Seawater solutes	See Reference 39	See Reference 39
Superconducting levitometer	Niobium	1.1	7×10^{20}
Liquid drop	Seawater	0.05	3.2×10^{19}
Liquid drop	Mercury	2.0	1.3×10^{21}
Liquid drop	Silicon oil	17.4	1.1×10^{22}
Liquid drop	Silicon oil	70.1	4.5×10^{22}
Liquid drop	Mineral oil	259	1.7×10^{23}
Liquid drop	Meteorite	3.9	2.51×10^{21}

→100mg

- Two main classes of experiments: Liquid drop; Levitometer
- Both cases need special care of samples, and need high precision system
- Limitation is the sample size / throughput

"One drop in the sea"

Searches in Bulk Matter

Materials often chosen for ease of use w.r.t. experiments:

- Chemical features of FCP+nuclei system unclear
- Used: <u>sea water</u>, <u>silicone oil</u>, <u>mercury</u>, <u>iron</u>, <u>niobium</u>, <u>meteorite</u>

• Might be interesting to do in the future: rocks from comet and Moon, plus many others to be explore?

Searches in Bulk Matter

Some used diamagnetic levitation on a sample consisting of superconducting niobium ball – disadvantage of very limited sample choice;

Ferromagnetic Levitometer

- Magnetic field to levitate the sample of O(0.1mm) diameter
- Oscillating electric field with laser and photodiodes to measure charge
- Sample coated with iron, or iron ball coated with sample
- UV light to remove electrons one-by-one from the sample

Searches in Bulk Matter

Liquid drop experiments

Millikan Oil experiment

DC VOLTAGE

Traditional method need to suspend the old drop and therefore limit the throughput to <<mg

8/23/2021 Y. Wu

小结

- □分数电荷粒子仍未被发现
 - ▶ 前面略去了在大型加速器实验上的寻找(和本讨论相关度不太,且质心能量仅 TeV)

整体情况与MM类似

困难在于低电荷量的探测精度

对于深空探测而言,优势可能还是月壤就地取材探测?

总结

- □<u>磁单极子</u>、<u>稳定分数电荷粒子</u>的探测已有不少结果,特别是宇宙线,以及bulk matter样品方式,但可以探索的空间仍很大
- □下一代实验要超过现有精度,例如更大接受度,或更新技术
- □ 深空探测一个明显可能性在于Bulk matter实验,或许就地取材,利用小型探测器可以长期运行?
- □ 其它:
 - ➤ 例如对MM/FCP在大气中的电磁shower过程研究,是否可以利用 先用大阵列宇宙线观测站,例如LHASSO等来探测。