# Status of the continuous IBF suppression TPC module R&D

#### **Huirong Qi**

Yulian Zhang, Haiyun Wang, Zhiwen Wen, Qun OUYANG, Jian Zhang

Institute of High Energy Physics, CAS April, 11, 2017, USTC, Hefei

# **O**utline

- Physics requirements
- Simulation of the module
- Experiment of the module
- Summary

# CEPC and its beam structure

Circular e<sup>+</sup>e<sup>-</sup> Higgs (Z) factory with two detectors, 1M ZH events in 10yrs  $E_{cm} \approx 240$  GeV, luminosity  $\sim 2 \times 10^{34}$  cm<sup>-2</sup>s<sup>-1</sup>, can also run at the Z-pole

Circumference: ~100km

**Updated on January, 2017** 

|                    | tt   | Н    | W    | Z     |
|--------------------|------|------|------|-------|
| Beam Energy [GeV]  | 175  | 120  | 80   | 45.5  |
| Bunches / beam     | 98   | 555  | 3000 | 65716 |
| Train spacing [us] | 83.5 | 83.5 | 84   | 98.6  |









Layout of CEPC Double Ring

# Compare with ILC beam structure

- In the case of ILD-TPC
  - Bunch-train structure of the ILC beam (one ~1ms train every 200 ms)
  - Bunches time ~554ns
  - Duration of train ~0.73ms
  - Used Gating device
  - Open to close time of Gating: 50μs+0.73ms
  - Shorter working time
- In the case of CEPC-TPC
  - Bunch-train structure of the CEPC beam (one bunch every ~90μs) or partial double ring
  - No Gating device with open and close time
  - Continuous device for ions
  - Long working time



# Critical challenge: Ion Back Flow and Distortion

#### In the case of ILD-TPC

- Distortions by the primary ions at ILD are negligible
- Ions from the amplification will be concentrated in discs of about 1 cm thickness near the readout, and then drift back into the drift volume Shorter working time
- → 3 discs co-exist and distorted the path
  of seed electron
- □ The ions have to be neutralized during the 200 ms period used gating system

#### In the case of CEPC-TPC

- Distortions by the primary ions at CEPC are negligible too
- More than 10000 discs co-exist and distorted the path of seed electron
- □ The ions have to be neutralized during the ~4us period continuously



Amplification ions@ILC



Amplification ions@CEPC

Simulation of IBF

# Requirements of Ion Back Flow

#### Electron:

- □ Drift velocity ~6-8cm/us@200V/cm
- $\square$  Mobility  $\mu \sim 30-40000 \text{ cm}^2/(\text{V.s})$

#### Ion:

- □ Mobility  $\mu \sim 2$  cm<sup>2</sup>/(V.s)
- in a "classical mixture" (Ar/Iso)



Evaluation of track distortions due to space charge effects of positive ions



#### Standard error propagation function

Transverse and



Effective number of primary signal electrons

#### Position resolution of the TPC function

T2K(Ar-CF4-C4H10\_95-3-2\_1T\_1.0atm\_20C)



Simulated the drift velocity @T2K

## **IBF** simulation

- Garfield++/ANSYS to simulate the ions back to drift
  - □ 350LPI/420LPI/500LPI with GEM detector@150V
  - □ Ea is electric field of amplifier of Micromegas





Electric field of amplifier VS Electric field of Drift

Measurement of IBF study

### Test of the new module

#### Supported by 高能所创新基金

- □ Test of GEM+Micromegas module
  - Assembled with the GEM and Bulk-Micromegas
  - □ Active area: 50mm × 50mm
  - □ X-tube ray and X-ray radiation source
  - Simulation using the Garfield
  - □ Ion back flow with the higher X-ray: from 1% to 3%
  - □ Stable operation time: more than 48 hours
  - □ Separated GEM gain: 1~10





Photo of the GEM+Micromegas Module with X-ray



# Energy spectrum@55Fe

Source:  $^{55}$ Fe, Gas mix: Ar(97) + iC<sub>4</sub>H<sub>10</sub>(3)



An example of the 55Fe spectra showing the correspondence between the location of an X-ray absorption and each peak.

## Gain of GEM + MM



- □ Test with Fe-55 X-ray radiation source
  - □ Reach to the higher gain than standard Micromegas with the pre-amplification GEM detector
  - □ Similar Energy resolution as the standard Micromegas
  - □ Increase the operating voltage of GEM detector to enlarge the whole gain

# Discharge and working time



- □ Test with Fe-55 X-ray radiation source
  - Discharge possibility could be mostly reduced than the standard Bulk-Micromegas
  - □ Discharge possibility of hybrid detector could be used at Gain~10000
  - □ To reduce the discharge probability more obvious than standard Micromegas
  - □ At higher gain, the module could keep the longer working time in stable

#### Test of the new module

- □ Test with GEM-MM module
  - New assembled module
  - □ Active area: 100mm × 100mm
  - □ X-tube ray and 55Fe source
  - □ Bulk-Micromegas from Saclay
  - Standard GEM from CERN
  - Additional UV light device
  - □ Avalanche gap of MM:128µm
  - □ Transfer gap: 2mm
  - □ Drift length:2mm~200mm
  - Mesh: 400LPI





Micromegas(Saclay)

**GEM(CERN)** 



Cathode with mesh

**GEM-MM Detector** 

## Gain of GEM-MM module

- Gain of the GEM-MM
  - □ Gain simulation by Garfield++
  - □ Gain test with GEM-MM detector
  - Optimization operation high voltage
  - $\sim$  V<sub>GEM</sub>=240V/V<sub>MM</sub> from 300V to 400V
  - Good fit the value with simulation and measurement
  - □ Gain of GEM: 3~23
  - □ Gain of GEM-MM: 100~10000



Gain with MM at VGEM=240V



Comparison of GEM gain simulation and measurement

## IBF of GEM-MM module

- IBF of the GEM-MM
  - □ Electric field: 100V/cm and 500V/cm
  - □ IBF value comparion
  - $\Box$  Optimization of Et = 100V/cm
  - $\Box$  Ed/Et/Ed=2/1/5
  - $\sim$  V<sub>GEM</sub>=340V and V<sub>mesh</sub>=520V
  - □ Total gain: 3000~4000



Schematic of the Gain with MM



IBF values with the Ed and Et in the GEM-MM detetctot

## IBF test results



|                                  | GEM+MMG<br>420LPI<br>(IHEP)     | 2GEMs + MMG<br>450 LPI<br>( Yale University )        | Micromegas only<br>450 LPI<br>( Yale University ) |
|----------------------------------|---------------------------------|------------------------------------------------------|---------------------------------------------------|
|                                  | ( 11121 )                       | ( raic diliversity )                                 | (0.4 –1.5)%                                       |
| Ion Back Flow                    | 0.1-0.2%<br>Edrift = 0.25 kV/cm | (0.3 - 0.4)%<br>Edrift = 0.4 kV/cm                   | Edrift= (0.1-0.4)<br>kV/cm                        |
| <ga></ga>                        | 4000~5000                       | 2000                                                 | 2000                                              |
| ε-parameter(=IBF*GA)             | 4~5                             | 6~8                                                  | 8~30                                              |
| E –resolution                    | ~16%                            | <12%                                                 | <= 8%                                             |
| Gas Mixture<br>( 2-3 components) | Ar + iC4H10                     | Ne+CO2+N2,<br>Ne+CO2,Ne+CF4,<br>Ne+CO2+CH4           | X + iC4H10<br>(Ar+CF4+iC4H10)                     |
| Sparking ( <sup>241</sup> Am)    | <10 <sup>-8</sup>               | < 3.*10 <sup>-7</sup> (Ne+CO2)<br>(N.Smirnov report) | ~ 10 <sup>-7</sup> (S. Procureur report)          |
| Possible main problem            | Thin frame                      | More FEE channel                                     | #                                                 |
| Goals                            | CEPC TPC                        | ALICE upgrade                                        | #                                                 |
|                                  |                                 |                                                      | - 18 -                                            |

# Why UV light study

- □ IBF measurement methods
  - □ 55Fe radioactive source
  - X tube machine
  - Synchrotron radiation
  - UV light by the photoelectric effect



Photoelectric effect





## UV test of the new module

- ☐ UV lamp measurement
  - New designed and assembled UV test chamber
  - □ Active area: 100mm × 100mm
  - Deuterium lamp and aluminum film
  - Principle of photoelectric effect
  - □ Wave length: 160nm~400nm
  - Fused silica: 99% light <u>trans.@266nm</u>
  - □ Improve the field cage in drift length



Deuterium lamp X2D2 lamp



UV test geometry with GEM-MM



# UV test -first step

- □ UV lamp measurement
  - □ pA current meter from Keithley
  - □ First step test about the current in mesh
  - □ E\_drift: 10~175V/cm
  - □ ~43pA@175V/cm
  - Stable current with UV light
  - □ ~200V/cm@T2K operation gas







Electrons by photoelectric effect with Edrift

Photo of the new module in lab

# UV test - next steps

- In the case of ILD-TPC
  - Bunch-train structure of the ILC beam (one ~1ms train every 200 ms)
- □ In the case of CEPC-TPC
  - Bunch-train structure of the CEPC beam (one bunch every ~90μs) or partial double ring
- Gating and IBF test





Shutter time similar to ILC and CEPC beam structure

# Module design and beam test plan

- Preliminary schedule of the plan
  - □ April ~ October /2017
    - Designed and assembled
    - □ IHEP /KEK
  - □ November /2017
    - □ Test of the modules
    - KEK /IHEP
  - □ January ~ April /2018
    - Optimized the modules
    - □ Application of the beam
  - ☐ June, 2018 (first option)
    - TBD
  - □ November, 2018 (second option)
    - Beam test in two weeks in DESY
    - ~2 persons from KEK and DESY



UV may be considered

# Summary

# Physics requirements for the TPC modules

- Continuous Ion Back Flow due to the continuous beam structure
- Gating device could NOT be used due to the limit time
- □ Ion back flow is the most critical issue for the TPC module at circular colliders

#### Some activities for the module

- IBF simulation of the detector have been started and further simulated.
- □ Some preliminary IBF results of the continuous Ion Backflow suppression detector modules has been analyzed.
- □ The IBF value would be estimated and the reasonable value would be studied.
- R&D work within the some collaboration is starting.

