

核数据重点实验室

The Progress of GEM foil at CIAE

Xiaomei Li

Science and Technology
on Nuclear Data Laboratory
China Institute of Atomic Energy
2015.04 USTC

Outline

The progress of GEM foil at CIAE

Other developments

The Progress of GEM Foil at CIAE

GEM Foil Structure

- Typical GEM Foil has 3 layers, two 5μm thick copper foils and one 50μm thick kapton foil in the middle.
- 2. Diameter of the hole is 70 μ m , and the distance between them is 140 μ m .
- 3. Apply electric voltages on the two copper layers.
- 4. Electric Field is very strong in the hole area, and weak outside the hole area.

GEM Foil

The Procedure of GEM Foil

GEM Photo Mask Plate

The copies of the photo-mask are done by photolithographic techniques. 40cm*40cm photo mask is produced.

Lamination of Dry Film Photoresist

Exposure of Dry Film Photoresist

After First Copper Etching

After First Kapton Etching

After Second Copper Etching

40cm*40cm GEM Foil

New Chemical Reagents

Other Developments

GEM Test system with 据重点实验室

APV25 Electronics

$\sigma_{tot}^{2} = \sigma_{GEM}^{2} + c_{1}\sigma_{geometry}^{2}$ When: $\sigma_{geometry} \ll \sigma_{GEM}$

$$\sigma_{tot}^2 \cong \sigma_{GEM}^2$$

- Slit(um): 20;
- Ar: $CO_2 = 70\% : 30\%$;
- HV: 3600V;
- The distance between strips: 400um;

$$\varepsilon = 19.6\%$$

Spatial resolution

Spatial resolution≈76um

北京市2

直69357787

X-ray imaging @ CIAE

- ●X ray Energy: 8.9KeV;
- •about 1k sample rate
- ●256 channels for each dimension (512 channel in total);
- •4 APV FECs were used (2 for each dimension)

Microbulk Micromegas Fabrication Process

This technology is inspired by the GEM detector fabrication process invented at CERN.

Next Step

New design of 20cm diameter round MicroBulk MicroMegas Prototype: 0.5cm² pad, 512 APV25 electronics

总结与展望

- •在过去一年中,利用Single Mask技术研制出40cm*40cm GEM 膜。
- ·完成GEM探测器APV25电子学测试和成像研究
- •准备进行用自己研发的GEM膜制成GEM探测器并进行测试。降低废品率。如果顺利的话,就可以尝试进行GEM膜小批量生产。
- •利用与GEM膜工艺非常相近的光刻蚀刻技术进行新型微网探测器研制。

感谢核探测器与核电子学国家重点实验室开放基金支持!

Thank You!

