

Unpolarized Fragmentation Functions studies at BESIII

黄麟钦(on behalf of BESIII Collaboration)

(IMP)

碎裂函数和能量关联研讨会

2025.08.09, 兰州

Outline

- **♦** Introduction of Fragmentation Functions
- **◆** Existing studies at BESIII

•
$$e^+e^- \to \pi^0/K_S^0 + X$$

•
$$e^+e^- \rightarrow \eta + X$$

•
$$e^+e^- \rightarrow \pi^{\pm}/K^{\pm} + X$$

Summary

QCD: Confinement and Nucleon structure

♦ Confinement

- Quarks and gluons can not be observed separately.
- They are perpetually confined within hadrons.

Nucleon structure

Spin: how does nucleon spin emerge

Mass: Higgs mechanism gives only a few %

QCD: Hadronization and Fragmentation functions

Theory/phenomenology

♦ Hadronization

- How many particles and how many jets created?
- What fraction of the initial parton momenta do the carry?
- Fragmentation functions (FFs)
- ✓ Describe how quarks or gluons transform into hadrons.

$$D_i^h(z,Q^2)$$
,

- *i*: quark, anti-quark or gluon
- h: hadrons like π^{\pm} , K^{\pm} , p, \bar{p} etc..
- z: energy fraction of hadron. $(z = 2E_h/\sqrt{s} \text{ in } e^+e^-)$
- Q^2 : four momentum transfer in the reaction

Hadronization

- ✓ Probability of a parton to fragment into a specific color-neutral hadron h.
- ✓ Provide a characterization of the non-perturbative aspects of hadronization.

Experiments

Accessing FFs in experiments

$$e^+e^-: s = \sum_q \sigma(e^+e^- \to q\bar{q}) \otimes FF$$

- No PDFs necessary
- Calculations know at NNLO
- Flavor structure not directly accessible

SIDIS:
$$s = \sum_{q} PDF \otimes \sigma(eq \rightarrow e'q') \otimes FF$$

- Depend on unpolarized PDFs
- Flavor structure directly accessible
- FFs and PDFs

$$pp: S = \sum_{q} PDF \otimes PDF \otimes \sigma(q_1q_1 \rightarrow q'_1q'_2) \otimes FF$$

- Depend on unpolarized PDFs
- Leading access to gluon FF
- Parton momenta not directly known
- \bullet e^+e^- experiments is the cleanest laboratory for the fragmentation function studies.
- FFs and PDF: Universal and non-perturbative objects
- Will known FFs are crucial for nucleon structure in ep experiments

Accessing FFs in e^+e^- annihilation

igoplus Experimental observable in e^+e^- annihilation: normalized differential cross-section of the inclusive production of final state hadron "h"

$$\frac{1}{\sigma_{tot}(e^+e^- \to \text{hadrons})} \frac{d\sigma(e^+e^- \to h + X)}{dp_h}$$

• At leading order in α_s , can be interpreted as:

$$\sum e_q^2 [D_q^h(z,Q^2) + [D_{\bar q}^h(z,Q^2)]$$
 Factorization scale (c.m. energies)

World data for π^{\pm}/π^0

Li, Anderle, Xing, Zhao PRD 111, 034030 (2025)

- Precise data for π^{\pm}/π^0 , most of them obtained at very high c.m. energies
- Lack of data at low energy, where BESIII can contribute

World data for K_S^0 and η

- Most of them obtained at very high c.m. energies
- Lack of data at low energy, where BESIII can contribute

Li, Anderle, Xing, Zhao PRD 111, 034030 (2025)

Analysis at BESIII

◆ Normalized differential cross-section:

$$\frac{1}{\sigma_{had}} \frac{d\sigma(e^+e^- \to h + X)}{dp_h} = \frac{N_h}{N_{had}} \frac{1}{\Delta p_h} = \frac{N_h^{obs}}{N_{had}^{obs}} \frac{1}{\Delta p_h} f_h$$

◆ Hadronic events:

- Based on dedicated MC generators development for R-value analysis:
- Luarlw, Hybrid

$\sqrt{s} \; (\mathrm{GeV})$	\mathcal{L} (pb ⁻¹)	$N_{ m had}^{ m tot}$
2.0000	10.074	350298 ± 592
2.2000	13.699	445019 ± 668
2.3960	66.869	1869906 ± 1368
2.6444	33.722	817528 ± 905
2.9000	105.253	2197328 ± 1483
3.0500	14.893	283822 ± 533
3.5000	3.633	62670 ± 251
3.6710	4.628	75253 ± 275

Inclusive production of π^0/K_S^0 @ BESIII

$$\frac{N_h^{obs}}{N_{had}^{obs}} \frac{1}{\Delta p_h} f_h$$

PRL 130, 231901 (2023)

- Theory modes have different initial evolution scales and kinematic requirements on data
- Higher twits effect? Hadron mass effect?

PRD 111, 034030 (2025)

NNLO accuracy, including hadron mass correction at higher-twits effects

Inclusive production of η @ BESIII

lacktriangle Inclusive η @ BESIII

PRL 133, 021901 (2024)

◆ BESIII fit: NNLO+hadron mass correction + high-twist

Inclusive production of π^{\pm}/K^{\pm} @ BESIII

◆ Normalized differential cross section of the inclusive process at 8 c.m. energies from 2.00 to 3.67 GeV <u>arXiv:2502.16084</u>

- Z coverage from 0.13-0.95
- Opportunity to test QCD factorization at low energy scale.

Inclusive production of π^{\pm}/K^{\pm} @ BESIII

- The measured π^{\pm} cross sections are consistent with that of π^{0} .
- The measured K^{\pm} cross sections are systematically higher than that of K_S^0 .
- New global data fit is performed at NNLO under Nonperturbative Physics Collaboration (NPC) framework [PRD110, 114019; PRL132,261903]($\sqrt{s} > 3 \text{ GeV } \& E_h > 0.8 \text{ GeV}$)
- $D_q^{K_S^0} = \frac{1}{2} \left(D_{q'}^{K^+} + D_{q'}^{K^-} \right) (q' = u, d \text{ if } q = d, u)$
- First support for isospin symmetry at <10 GeV in π and K fragmentation processes

Further Measurements @ BESIII

Many results will be ready soon

FFs vs Energy-Energy correlator (EEC)

◆ Energy-weighted two particle angular correlation

BESIII results will ready soon

FFs vs Energy-Energy correlator (EEC)

◆ One point energy correlation

$$\frac{1}{\sqrt{s}} \frac{\sum_{i}^{N} E_{h}}{N_{had}} \frac{1}{\Delta \cos \theta}$$
 Fit to the $\cos \theta$ distribution to extract the a_{2} parameter

$$\langle \mathcal{E}(\vec{n}) \rangle = \frac{\sum_{s} \langle 0 | (\epsilon_{s}^{*} \cdot j^{\dagger}) \, \mathcal{E}(\vec{n}) \, (j \cdot \epsilon_{s}) | 0 \rangle}{\sum_{s} \langle 0 | (\epsilon_{s}^{*} \cdot j^{\dagger}) \, (j \cdot \epsilon_{s}) | 0 \rangle} = \frac{q}{4\pi} \left[1 + \frac{a_{2}}{2} \left(\frac{1}{2} \sin^{2} \theta_{b} - \frac{1}{3} \right) \right] \qquad 3 \geq a_{2} \geq -\frac{3}{2}$$

- Precise knowledge of FFs are important for the understanding of non-perturbative QCD dynamics.
- lacktriangle In e^+e^- annihilation experiments, which serve as the cleanest laboratory for FFs studies, BESIII has provided extensive data at lower energy regimes.

•
$$e^+e^- \to \pi^0/K_S^0 + X$$

- $e^+e^- \rightarrow \eta + X$
- $e^+e^- \rightarrow \pi^{\pm}/K^{\pm} + X$

Thanks for your attention!

◆ More results of , and EEC-related results will be ready soon at BESIII

$$e^{+}e^{-} \rightarrow (\pi\pi) + X$$

$$e^{+}e^{-} \rightarrow \phi/K^{*}(892) + X$$

$$e^{+}e^{-} \rightarrow \eta' + X$$

$$e^{+}e^{-} \rightarrow \Lambda(\overline{\Lambda}) + X$$

$$e^{+}e^{-} \rightarrow \Sigma + X$$

$$e^+e^-
ightarrow \pi^\pm/\pi^0 + X$$
 $e^+e^-
ightarrow \eta/K^\pm/K_S^0 + X$
 $e^+e^-
ightarrow h_1h_2 + X$
(back-to-back pair)

Back up

Fragmentation functions

♦ Final results

$$\frac{1}{\sigma_{\rm had}} \frac{{\rm d}^2 \sigma_{\pi^+}}{{\rm d} p {\rm d} p_t} = f_{correct} \frac{N_{\pi^+}^{obs}}{N_{\rm had}^{obs}} \frac{1}{\Delta p \Delta p_t}$$

