

Measurements of Collins asymmetries at BESIII

Workshop on FFs and EECs

Yixiong Zhou on behalf of the BESIII Collaboration

August 8, 2025

Yantai University

Table of contents

1. Introduction

2. Precise measurements of Collins asymmetries in inclusive production $e^+e^- o h_1 h_2 X$

Asymmetry vs. z_1, z_2

Asymmetry vs. P_{t0}

Asymmetry vs. $\frac{\sin^2 \theta_2}{1+\cos^2 \theta_2}$

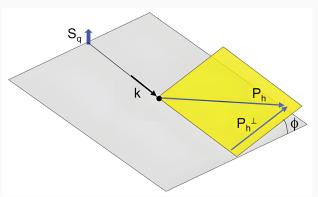
Asymmetry vs. (z, P_{t0})

3. Summary

]

Introduction

Proton spin crisis

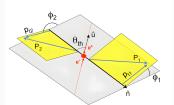

- EMC (1990s): Quark spins account for only \sim 20–30% of the proton's total spin
- Subsequent measurement by HERMES shown that sea quark and gluon contributions are also small
- The missing spin likely comes from parton orbital angular momentum
- Understanding this requires a 3D picture of the nucleon's internal structure, beyond the collinear parton model

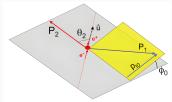
Spin structure: PDFs and Transversity

- Nucleon structure is described by three leading-twist PDFs:
 - $f_1(x)$: Unpolarized parton distribution
 - $g_1(x)$: Helicity (longitudinal polarization)
 - $h_1(x)$: Transversity (transverse polarization, chiral-odd)
- Transversity h₁(x) is the least known; it's chiral-odd and hard to access in inclusive DIS
- To extract transversity, one needs to couple it to a chiral-odd partner, such as the Collins fragmentation function

Collins fragmentation function

- ullet The Collins FF (H_1^\perp) describes how a transversely polarized quark fragments into a hadron, generating azimuthal asymmetries
- Collins FF is chiral-odd, making it an essential partner for measuring transversity
- Provides direct access to the parton's transverse structure crucial for resolving the proton spin puzzle




Role of e^+e^- annihilation

- Semi-inclusive deep inelastic scattering (SIDIS)
 - Process: $e^- + p^{\uparrow} \rightarrow e^- + h + X$
 - One measures the product: Transversity \otimes Collins FF
 - Gives access to transversity, but it is entangled with the Collins function
- Electron-Positron (e^+e^-) annihilation
 - Process: $e^+e^- \rightarrow h_1 + h_2 + X$
 - One measures the product: Collins FF ⊗ Collins FF
 - Provides a clean measurement of Collins FF via azimuthal correlations between hadron pairs

How to measure collins asymmetries?

- In e^+e^- annihilation, the beams are unpolarized:
 - No single-hadron Collins effect can be seen, spin effects cancel on average
 - Product of quark and anti-quark Collins functions leads to a measurable cosine modulation in the azimuthal angular distribution of the two hadrons
- Two reference frames are commonly used for the azimuthal angle definition:
 - Jet frame: Suitable at high energy, when jet axes are well-defined
 - **Second-Hadron frame:** Used at BESIII, the azimuthal angle ϕ_0 is defined with respect to the second hadron's momentum

Observable: Normalized yields

• Experimental observable: Normalized yield distribution as a function of $2\phi_0$:

$$R = \frac{N(2\phi_0)}{\langle N_0 \rangle}$$

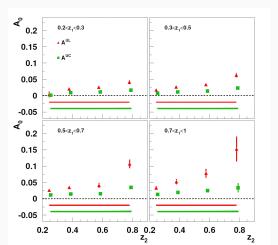
 $N(2\phi_0)$ is the yield in each $2\phi_0$ bin and $\langle N_0 \rangle$ is the average yield over all bins

• The normalized yield shows a characteristic cosine modulation:

$$R = a\cos(2\phi_0) + b$$

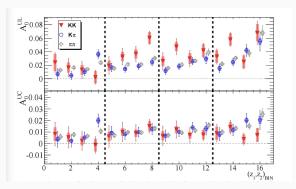
- a: Amplitude of Collins asymmetry contains detector effects and QCD radiation
- $b \approx 1$: Normalization constant

Double ratio method


 To reduce systematic uncertainties such as detector acceptance and QCD radiative effects, we construct the double ratio of normalized yields:

$$\frac{R^U}{R^{L(C)}} = \frac{N^U/\langle N^U \rangle}{N^{L(C)}/\langle N^{L(C)} \rangle} = 1 + A^{UL(C)} \cos(2\phi_0).$$

- Unlike-sign (U): $\pi^+\pi^-$, $K^+\pi^-$
 - Dominated by **favored FF**: $u \to \pi^+$
- Like-sign (L): $\pi^+\pi^+$, $K^+\pi^+$
 - Dominated by **disfavored FF**: $u \to \pi^-$
- Charged (C): All $\pi\pi$ combinations
 - Sum of U and L contributions

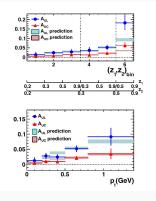

First observation: Belle

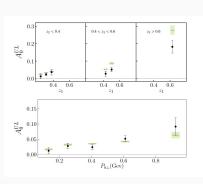
- The Collins asymmetry was first observed by **Belle** ($\sqrt{s}=10.6$ GeV) in $e^+e^- \to \pi\pi X$
- Measurement performed in bins of hadron fractional energy (z)
- Combined with SIDIS: global extraction of transversity

BaBar: Precision and extended channels

- BaBar ($\sqrt{s} = 10.6$ GeV) confirmed and extended the Belle measurement
- Performed detailed measurements for $e^+e^- \to \pi\pi X$:
 - Asymmetries vs z, p_t , and $\sin^2 \theta / (1 + \cos^2 \theta)$
 - Also performed a (z, p_t) measurement (limited by statistics)
- Later BaBar measured Collins asymmetries for $e^+e^- \to K\pi X$ and KKX channels (in bins of z)

The Unique position of BESIII


- B factory (Belle, BaBar): High Q^2 ($\approx 110 \text{ GeV}^2$)
- SIDIS (HERMES, COMPASS, JLab): Low Q^2 region $(2 \lesssim Q^2 \lesssim 40 \text{ GeV}^2)$
- Energy evolution of the Collins FF at different Q² is a key factor for extracting transversity
- A measurement in the intermediate region is crucial
- **BESIII** fills this gap, studying e^+e^- annihilation at $10 \lesssim Q^2 \lesssim 20 \text{ GeV}^2$ directly overlapping with SIDIS


First Measurement at Low Q^2

- BESIII perform the first measurement of Collins asymmetry in $e^+e^- \to \pi\pi X$ at $\sqrt{s}=3.65$ GeV ($Q^2\approx 13$ GeV²)
- Dataset: \sim 62 pb⁻¹ collected in 2011–2012
- Normalized yields analyzed in bins of z, p_t , and $\sin^2 \theta/(1+\cos^2 \theta)$
- Observed larger asymmetry than B factory
- ullet Provided the first experimental test of Q^2 evolution in the Collins FF at low energy

Tension with theory at high z/p_T

- Overall, the measured asymmetries are consistent with theoretical predictions, but some deviations in high-z and high-p_T bins
- These bins suffer from large statistical uncertainties
- Higher-precision measurements are needed to clarify the observed tension and further test QCD evolution

Precise measurements of Collins asymmetries in inclusive production $e^+e^- \rightarrow h_1h_2X$

Goals of this analysis

• Provide a **high-precision measurement** of Collins asymmetries at low Q^2 using two large data samples:

$$\sqrt{s} = 3.510 \text{ GeV} (\mathcal{L} \approx 446 \text{ pb}^{-1}), \quad \sqrt{s} = 3.650 \text{ GeV} (\mathcal{L} \approx 400 \text{ pb}^{-1})$$

- Use a dataset with 14 times more luminosity than the previous BESIII study
- Key measurements:
 - ullet Significantly improve the precision for the $\pi\pi$ channel
 - Perform the **first low**- Q^2 **measurements** for the $K\pi$ and KK channels at this energy
 - Measure asymmetries in bins of:
 - Z
 - p_{t0} $\sin^2 \theta$
 - $\frac{\sin \theta}{1+\cos^2 \theta}$
 - For the $\pi\pi$ channel: conduct the **first fully differential 3D** measurement at low Q^2 simultaneously in (z_1, z_2, p_{t0}) bins

Analysis workflow

- 1. Event selection and PID criteria
 - Apply all kinematic cuts, multiplicity, thrust, and z range requirements
- 2. Extraction of raw asymmetries
 - Fit double-ratio distributions with $cos(2\phi_0)$ modulation
- 3. MC tuning and misidentification study
 - Tune MC to match data distributions
 - Determine particle misidentification fractions
- 4. Unfolding to obtain true asymmetries
 - Subtract true asymmetry from measured raw asymmetries
- 5. Evaluation of systematic uncertainties

Event selection

- General requirements
 - Good charged track requirements
 - PID requirements applied on final state hadrons
- Further selection criteria
 - *N*_{good} > 2
 - N_{ele} = 0
 - Opening angel between hadron larger than 120 degree
 - Thrust value T < 0.99

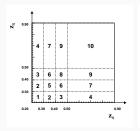
$$\mathcal{T} = \textit{Max}[\frac{\sum_{h} |\mathbf{P_h}^{\mathrm{CMS}} \cdot \hat{\mathbf{n}}|}{\sum_{h} |P_h^{\mathrm{CMS}}|}]$$

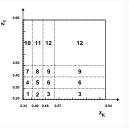
Asymmetry vs. z_1, z_2

Definition of z binning scheme

The light-cone fractional energy of a hadron:

$$z = \frac{E_h}{E_{\rm beam}} \simeq \frac{2E_h}{\sqrt{s}}$$


- For pions:
 - Require $0.20 < z_{\pi} < 0.90$
 - Lower bound: suppress pions from resonance decays (ρ , f, etc.)
 - Upper bound: remove two-body decays
 - Four z_{π} bins for both $\sqrt{s} = 3.510$ and 3.650 GeV:


$$[0.20, 0.30], \ (0.30, 0.40], \ (0.40, 0.50], \ (0.50, 0.90]$$

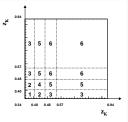
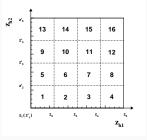

- For kaons:
 - Use same **momentum boundaries** as pions, but compute z_K with kaon mass hypothesis
 - 3.510 GeV: $z_K = 0.34$, 0.40, 0.48, 0.57, 0.94
 - 3.650 GeV: $z_K = 0.33$, 0.40, 0.48, 0.56, 0.94

Illustration of binning scheme

- Symmetric z bins merged: Identical z_{π} binning used for both energy points
- Kaon bins reduced: Due to limited K statistics, the last two z_K bins are merged:
 - 3.510 GeV: $z_K = 0.34$, 0.40, 0.94
 - 3.650 GeV: $z_K = 0.33$, 0.40, 0.94
- Extract raw asymmetry by fitting the double ratio in each z bin with the function $R = a\cos(2\phi_0) + b$



MC tuning for Mis-ID correction

- Misidentification $(\pi \to K)$ causes cross-contamination among $\pi\pi X$, $K\pi X$, and KKX samples
- Determine correction weights $w_{\pi\pi}$, $w_{K\pi}$, w_{KK} to make MC yields match data in each channel
- Apply the weights to MC so that the $\pi\pi X$, $K\pi X$, and KKX yields match data in all z bins

$$\begin{split} &(1-f_{\pi\pi}^{\text{other}})N_{\pi\pi}^{\text{data}} = w_{\pi\pi}N_{\pi\pi\to\pi\pi}^{\text{MC}} + w_{K\pi}N_{K\pi\to\pi\pi}^{\text{MC}} + w_{KK}N_{KK\to\pi\pi}^{\text{MC}} \\ &(1-f_{K\pi}^{\text{other}})N_{K\pi}^{\text{data}} = w_{\pi\pi}N_{\pi\pi\to K\pi}^{\text{MC}} + w_{K\pi}N_{K\pi\to K\pi}^{\text{MC}} + w_{KK}N_{KK\to K\pi}^{\text{MC}} \\ &(1-f_{KK}^{\text{other}})N_{KK}^{\text{data}} = w_{\pi\pi}N_{\pi\pi\to KK}^{\text{MC}} + w_{K\pi}N_{K\pi\to KK}^{\text{MC}} + w_{KK}N_{KK\to KK}^{\text{MC}}. \end{split}$$

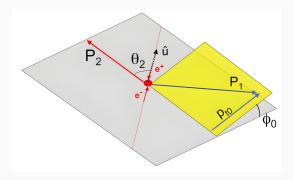
Unfolding the mixed asymmetries

- Due to $K\pi$ mis-ID, the measured raw Collins asymmetry $A_{h_1h_2}^{\mathrm{raw}}$ is a mixture of $\pi\pi$, $K\pi$, KK components (plus "other", with $A_{\mathrm{other}}=0$)
- The true asymmetries $A_{\pi\pi}$, $A_{K\pi}$, A_{KK} are obtained by solving :

$$\begin{split} A_{\pi\pi}^{\mathrm{raw}} &= f_{\pi\pi}^{\pi\pi\to\pi\pi} A_{\pi\pi} + f_{\pi\pi}^{K\pi\to\pi\pi} A_{K\pi} + f_{\pi\pi}^{KK\to\pi\pi} A_{KK}, \\ A_{K\pi}^{\mathrm{raw}} &= f_{K\pi}^{\pi\pi\to K\pi} A_{\pi\pi} + f_{K\pi}^{K\pi\to K\pi} A_{K\pi} + f_{K\pi}^{KK\to K\pi} A_{KK}, \\ A_{KK}^{\mathrm{raw}} &= f_{KK}^{\pi\pi\to KK} A_{\pi\pi} + f_{KK}^{K\pi\to KK} A_{K\pi} + f_{KK}^{KK\to KK} A_{KK}. \end{split}$$

- Fractions $f_{h_1h_2}^{h_1'h_2'\to h_1h_2}$ are obtained from the MC tuned with mis-ID correction
- Get the true asymmetries by solving in six KKX z-bin subgroups using a χ^2 fit:

$$\chi = \frac{A^{\mathrm{raw}} - f^{\pi\pi}A_{\pi\pi} - f^{K\pi}A_{K\pi} - f^{KK}A_{KK}}{\Delta A^{\mathrm{raw}}}, \quad \chi^2 = \sum_{i=1}^{N_{\mathrm{bins}}} \chi_i^2$$


Systematic uncertainties

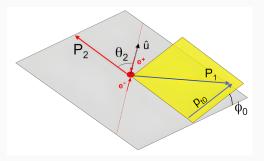
- Intrinsic asymmetry in MC generation
- Detection effect
- Particle ID and tracking efficiency
- Subtraction method
- Fit function
- Non-zero A_{other}
- Background

Asymmetry vs. P_{t0}

Definition of P_{t0}

- P_{t0} is defined as the transverse momentum of the first hadron relative to the direction of the second hadron's momentum in the hadron-pair frame
- The ordering of hadron pairs is randomized to avoid bias in P_{t0} definition

Binning scheme in P_{t0}


- Binning is optimized separately for each hadron combination:
 - $\pi\pi$: 10 bins
 - *K*π: 10 bins
 - KK: 5 wider bins
- The same P_{t0} binning scheme is applied for both $\sqrt{s}=3.51$ GeV and $\sqrt{s}=3.65$ GeV datasets
- Analysis procedure follows exactly the same steps as the z-bin analysis:
 - Extract raw asymmetries from data
 - Tune MC to match data and obtain misidentification fractions
 - Use these fractions as input to the unfolding procedure to obtain true asymmetries

$\pi\pi$	0.00	0.16	0.22	0.27	0.31	0.36	0.41	0.46	0.54	0.66	1.36
$K\pi$	0.00	0.16	0.22	0.27	0.31	0.36	0.41	0.46	0.54	0.66	1.36
KK	0.00	0.	0.22		0.31		0.41		0.54		36

Asymmetry vs. $\frac{\sin^2 \theta_2}{1+\cos^2 \theta_2}$

Definition of θ_2

- θ_2 is the polar angle between the momentum direction of the second hadron and the beam axis
- The ordering of hadron pairs is randomized to avoid bias in the θ_2 definition; the second hadron in this order defines θ_2

Binning scheme in $\frac{\sin^2 \theta_2}{1+\cos^2 \theta_2}$

- Measure asymmetry in bins of $\frac{\sin^2 \theta_2}{1+\cos^2 \theta_2}$
- Variable choice motivated by the UL (UC) double-ratio expression:

$$rac{R^U}{R^L(C)} \simeq 1 + < rac{\sin^2 heta}{1 + \cos^2 heta} > \cos(2\phi_0)(G^U - G^L(C))$$

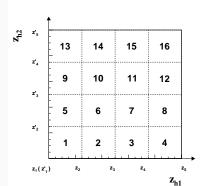
Predicts asymmetries vanish at $\theta_2=0$ and grow with $\frac{\sin^2\theta_2}{1+\cos^2\theta_2}$

- 10 bins for $\pi\pi$ and $K\pi$ channels, 5 bins for KK channel
- Same binning scheme is applied for both $\sqrt{s}=3.510$ GeV and $\sqrt{s}=3.650$ GeV datasets
- Analysis procedure follows exactly the same steps as previous variables

$\pi\pi$	0.00	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95	1.00
$K\pi$	0.00	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95	1.00
KK	0.00	0.	0.25		0.45		0.65		0.85		00

Asymmetry vs. (z, P_{t0})

Motivation for the (z, P_{t0}) measurement


- First fully differential measurement of Collins asymmetry at BESIII in $(z_{\pi 1}, z_{\pi 2}, P_{t0})$ for the $\pi\pi$ channel
- BaBar performed a similar study, but:
 - Measurement done in the jet frame less convenient for direct use in global fits of Collins fragmentation functions
 - · Limited by large statistical uncertainties
- Our analysis:
 - Uses the hadron-pair frame, directly compatible with SIDIS measurements and global fits
 - Based on BESIII large statistic dataset at $\sqrt{s}=3.51~{\rm GeV}$ and $3.650~{\rm GeV}$

Analysis strategy

- Follows the same framework as the nominal z-bin measurement:
 - Identical event selection criteria
 - Raw asymmetries extracted from $cos(2\phi_0)$ fits to double ratios
- Key differences in the 3D case:
 - No merging of symmetric z bins, since P_{t0} depends on hadron ordering
 - Each $(z_{\pi 1}, z_{\pi 2})$ bin is analyzed independently
 - No unfolding applied misidentification effects are treated as systematic uncertainty
- Dedicated MC studies performed to quantify:
 - Possible generator-level asymmetries
 - Detector-induced effects
 - Misidentification rates

Binning scheme for (z, P_{t0})

- 4 × 4 binning in $(z_{\pi 1}, z_{\pi 2})$:
 - Matches nominal z bin boundaries
- Within each $(z_{\pi 1}, z_{\pi 2})$ bin:
 - Data further divided into 5 bins of P_{t0}
 - Bin edges chosen to yield approximately equal statistics across P_{t0}
 bins in each z region
- Same $(z_{\pi 1}, z_{\pi 2}, P_{t0})$ binning scheme applied at both energy points

Binning scheme for (z, P_{t0})

z bin	P_{t0} bin 1	P_{t0} bin 2	P_{t0} bin 3	P_{t0} bin 4	P_{t0} bin 5
1	[0.00,0.18]	[0.18,0.25]	[0.25,0.30]	[0.30,0.35]	[0.35,0.46]
2	[0.00, 0.25]	[0.25, 0.35]	[0.35, 0.43]	[0.43, 0.49]	[0.49,0.63]
3	[0.00, 0.32]	[0.32,0.45]	[0.45, 0.55]	[0.55,0.63]	[0.63,0.79]
4	[0.00, 0.43]	[0.43,0.60]	[0.60, 0.74]	[0.74, 0.85]	[0.85, 1.41]
5	[0.00, 0.18]	[0.18, 0.25]	[0.25, 0.30]	[0.30, 0.35]	[0.35, 0.46]
6	[0.00, 0.24]	[0.24,0.34]	[0.34, 0.42]	[0.42, 0.48]	[0.48,0.63]
7	[0.00, 0.30]	[0.30,0.43]	[0.43, 0.54]	[0.54,0.62]	[0.62, 0.78]
8	[0.00, 0.39]	[0.39,0.56]	[0.56, 0.70]	[0.70, 0.83]	[0.83, 1.39]
9	[0.00, 0.18]	[0.18, 0.25]	[0.25, 0.30]	[0.30, 0.35]	[0.35,0.46]
10	[0.00, 0.24]	[0.24,0.34]	[0.34,0.41]	[0.41, 0.48]	[0.48, 0.63]
11	[0.00, 0.28]	[0.28,0.41]	[0.41, 0.51]	[0.51, 0.61]	[0.61, 0.79]
12	[0.00, 0.35]	[0.35,0.51]	[0.51, 0.66]	[0.66, 0.79]	[0.79, 1.32]
13	[0.00, 0.18]	[0.18, 0.25]	[0.25, 0.30]	[0.30, 0.35]	[0.35, 0.46]
14	[0.00, 0.23]	[0.23,0.32]	[0.32, 0.40]	[0.40, 0.47]	[0.47, 0.62]
15	[0.00, 0.26]	[0.26, 0.38]	[0.38, 0.48]	[0.48, 0.58]	[0.58,0.78]
16	[0.00, 0.29]	[0.29, 0.43]	[0.43, 0.56]	[0.56, 0.71]	[0.71, 1.27]

33

Summary

Summary and outlook

- Performed high-precision measurements of Collins asymmetries at low Q^2 ($\sqrt{s}=3.510$ and 3.650 GeV) with large BESIII datasets
- Measure the Collins asymmetry for $\pi\pi$, $K\pi$ and KK channels in bins of:
 - Z
 - P_{t0}
 - $\frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2}$
- First BESIII measurement of (z, P_{t0}) dependence for $\pi\pi$ channel
- We invite collaboration with theorists to:
 - Compare results directly with model predictions
 - Incorporate our measurements into global fits to extract Collins FFs

Backups

Binning scheme for P_{t0}

Table 1: Bin boundaries in P_{t0} (GeV/c) for each hadron combination.

$\pi\pi$	0.00	0.16	0.22	0.27	0.31	0.36	0.41	0.46	0.54	0.66	1.36
$K\pi$	0.00	0.16	0.22	0.27	0.31	0.36	0.41	0.46	0.54	0.66	1.36
KK	0.00	0.22		0.31		0.41		0.54		1.36	

Binning scheme for $\frac{\sin^2 \theta_2}{1+\cos^2 \theta_2}$

Table 2: Bin boundaries in $\frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2}$ for each hadron combination.

$\pi\pi$	0.00	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95	1.00
$K\pi$	0.00	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95	1.00
KK	0.00	0.25		0.	45	0.	65	0.	85	1.	00