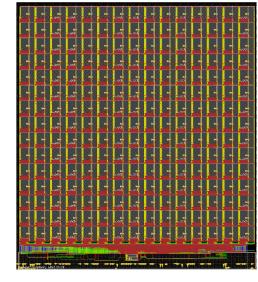
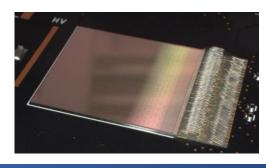


ALTIROC, LGAD readout ASIC for ATLAS HGTD

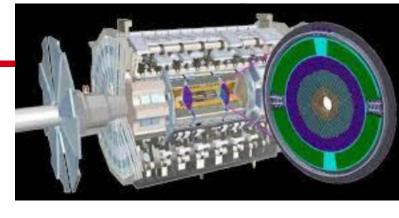
Nathalie Seguin-Moreau (OMEGA/CNRS/Ecole Polytechnique) on behalf of ATLAS HGTD collaboration

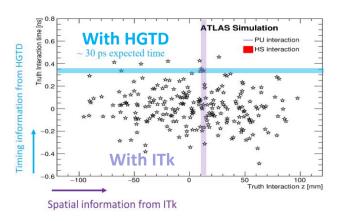
Workshop on Future Tau-Charm Facilities FTCF2025– Huangshan, China – Nov 23 – 27, 2025





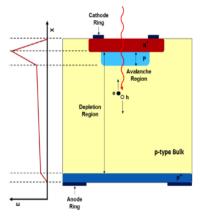
Institute of High Energy Physics Chinese Academy of Sciences




HGTD: new MIP timing detector in ATLAS (HL-LHC)

- With the high-luminosity environment of the HL-LHC comes increased pile-up making events discrimination more challenging.
- High-precision timing measurements can be used to improve pile-up rejection when combined with Inner Tracker (ITk) position data.
- The High-Granularity Timing Detector for ATLAS aims to provide :
 - Timing information with resolution of 30 ps/track (or 50 ps/hit) at the beginning, 50 ps/track (or 70 ps/hit) after 4000 /fb
 - Luminosity information by reading hit counts for each bunch crossing

HGTD detector


- Located between barrel and End Cap calo, at 3.5 m from the interaction point
- Sensor : LGAD matrix with 15 x 15 PADs (225 pads), sensor pad = 1.3 x 1.3 mm2 (thickness 50 μ m) => Cd = 4 pF
- LGAD modules on disks, two sensor layers/disk, two disks/side
- Active radius from 120 mm ($\eta = 4$) to 640 mm ($\eta = 2.4$)
- Maximum fluence: 2.5 e¹⁵ neg/cm² and 2 MGy at the end of HL-LHC (4000/fb)
- 8032 modules (one module= 2 ASICs bump bonded on 2 sensors), 3.6 M channels

LGAD Technology:

- 1 MIP 500p 700p 15.2 μA
- N-in-P diode structure with extra ptype gain-layer
- Moderate gain: 10 20
- Extra gain layer: Fast rise time and larger signal-to-noise ratio
- → Excellent time resolution

ALTIROC specification

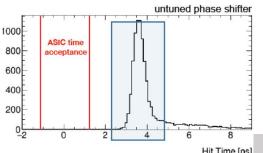
sensor read-out electronics
$$\sigma_{\text{Total}}^{2} = \sigma_{\text{Landau}}^{2} + \sigma_{\text{Jitter}}^{2} + \sigma_{\text{Timewalk}}^{2} + \sigma_{\text{TDC}}^{2} + \sigma_{\text{Clock}}^{2}$$

Charge dynamics: up to 100 fC

: < 0.5 fC Noise

Cross talk : < 2 % to guarantee single

hit with 2 fC threshold


TOA:

Measurement window 2.5 ns

Jitter: 25 ps for Q = 10 fC

65 ps for Q = 4 fC

Conversion time < 25 ns (TDC LSB of 20 ps)

40 MHz Clock of the TDC:

Jitter < 10 ps

ASIC global clock aligned with better than 100 ps Clock skew between channels in ASIC: +/- 150 ps

Luminosity

Provide ASIC number of hits per bunch crossing on two time windows

Similar alignment as for the clock but skew relaxed to +/- 200 ps

Read out bandwidth and latency:

Should cope with 1 MHz with 12.8 µs and 0.8 MHz with 35 µs ASIC bandwidth adjustable by slow control: 0.32, 0.64 or 1.28 Gb/s

TOT:

For 100 fC, TOT < 20 ns

Landau MPV	4 fC	> 10 fC
Time Walk contribution rms (ps)	25	10
TOT resolution for VPA (ps)	120	120
TOT resolution for TZ (ps)	120	70

Conversion time < 25 ns

TDC LSB of 120 ps enough but TZ better use with 40 ps

Radiation

	TID [MGy]	NIEL [n _{eq} /cm ²]	SEE [h/cm ²]
ASIC Barrel	2	2.5×10^{15}	1.×10 ¹⁵
Safety Factors	1.5 simulation	1.5 sim x 1.3 monoenergetic beam	1.5 sim x 2 E cut +20 MeV

ASIC power dissipation < 1.2 W

Calibration injection:

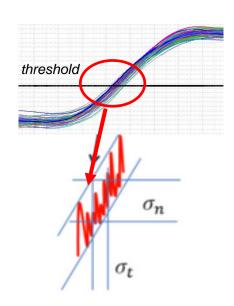
Range 0 – 100 fC

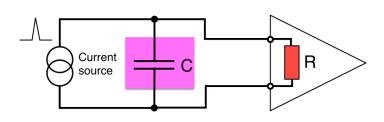
Rise time : 0.5 - 1.5 ns

Front-End and electronics jitter (1)

$$\sigma_{\text{det}}^2 = \sigma_{\text{Landau}}^2 + \sigma_{\text{elec}}^2$$

TW can be corrected with ToT measurement


$$\sigma_{elec}^2 = \sigma_{jitter}^2 + \sigma_{TDC}^2 + \sigma_{clock}^2 + \sigma_{time-walk}^2$$


• Jitter due to electronics noise:

$$\sigma_t^J = \frac{N}{\frac{dV}{dt}} = \frac{t_{rise}}{S/N}$$

- dV/dt prop to BW, N prop to V BW => jitter prop to 1/VBW
- Usual conclusion =
- ⇒ « the faster the amplifier the better the jitter ? »
- \Rightarrow « High speed preamps need to be low impedance (50 Ω or less) »

NB:
$$tr = t_{10\text{-}90\%} = 2.2 \ \text{T}$$

$$f_{\text{-}3dB} = 1/2\pi \ \text{T} = 0. \ 35 \ / \ t_{10\text{-}90}$$

$$f_{\text{-}3dB} = 1 \ \text{GHz} \ \ \text{equivalent to} \ t_{10\text{-}90\%} = 300 \ \text{ps}$$

Front-End and electronics jitter (2)

jitter and noise as a function of preamp risetime

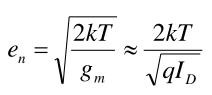
Jitter is given by:

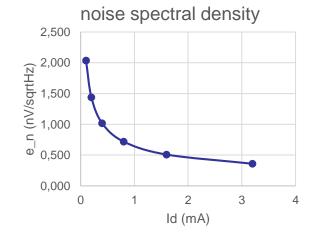
$$\sigma_{t}^{J} = \frac{N}{dV/dt} = \frac{e_{n}}{\sqrt{2t_{10-90_PA}}} \frac{C_{d}\sqrt{t_{10-90_PA}^{2} + t_{d}^{2}}}{Q_{in}} = \frac{e_{n}C_{d}}{Q_{in}} \sqrt{\frac{t_{10-90_PA}^{2} + t_{d}^{2}}{2t_{10-90_PA}}}$$

1,1 noise 1,2 noise 1,1 noise 1,9 0,8 Optimum value: $t_{10-90 PA} = t_d$ (current duration) 0.7

$$\sigma_t^J = \frac{e_n C_d}{Q_{in}} \sqrt{t_d}$$

Cd: detector capacitance $t_{10_10_PA}$: rise time of the PA t_d = drift time of the detector ~ 500 ps e_n preamp noise density


Electronics jitter dominated by sensor Electronics only gives the spectral density of the input transistor e_n


1,4

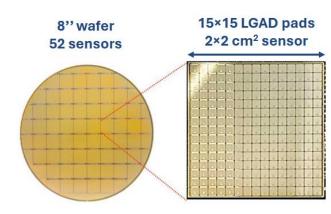
1,3

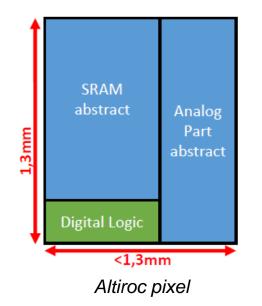
More details in https://iopscience.iop.org/article/10.1088/1748-0221/15/07/P07007/pdf

- Electronics noise e_n given by the input transistor transconductance g_m:
- Expectation: 10 ps for Q=10fC @ C_d =2 pF e_n =2 nV/VHz t_d =0.5 ns
- Altiroc preamplifier = 1 GHz Transimpedance amplifier with variable Id and internal variable capacitor to have the possibility to slow it down

t_pa/td

ALTIROC main challenges

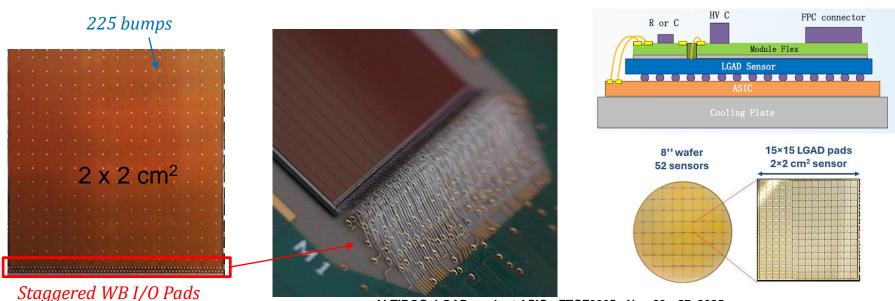



Altiroc looks "similar " to pixels ASIC but

- Minimum Charge Qmin/ Detector capacitance Cd and 1 GHz bandwidth: Floorplan is crucial
 - Altiroc: Qmin/Cd ~ 500 μ V with Cd ~4 pF (1300 x 1300 μ m2) and Vth min= 2 fC instead of usual Qmin/C > 2 mV for pixel ASIC with Cd ~ 50 fF (50 x 50 μ m²) and Vth min = 0.1 0.2 fC
- Preamp BW
 - Altiroc: 1 GHz
 - Pixel chips: ~ 20 MHz

- Altiroc TDC bin: 20 ps and 130 nm technology
- Existing pixels chip with timing measurement TDC bin: 200 ps and 65 nm technology
- Power dissipation and technology
 - Altiroc: 300 mW/cm2 + techno CMOS 130 nm
 - Pixel chips: 600 mW to 1 W/cm2 + techno CMOS 65 nm
- Integration issues and technology
 - ALTIROC SRAM with a latency of 38.4 μs + techno CMOS 130 nm

ALTIROC main challenges

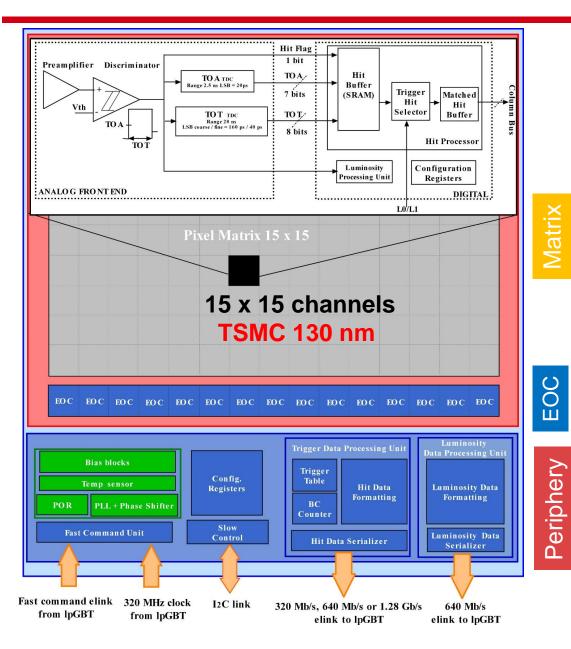


• A module is made of two ALTIROC ASICs bump bonded onto two 15x15 LGAD sensors, each sensor pad = $1.3 \times 1.3 \text{ mm2}$ (active thickness 50 µm)

- Voltage drops:
 - Chip size 2 x 2 cm²
 - Bumps for input signals + Wire Bonding I/O PADs for all other signals and power supplies
 - → Power supplies only from one side, voltage drop control is a key issue in particular for the TDC

10.24 Gbps upstream 2.56 Gbps downstream FELIX Main data lpGBT Fast commands and clocks LGAD & ALTIROC **BOARD** LGAD & Timing data and lumi data
320Mbps to 1.28Gbps 640 Mbps bPOL12V ALTIROC 10.24 Gbps upstream I2C slow control FELIX LUMI

Slide in backup + more details in TWEPP2024 talk: https://indico.cern.ch/event/1381495/contributions/5988493/attachments/2869323/5163702/TWEPP2024_Soulier.pdf



Module with two ALTIROC bump bonded onto two sensors

ALTIROC architecture

Pixel

$$\sigma_{jitter} = \frac{N}{dV/dt} = \frac{e_n C_d}{Q_{in}} \sqrt{t_d}$$

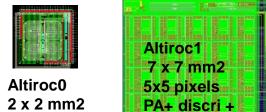
- Analog Front End pixel: Analog FE performance crucial
 - 1 GHz preamplifier followed by a high-speed discriminator.
 - Two TDC (Time to Digital Converter) to provide Time of Arrival (TOA) + Time Over Threshold (TOT) measurement
 - TOA TDC: bin of 20 ps (7 bits), range of 2.5 ns, to be centered on the bunch crossing
 - O TOT TDC: coarse/fine bin 160 ps / 40 ps (8 bits), range of 20 ns
- Digital part of the pixel
 - One SRAM (Hit buffer) with a latency of 38.4 μs
 - Zero suppress logic (Trigger Hit Selector and Matched Hit Buffer)
 - Luminosity processing unit

EOC: readout of columns + data transfer to trigger data and luminosity data processing units

Periphery

- Analog periphery: Bias, DAC for threshold, temp sensor, PLL, Phase Shifter, clocks receivers, data transmitters (up to 1.28 Gb/s)
- Digital periphery:
 - 320 Mbit/s fast commands decoder
 - Reads time data from pixel matrix and packs data into frames before serializing them
 - Timing data transmission: encoded (8b10b) and serialized at different rates (320 Mb/s, 640 Mb/s, 1.28 Gb/s) depending on radial position of the ASIC
 - Luminosity data: encoded (6b8b) and serialized at 640 Mb/s
 - Slow Control: I2C link, 1024 * 8-bit registers (Triplication + auto correction)

ATLAS HGTD Timing detector: ALTIROC (TSMC 130n) history


Engineering run 2021

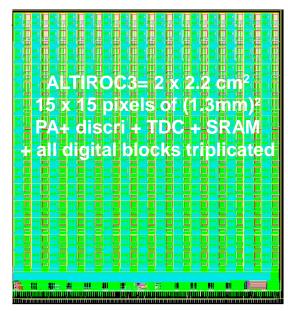
2017-2018

TDC + SRAM

Altiroc0 and 1:

2016

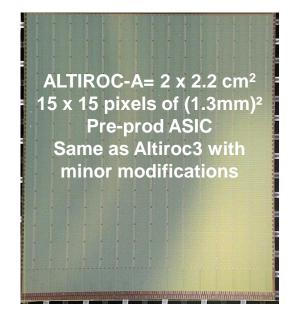
2 x 2 pixels


PA + discri

No digital, To validate the FE part at system level (= ASIC bumpbonded onto a sensor)

ALTIROC2:

First full size chip with 15 x 15 channels – 2 x 2 cm2 To demonstrate the functionality/performance of the ASIC (time resolution + luminosity counting) alone and bump-bonded onto a sensor But NOT to be fully radiation hard (against SEE)


Eng run June 2022

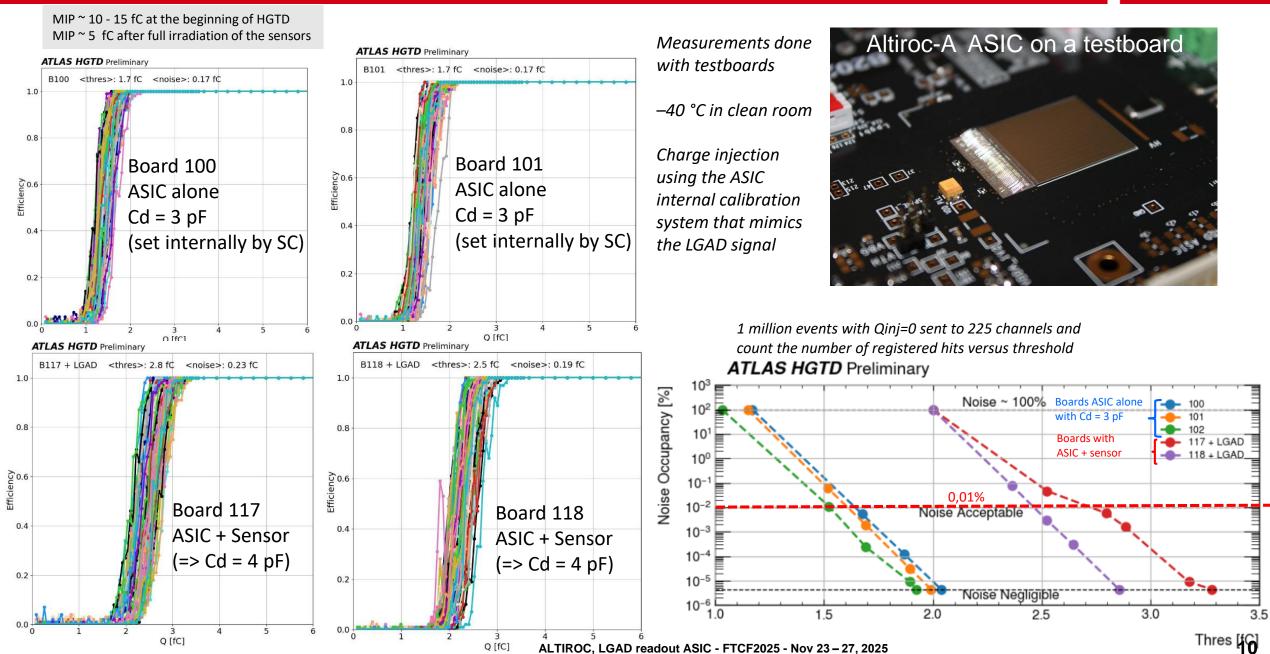
ALTIROC3:

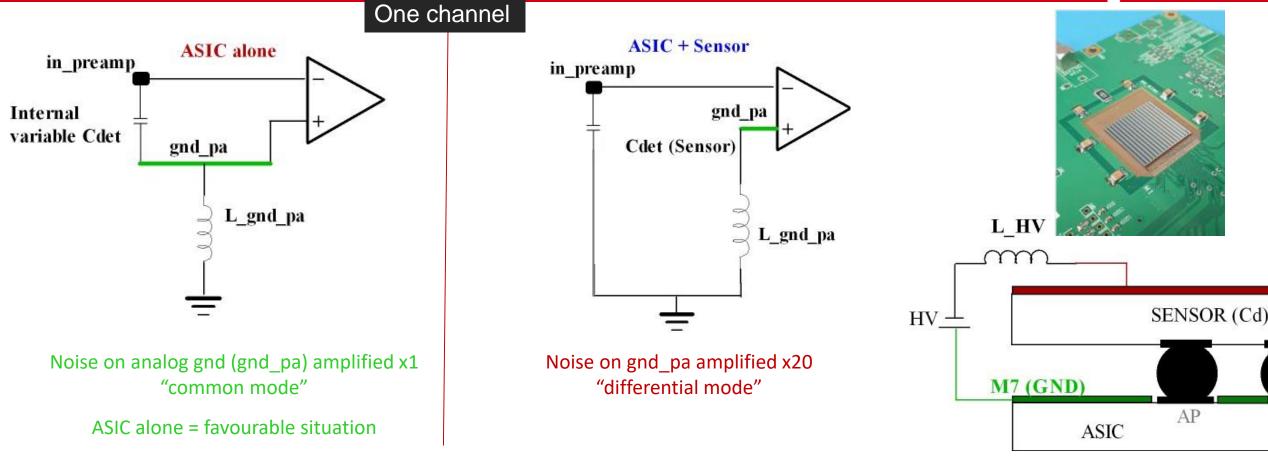
Last full chip prototype before preproduction Full Digital-On-Top Same as Altiroc2 but fully triplicated **New pinout (TDC IR drops)**

Eng run March 2024

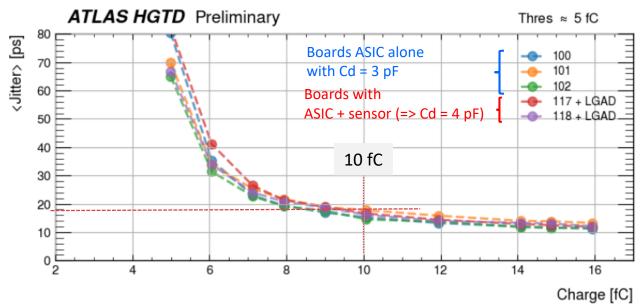
ALTIROCA:

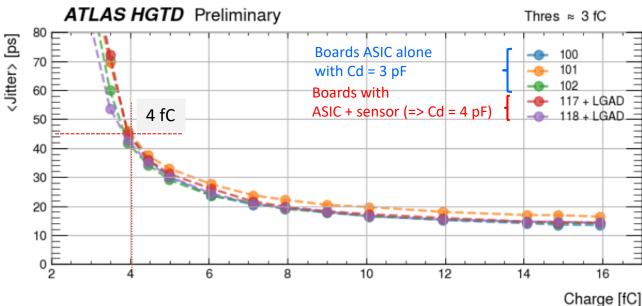
pre-production ASIC Same masks to be used for the production Same as Altiroc3 with minor modifications




ALTIROC-A (pre-production ASIC) PERFORMANCE: Efficiency and Qmin

Main challenges: Measurements at system level and digital noise




Digital noise injected on the preamplifier ground gets amplified only when the impedance between the detector capacitance and the non-inverting preamplifier input is not zero i.e when the sensor is connected (Twepp2022 talk: https://indico.cern.ch/event/1127562/contributions/4904499/attachments/2511666/4317317/ALTIROC2 ATLAS HGTD.pdf)

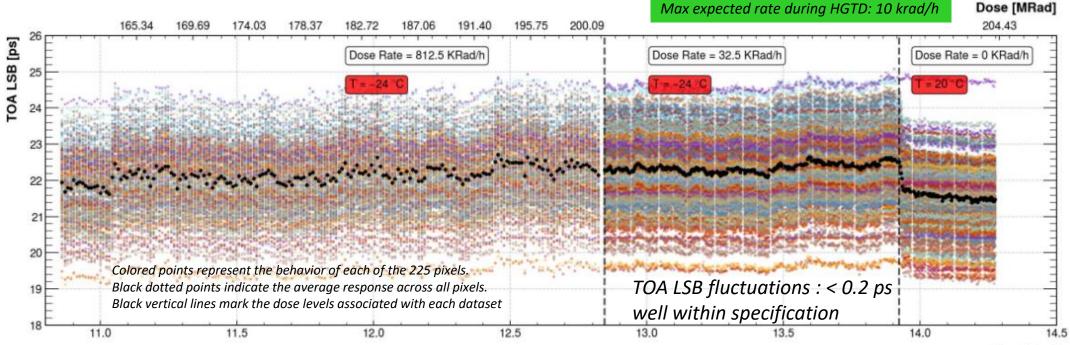
- ⇒ Impacts Qmin
- \Rightarrow Floorplan is crucial: Ultra Low impedance (50 mΩ) for the ground of the preamp to minimize Qmin and proper decouplings at system level have also proved to be crucial to reduce Qmin

ALTIROC-A (pre-production ASIC) PERFORMANCE: Jitter versus charge

Specification:

Jitter: 25 ps for Q = 10 fC65 ps for Q = 4 fC

Conversion time < 25 ns (TDC LSB of 20 ps)

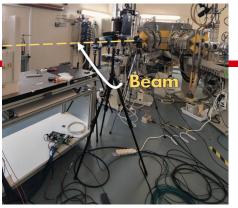

MIP \sim 10 - 15 fC at the beginning of HGTD MIP \sim 5 fC after full irradiation of the sensors

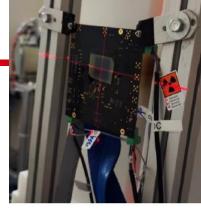
ALTIROC-A (pre-production ASIC) PERFORMANCE: TID irradiation

- TID conditions
 - Use Obelix facility at CERN, 10 keV X-rays (Dec 2024, Jan 2025, March 2025) and ATLAS pixel facility (Feb 2025)
 - Temp -20°C at Obelix, room temp at ATLAS pixel facility
 - Up to 200 Mrad (= 2 MGy) with beam at the max distance to irradiate all the chip => max dose rate ~1.2 Mrad/h, min dose ~ 16 krad/h
- Continuous measurements during irradiation:
 - DC voltages and power consumptions, Vth & Vthc scan, Charge scans (Qmin), noise, TOA and TOT LSB, Jitter measurements for Qinj = 4 fC and 10 fC
- No variations observed for all the measurements
 - Except for the TOA TDC bin which showed unexpected variations under irradiation: the larger the rate the larger the variations
 - Issue not due to TDC itself but to Control Voltages generated in the periphery for TDC delay lines
 - Issue could be solved at system level and TOA LSB variation under irradiation are now < 0.2 ps, so well within the specifications

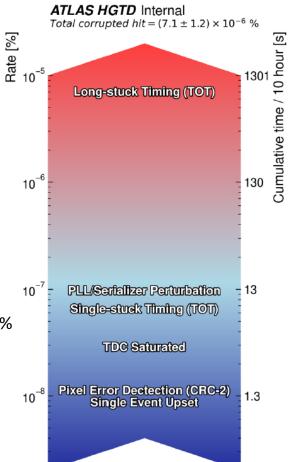
ATLAS HGTD Preliminary

TID March 2025; Board 105; With External R

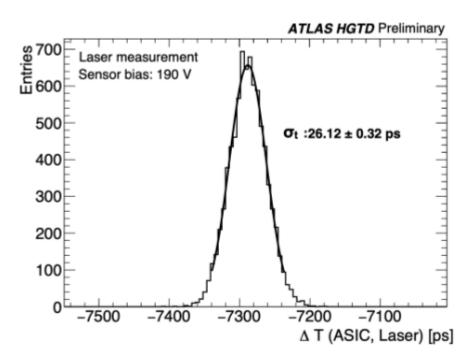


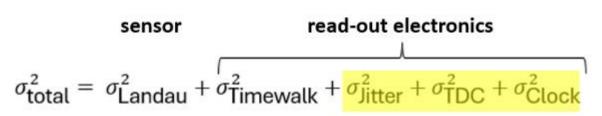

TID [MGy

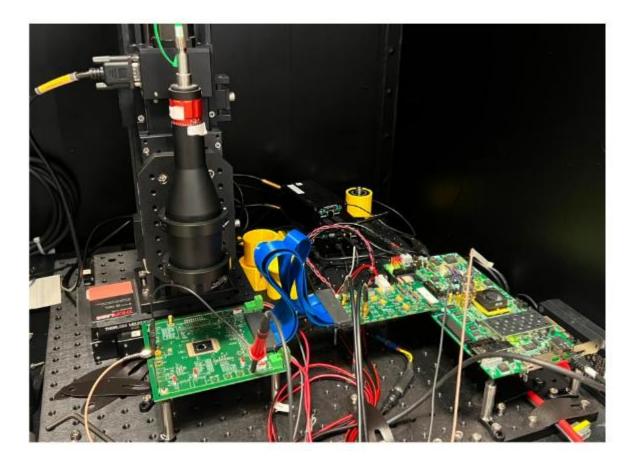
ALTIROC-A (pre-production ASIC) SEE tests summary


- Arronax Cyclotron (Nantes) 68 MeV proton beam
 - Expected flux at the HL-LHC $\sim 8.5 \times 10^7$ p.cm⁻².s⁻¹ with SF=2,5
 - Total fluence: ~ 5 10 14 p.cm⁻² in 5 hours

	Flux [p. cm^{-2} . s^{-1}] × 10 ¹⁰
i1	$0.57~(\sim250\times fHL-LHC)$
i2	1.3 (~580 × <i>fHL-LHC</i>)
i3	3.4 (~1500 × fHL-LHC)
i4	$6.7 \ (\sim 3000 \times fHL-LHC)$
i5	1.5 (~670 × <i>fHL-LHC</i>)

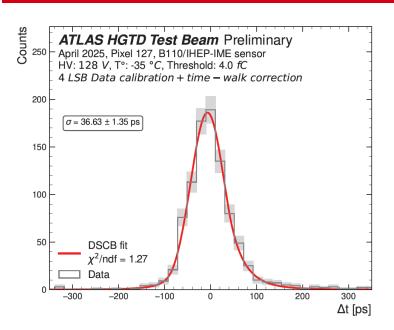


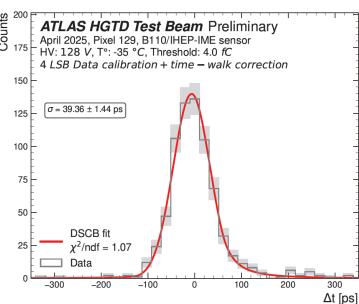

- Data path not triplicated
- Digital blocks for control logic (counters, FSM ..) + configuration registers + corresponding clocks are triplicated
- Configuration registers (all triplicated):
 - Written once at start then read every minute → No errors in configuration detected
- Continuous data taking :
 - No global reset sent → Readout is stable
 - No resynchronization → Output links are stable
- Plot shows the estimated rates of erroneous pixel frames (= hits) and cumulative error duration in seconds, assuming 10% occupancy, a 10-hour fill, and 40 MHz collision rate across the entire HGTD (3.6 millions of pixels):
 - Negligible corruption rate : $7 \times 10^{-6} \%$ of the 1,4 x 10^{12} hits corrupted per 10-hour fill

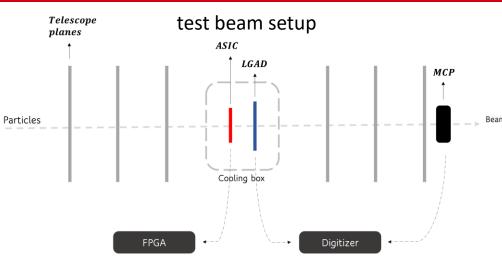


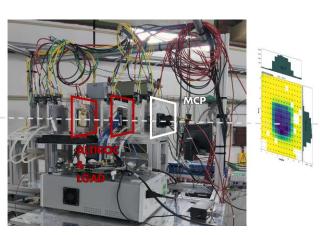
ALTIROCA PERFORMANCE: LASER

- Infrared laser (λ = 1064 nm, sub-mm focus) to determine jitter
- Photons deposit their energy in the same depth in the sensor
- → Landau and Timewalk contributions negligible
- Time reference: precise signal (3 ps jitter) from laser driver
- Jitter measured to be ~ 23 ps
- → Correction for TDC (10 ps) and clock (8 ps) contributions
- → Consistent with ASIC test-bench measurements







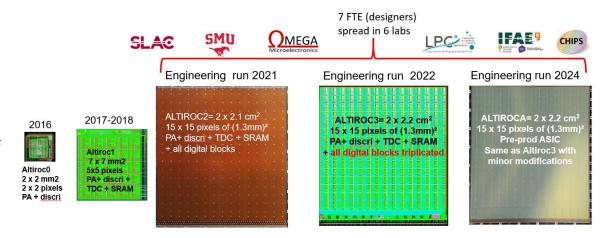

ALTIROC-A PERFORMANCE: TESTBEAM

The readout system is performed using a FPGA for the ALTIROC and the digitizer for the LGAD and MCP (Timing reference)

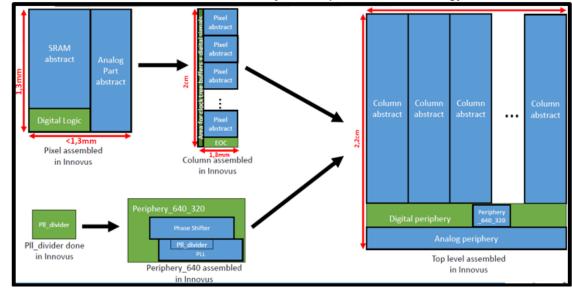
$$\Delta t = TOA \times LSB - (t_{Clock} - t_{MCP})$$

Time resolution requirement:
50 ps/hit at the beginning of HGTD
70 ps/hit after 4000 /fb

ALTIROC-A hybrid boards achieve time resolution of ~ 40 ps in average at cold


- Electronics jitter ~ 23 ps with a Laser
- TOA LSB extracted from test-beam data
- TOA LSB from calibration different from the one obtained with test-beam data, additional calibration of the TDC in situ at LHC under study

SUMMARY & LESSONS LEARNT: PROTOTYPES AND DESIGN METHODOLOGY ARE CRUCIAL



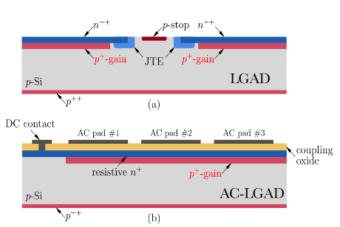
- ALTIROC-A (pre-production chip) fulfills the requirements => production of 225 wafers launched this summer
- Very challenging ASIC that results of ten years of development, both in design and characterization
 - Four earlier prototypes—the first two focused on thorough characterization of the Front-End with new LGAD detectors, and the next iterations targeting optimization of the digital architecture
 - ALTIROC2 (2020) was the first 225 channels full matrix LGAD readout chip with 1 GHz preamplifier with 4 pF detector capacitance = new territory in HEP
 - Joint optimization sensor + readout electronics
 - 7 FTE spread in 6 labs and stringent schedule and deadlines
 - Use of both DOT and AOT approaches
 - AOT: Analog 30 % of the chip, analog performance and floorplan crucial to guarantee analog performance at system level
 - DOT: Digital 70 % of the chip + 5 clock domains
 - Assembly done Full Digital on Top + UVM verification
 - Top level assembled with INNOVUS
 - Verilog models and lib files to be done for all analog/mixed blocks
 - Analog periphery treated as a macro block

More details about ALTIROC verification environment in this **TWEPP2023 talk**: https://indico.cern.ch/event/1255624/contributions/5443840/attachments/2725854/4737406/Verification%20Environment% 20for%20ALTIROC%20ASIC%20of%20the%20ATLAS%20High%20Granularity%20Timing%20Detector%20-%20Simone.pdf

Altiroc3 and A: Physical Implementation strategy

SUMMARY & LESSONS LEARNT: NEXT STEPS

Extensive measurements done on test bench, at wafer level, under irradiations, test beams are crucial


• The ALTIROC experience — along with other complex chips designed for HL-LHC upgrades —clearly highlights the crucial role of repeated, independent measurements for fully validating complex designs

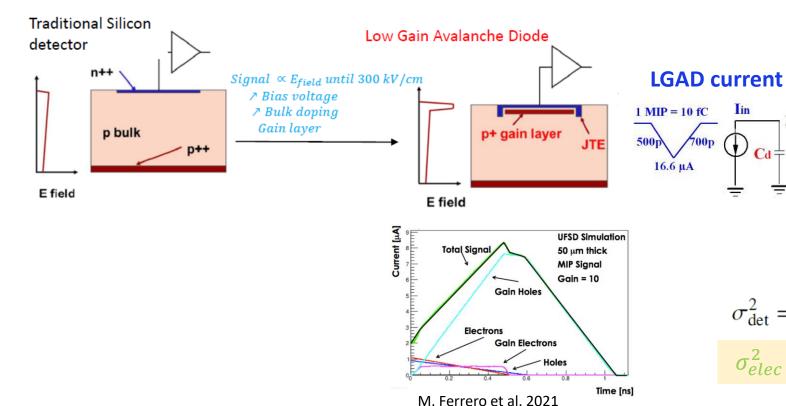
Key Learnings and Achievements

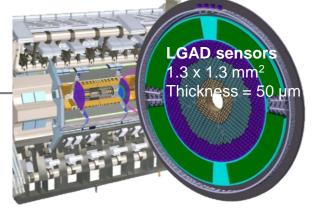
• Extensive experience gained in both human and technical aspects to successfully developed a chip combining high analog performance challenges and significant digital complexity with multiple clock domains

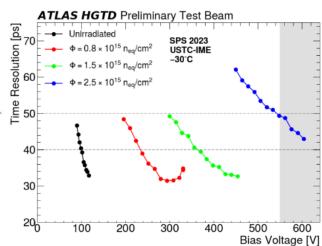
Looking Ahead

- Acquired expertise enables us to tackle next-generation timing chips in view of FCC, EIC with additional challenges such as streaming readout and power consumption reduced by a factor of 10
- Part of the ALTIROC team is now working on AC-LGAD detectors for PID detectors
 - Highly promising technology
 - Offers excellent **timing resolution** (30 ps) and very good **spatial resolution** (30 μ m using barycentering)

BACKUP SLIDES






HGTD sensors: Low Gain Avalanche Diodes

Time resolution <50 ps / MIP / sensor: beyond standard HEP silicon devices

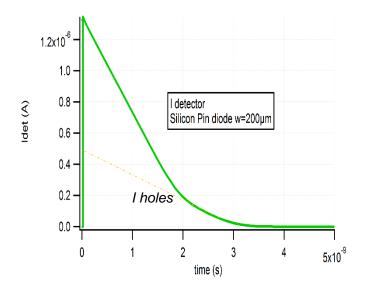
- ⇒ Low Gain Avalanche Detector (LGAD): n on p sensor with p-type multiplication layer
- ⇒ Low gain (G~10): improve signal slope

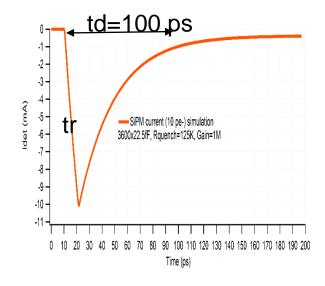
Performance with discrete electronics

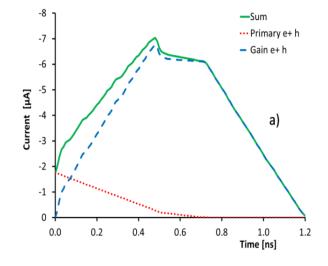
$$\sigma_{\text{det}}^2 = \sigma_{\text{Landau}}^2 + \sigma_{\text{elec}}^2$$

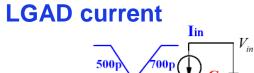
$$\sigma_{elec}^2 = \sigma_{jitter}^2 + \sigma_{TDC}^2 + \sigma_{clock}^2 + \sigma_{time-walk}^2$$

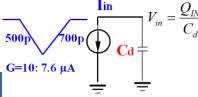
Can be corrected with ToT measurement

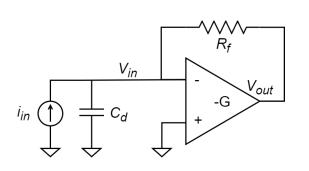


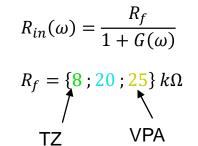

Signal: detector current

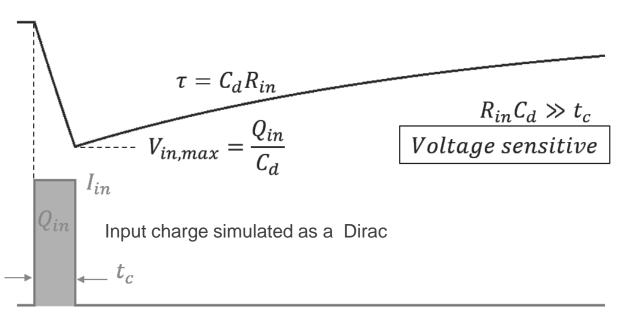

© sensor people "the beautiful risetime of the detector is spoilt by the electronics"

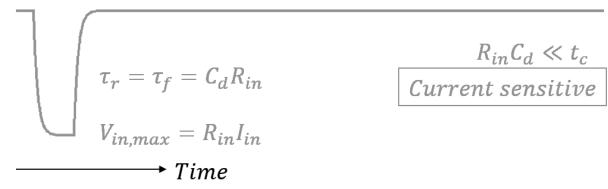

- <u>PN diode</u> w =200μm
- Very short rise time : tr~10ps
- Relatively long «drift time»: td~2ns
- SiPM detector (10pe-)
- very short rise time : tr~10 ps
- Short duration : td~100ps

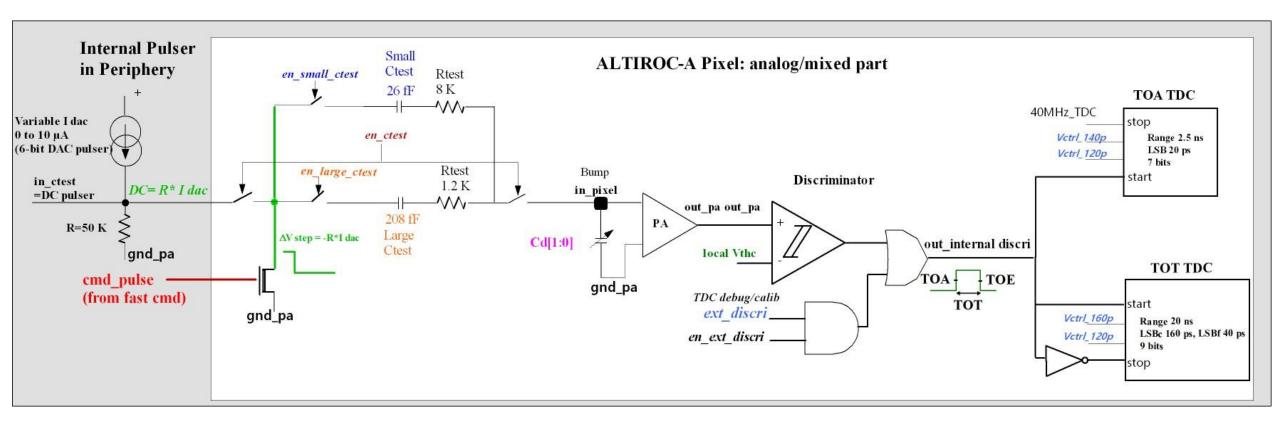

- LGAD sensor w =50μm
- rise time: tr~500ps
- « Decay time» : td~700ps



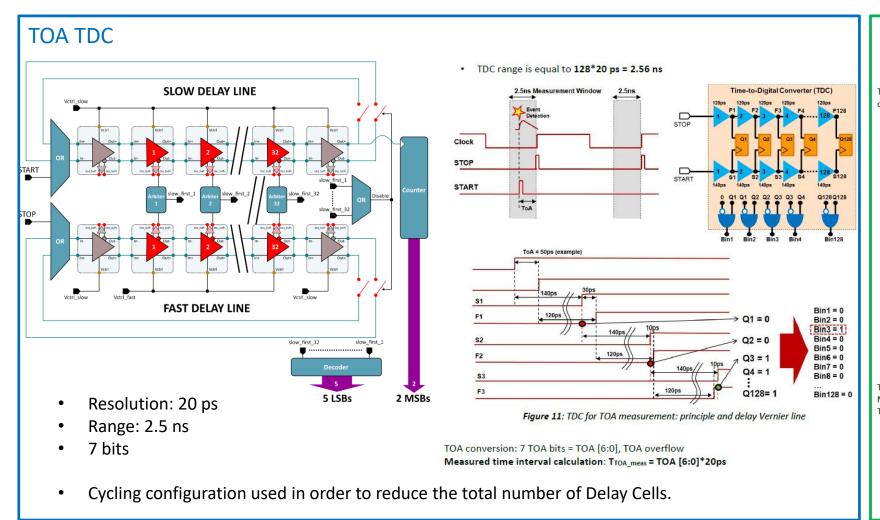


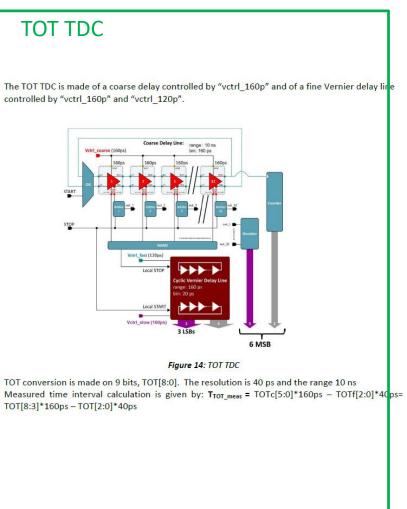



Preamplifier choice: Voltage or current amplifier?



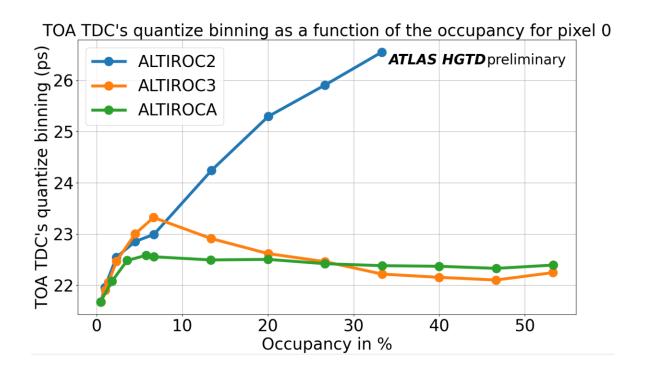
ALTIROC CHARACTERIZATION: INTERNAL CHARGE INJECTION and TDC CALIBRATION

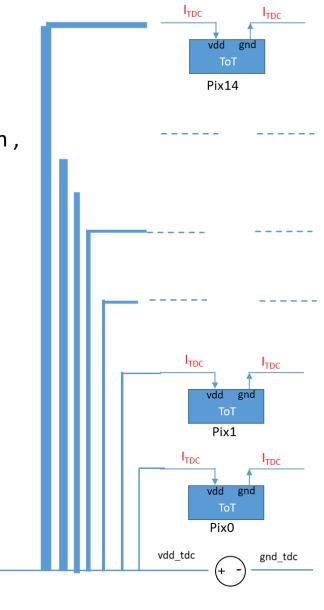

Internal pulser and Ctest capacitors: Injection system that mimics LGAD signals with input charges from 1 fC to 100 fC


Internal Cd (set by Slow Control) to mimic the sensor capacitance in case of ASIC alone tests

"ext discri" = digital signal made internally from the "CAL" fast command. Used to calibrate the TDC

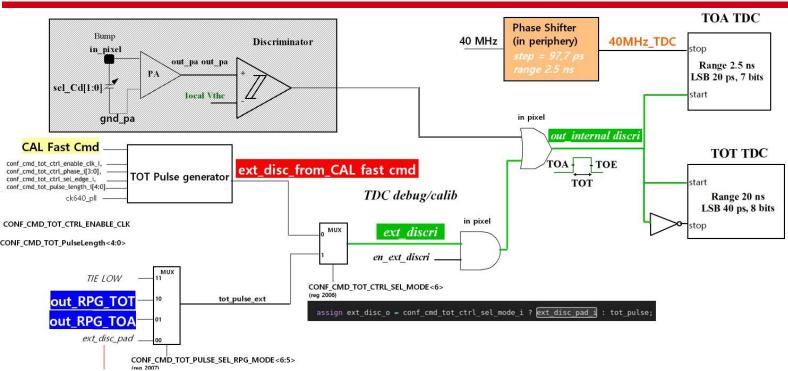
TOA TDC and TOT TDC

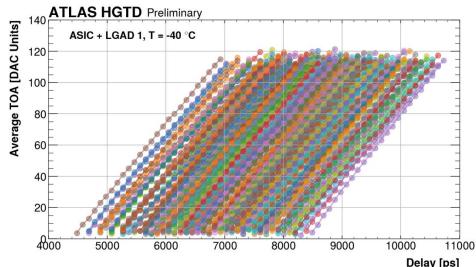



ALTIROCA PERFORMANCE: TOA TDC bin and IR drops

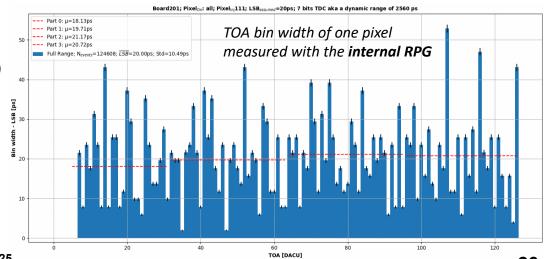
<u> MEGA</u>

- TOA TDC: Two Vernier lines (140 ps and 120 ps), TDC bin 20 ps
- TDC bin issues in ALTIROC2 related to V drops
- ⇒ separated TDC power bus for each column = Vdd_toa, vdd_tot, gnd_toa, gnd_tot per column , same R


More details in this TWEPP2024 talk: https://indico.cern.ch/event/1381495/contributions/5988493/attachments/2869323/5163702/TWEPP2024_Soulier.pdf

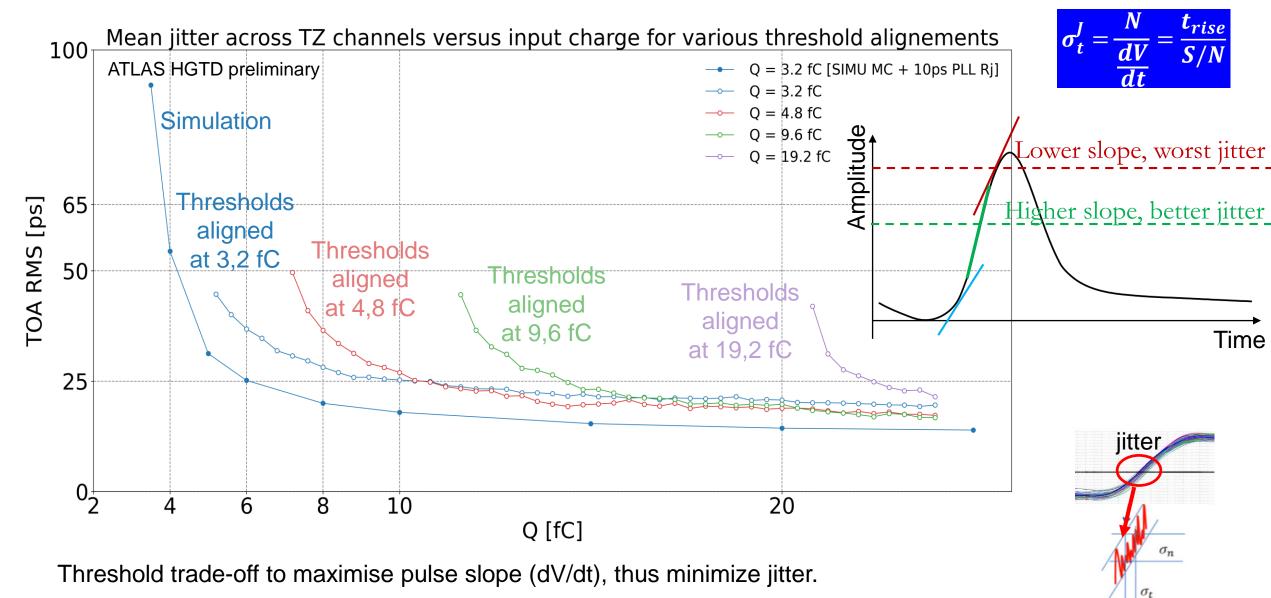


TDC Bin (=LSB) calibration: Delay scans and Random Phase Generator



Average Time Of Arrival (TOA) measured with the TDC as a function of the programmable delay using direct injection of a digital discriminator pulse at the input of the TDCs.

Each curve belong to one single channel of the matrix. The TOA bin (LSB) is extracted from the linear fit


Two calibration systems in ALTIROC

- Use of an «ext_disc» = created internally from the CAL fast command
 - use of the internal phase shifter to delay the 40 MHz ck used by the TOA TDC (97.7 ps steps)
 => measurements of the TOA quantization steps (TOA bin)
 - Varying the pulse width => measurements of the TOT quantization steps (TOT bin)
- Use of a Random Phase Generator (RPG) to measure the TDC DNL
 - Programmable VCO that generates programmable clocks asynchronous with the 40 MHz ck used by the TDC
 - The TDC distribution is a relative measurements of the TDC bin width

Jitter depends on the charge, but also on the discriminator thres.

