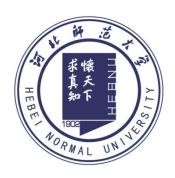
The 7th International Workshop on Future Tau Charm Facilities (FTCF2025)

Nov. 23-27, 2025, Huangshan

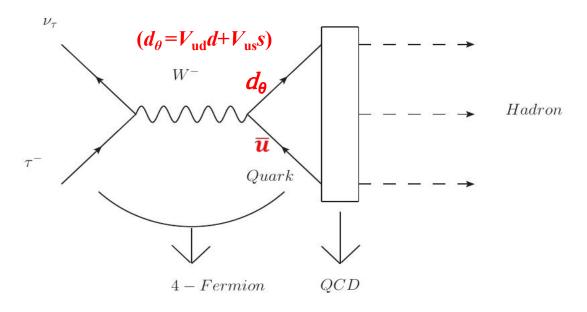
Two-meson and meson-axion production from tau lepton



Zhi-Hui Guo (郭 志辉)

Hebei Normal University (河北师范大学)

Hadronic tau decays: a unique feature for tau lepton



Hadronic V-A currents

$$\mathbf{H}_{\mu} = \langle H^{-} | \bar{u} \gamma_{\mu} (1 - \gamma_{5}) d_{\theta} e^{iL_{QCD}} | 0 \rangle$$

Chiral EFT is the low energy realization of QCD:

$$e^{i\mathcal{Z}(v_{\mu},a_{\mu},s,p)} = \int \mathcal{D}q\mathcal{D}\bar{q}\mathcal{D}G_{\mu} \ e^{i\int d^{4}x\mathcal{L}_{QCD}(v_{\mu},a_{\mu},s,p)} = \int \mathcal{D}u \ e^{i\int d^{4}x\mathcal{L}_{EFT}(v_{\mu},a_{\mu},s,p)}$$

$$\mathcal{L}^{QCD} = \mathcal{L}_0^{QCD} + \bar{q}\gamma^{\mu}(v_{\mu} + a_{\mu}\gamma_5)q - \bar{q}(s - i\gamma_5 p)q$$

 v_{μ} , a_{μ} , s, p are the external source fields.

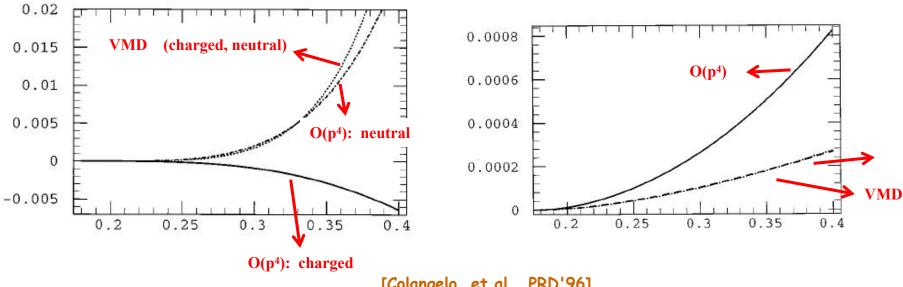
Chiral symmetry is RELEVANT to tau decays

Example: $\tau \rightarrow \nu_{\tau} \pi \pi \pi$ transition amplitudes in the low energy region VMD models do not automatically respect chiral symmetry.

$$J_{\alpha}=-\,i\frac{2\sqrt{2}}{3f_{\pi}}\,\mathrm{BW}_{a}(Q^{2})(B_{\rho}(s_{2})V_{1\alpha}+B_{\rho}(s_{1})V_{2\alpha}) \tag{Kuhn,Santamaria, ZPC'90}$$

$W_{\rm D}$ structure function

$W_{\rm SA}$ structure function (neutral channel)



[Colangelo, et al., PRD'96]

Resonance chiral theory implements the constraint of chiral symmetry from the very beginning in the construction of the Lagrangians.

Resonance chiral theory (RχT)

Chiral group: $G = SU(3)_L \times SU(3)_R$, $H = SU(3)_V$, $u(\phi) = G/H$

Resonances: $R \stackrel{G}{\Longrightarrow} h R h^{\dagger}, h \in H$

pNGB and external sources: $X = u_{\mu}, \chi_{\pm}, f_{\pm}^{\mu\nu}, h_{\mu\nu}$

Operators	Р	С	h.c.	chiral order
и	u^{\dagger}	u^T	u^{\dagger}	1
Γ_{μ}	Γ^{μ}	$-\Gamma_{\mu}{}^{\mathcal{T}}$	$-\Gamma_{\mu}$	p
u_{μ}	$-u^{\mu}$	$\textit{\textbf{u}}_{\mu}^{\textit{T}}$	u_{μ}	p
χ±	$\pm\chi_{\pm}$	$\chi^{ au}_{\pm}$	$\pm\chi_{\pm}$	p^2
$f_{\mu u\pm}$	$\pm f_{\pm}^{\mu u}$	$\mp \mathit{f}_{\mu u \pm}^{ \mathit{T}}$	$ extit{f}_{\mu u\pm}$	p^2
$h_{\mu u}$	$-\mathit{h}^{\mu u}$	$ extstyle extstyle h_{\mu u}^{ extstyle T}$	$ extstyle h_{\mu u}$	p^2

Operators	Р	С	h.c.
$V_{\mu u}$	$V^{\mu u}$	$-V_{\mu u}^{T}$	$V_{\mu u}$
$A_{\mu u}$	$-{\cal A}^{\mu u}$	${\sf A}^{\sf T}_{\mu\nu}$	${\cal A}_{\mu u}$
S	5	$\mathcal{S}^{\mathcal{T}}$	5
Р	-P	P^T	Р

Minimal R χ T Lagrangian [Ecker, et al., '89]

 $\mathcal{L}_{2P} = id_m \langle P \chi_- \rangle$.

$$\mathcal{L}_{2V} = \frac{F_{V}}{2\sqrt{2}} \langle V_{\mu\nu} f_{+}^{\mu\nu} \rangle + \frac{iG_{V}}{2\sqrt{2}} \langle V_{\mu\nu} [u^{\mu}, u^{\nu}] \rangle ,$$

$$\mathcal{L}_{2A} = \frac{F_{A}}{2\sqrt{2}} \langle A_{\mu\nu} f_{-}^{\mu\nu} \rangle ,$$

$$\mathcal{L}_{2S} = c_{d} \langle Su_{\mu} u^{\mu} \rangle + c_{m} \langle S\chi_{+} \rangle ,$$

Operators beyond minimal

[Cirigliano, et al., '04]:

$$\mathcal{L}_{\mathit{VAP}} = \lambda_1^{\mathit{VA}} \langle [V^{\mu
u}, A_{\mu
u}] \chi_-
angle + ... \,,$$

[Ruiz-Femenia, Pich and Portolés, '03]

$$\mathcal{L}_{VVP} = d_1 \varepsilon_{\mu\nu\rho\sigma} \langle \{V^{\mu\nu}, V^{\rho\alpha}\} \nabla_{\alpha} u^{\sigma} \rangle + \dots,$$

$$\mathcal{L}_{VJP} = \frac{c_1}{M_V} \varepsilon_{\mu\nu\rho\sigma} \langle \{V^{\mu\nu}, f_+^{\rho\alpha}\} \nabla_{\alpha} u^{\sigma} \rangle + \dots,$$

$$d_4 \varepsilon_{\mu\nu\rho\sigma} \langle \{\nabla^{\sigma} V^{\mu\nu}, V^{\rho\alpha}\} u_{\alpha} \rangle \qquad \mathbf{4}$$

QCD dynamics in RχT

- Low energy QCD: implemented from the construction of R χ T
- Intermediate energy: explicit resonance states
- High energy information: to match the same physical objects in R χ T and QCD, $\langle J(x_n) \cdot \cdot J(0) \rangle^{R\chi T} = \langle J(x_n) \cdot \cdot J(0) \rangle^{QCD}$.

For example: $\pi\pi$ vector form factor

$$egin{array}{lll} \left[\mathcal{F}^{
m v}_{\pi\pi}(q^2)
ight]^{
m R\chi T} &=& 1+rac{F_VG_V}{F^2}rac{q^2}{M_V^2-q^2}\,, \ \left[\mathcal{F}^{
m v}_{\pi\pi}(q^2)
ight]^{
m QCD} &
ightarrow &0, & {
m for} \; q^2
ightarrow \infty \end{array}$$

This leads to

$$[\mathcal{F}^{\mathsf{v}}_{\pi\pi}(q^2)]^{\mathrm{R}\chi\mathrm{T}} = [\mathcal{F}^{\mathsf{v}}_{\pi\pi}(q^2)]^{\mathrm{QCD}} \implies \mathsf{F}_{\mathsf{V}}\mathsf{G}_{\mathsf{V}} = \mathsf{F}^2$$

Quick glance at axion/axion-like particle (ALP)

$$\mathcal{L}_{\text{QCD}} = \sum_{q} \bar{q} (i \not \! D - m_q) q - \frac{1}{4} G_{\mu\nu} G^{\mu\nu} + \theta \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

- > Strong CP problem: $\theta < 10^{-10}$, constrained by neutron EDM.
- Peccei-Quinn mechanism: θ promoted as a dynamical field, i.e., axion, corresponding to a pseudo-Nambu-Goldstone boson from the spontaneous breaking of the U(1)_{PO} symmetry [Peccei, Quinn, PRL'77] [Weinberg, PRL'78] [Wilzeck, PRL'78]
- > Axion: intensively and broadly studied in particle physics
- > Model-independent axion interaction:

$$rac{a}{f_a}rac{lpha_s}{8\pi}G_{\mu
u} ilde{G}^{\mu
u}$$
 , inevitably introducing the axion-hadron interactions !

 \triangleright Axion-like particle (ALP): non-vanishing bare mass $m_{a,0}$

$$\frac{1}{2}\partial_{\mu}a\partial^{\mu}a - \frac{1}{2}m_{a,0}^{2}a^{2} + \frac{a}{f_{a}}\frac{\alpha_{s}}{8\pi}G_{\mu\nu}\tilde{G}^{\mu\nu}$$

Previous studies of ALP in tau decays focused on the axion-lepton interacion.
 Model-independent ALP interaction has not been studied in the contex of tau decays. Our work fills this gap.

Unified study of $\tau \rightarrow P_1P_2(P+axion) v_{\tau}$

[Hao, Duan, ZHG, 2507.00383, to appear in FOP]

$$\langle P_1 P_2 | \bar{D} \gamma^\mu u | 0 \rangle = \left[(p_2 - p_1)^\mu - \frac{\Delta_{P_2 P_1}}{s} q^\mu \right] F_+^{P_1 P_2}(s) + \frac{\Delta_{Du}}{s} q^\mu \widehat{F}_0^{P_1 P_2}(s)$$
 (scalar FF)

$$\Delta_{P_2P_1} = m_{P_2}^2 - m_{P_1}^2$$
, $\Delta_{Du} = B_0(m_D - m_u)$, $q_\mu = (p_1 + p_2)_\mu$, $s = q^2$.

Invariant-mass distribution of P₁P₂

$$\frac{d\Gamma_{\tau \to P_1 P_2 \nu_{\tau}}}{d\sqrt{s}} = \frac{G_F^2 M_{\tau}^3}{48\pi^3 s} S_{\text{EW}} |V_{uD}|^2 \left(1 - \frac{s}{M_{\tau}^2}\right) \left\{ \left(1 + \frac{2s}{M_{\tau}^2}\right) q_{P_1 P_2}^3(s) \left|F_+^{P_1 P_2}(s)\right|^2 + \frac{3\Delta_{Du}^2}{4s} q_{P_1 P_2}(s) \left|\widehat{F}_0^{P_1 P_2}(s)\right|^2 \right\}$$

Forward-Backward (FB) asymmetry distribution

$$A_{FB}(s) = \frac{\int_{0}^{1} d \cos \alpha \frac{d^{2}\Gamma_{\tau \to P_{1}P_{2}\nu\tau}}{d\sqrt{s}d \cos \alpha} - \int_{-1}^{0} d \cos \alpha \frac{d^{2}\Gamma_{\tau \to P_{1}P_{2}\nu\tau}}{d\sqrt{s}d \cos \alpha}}{\int_{0}^{1} d \cos \alpha \frac{d^{2}\Gamma_{\tau \to P_{1}P_{2}\nu\tau}}{d\sqrt{s}d \cos \alpha} + \int_{-1}^{0} d \cos \alpha \frac{d^{2}\Gamma_{\tau \to P_{1}P_{2}\nu\tau}}{d\sqrt{s}d \cos \alpha}} = \frac{\Delta_{Du} q_{P_{1}P_{2}}(s) \Re \left[F_{+}^{P_{1}P_{2}}(s) \widehat{F}_{0}^{P_{1}P_{2}*}(s) \right]}{\frac{2\sqrt{s}}{3} \left(1 + \frac{2s}{M_{\tau}^{2}} \right) q_{P_{1}P_{2}}^{2}(s) \left| F_{+}^{P_{1}P_{2}}(s) \right|^{2} + \frac{\Delta_{Du}^{2}}{2\sqrt{s}} \left| \widehat{F}_{0}^{P_{1}P_{2}}(s) \right|^{2}}{\frac{2\sqrt{s}}{3} \left(1 + \frac{2s}{M_{\tau}^{2}} \right) q_{P_{1}P_{2}}^{2}(s) \left| F_{+}^{P_{1}P_{2}}(s) \right|^{2} + \frac{\Delta_{Du}^{2}}{2\sqrt{s}} \left| \widehat{F}_{0}^{P_{1}P_{2}}(s) \right|^{2}}{\frac{2\sqrt{s}}{3} \left(1 + \frac{2s}{M_{\tau}^{2}} \right) q_{P_{1}P_{2}}^{2}(s) \left| F_{+}^{P_{1}P_{2}}(s) \right|^{2} + \frac{\Delta_{Du}^{2}}{2\sqrt{s}} \left| \widehat{F}_{0}^{P_{1}P_{2}}(s) \right|^{2}}{\frac{2\sqrt{s}}{3} \left(1 + \frac{2s}{M_{\tau}^{2}} \right) q_{P_{1}P_{2}}^{2}(s) \left| F_{+}^{P_{1}P_{2}}(s) \right|^{2}}{\frac{2\sqrt{s}}{3} \left(1 + \frac{2s}{M_{\tau}^{2}} \right) q_{P_{1}P_{2}}^{2}(s) \left| F_{+}^{P_{1}P_{2}}(s) \right|^{2}}{\frac{2\sqrt{s}}{3} \left(1 + \frac{2s}{M_{\tau}^{2}} \right) q_{P_{1}P_{2}}^{2}(s) \left| F_{+}^{P_{1}P_{2}}(s) \right|^{2}}{\frac{2\sqrt{s}}{3} \left(1 + \frac{2s}{M_{\tau}^{2}} \right) q_{P_{1}P_{2}}^{2}(s) \left| F_{+}^{P_{1}P_{2}}(s) \right|^{2}}{\frac{2\sqrt{s}}{3} \left(1 + \frac{2s}{M_{\tau}^{2}} \right) q_{P_{1}P_{2}}^{2}(s) \left| F_{+}^{P_{1}P_{2}}(s) \right|^{2}}{\frac{2\sqrt{s}}{3} \left(1 + \frac{2s}{M_{\tau}^{2}} \right) q_{P_{1}P_{2}}^{2}(s) \left| F_{+}^{P_{1}P_{2}}(s) \right|^{2}}{\frac{2\sqrt{s}}{3} \left(1 + \frac{2s}{M_{\tau}^{2}} \right) q_{P_{1}P_{2}}^{2}(s) \left| F_{+}^{P_{1}P_{2}}(s) \right|^{2}}{\frac{2\sqrt{s}}{3} \left(1 + \frac{2s}{M_{\tau}^{2}} \right) q_{P_{1}P_{2}}^{2}(s) \left| F_{+}^{P_{1}P_{2}}(s) \right|^{2}}{\frac{2\sqrt{s}}{3} \left(1 + \frac{2s}{M_{\tau}^{2}} \right) q_{P_{1}P_{2}}^{2}(s) \left| F_{+}^{P_{1}P_{2}}(s) \right|^{2}}{\frac{2\sqrt{s}}{3} \left(1 + \frac{2s}{M_{\tau}^{2}} \right) q_{P_{1}P_{2}}^{2}(s) \left| F_{+}^{P_{1}P_{2}}(s) \right|^{2}}{\frac{2\sqrt{s}}{3} \left(1 + \frac{2s}{M_{\tau}^{2}} \right) q_{P_{1}P_{2}}^{2}(s) \left| F_{+}^{P_{1}P_{2}}(s) \right|^{2}}{\frac{2\sqrt{s}}{3} \left(1 + \frac{2s}{M_{\tau}^{2}} \right) q_{P_{1}P_{2}}^{2}(s) \left| F_{+}^{P_{1}P_{2}}(s) \right|^{2}}{\frac{2\sqrt{s}}{3} \left(1 + \frac{2s}{M_{\tau}^{2}} \right) q_{P_{1}P_{2}}^{2}(s) \left| F_{+}^{P_{1}P_{2}}(s) \right|^{2}}{\frac{2\sqrt{s}}{3} \left(1 + \frac{2s}{M_{\tau}$$

 α : angle between the momenta of P_1 and τ in the P_1P_2 rest frame

 $\tau \to \pi^-\pi^0 v_\tau$: $\Delta_{PP} \to 0$ (Isospin breaking term), scalar F_0 negligible, vector F_+ dominant!

 $\tau \to K\pi\nu_{\tau}$: $\Delta_{PP}\neq 0$, both scalar F_0 and vector F_+ are relevant!

Calculation of P_1P_2 / Pa form factors

Generic effective axion Lagrangian for light-flavor quarks

$$\mathcal{L}_{\text{QCD}}^{\text{axion}} = \bar{q}(i\not\!\!D - M_q)q - \frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \frac{1}{2}\partial_{\mu}a\partial^{\mu}a - \frac{1}{2}m_{a,0}^2a^2 + \left|\frac{a}{f_a}\frac{\alpha_s}{8\pi}G_{\mu\nu}\tilde{G}^{\mu\nu}\right|$$

- (1) Remove the $\it aG\widetilde{G}$ term via the quark axial transformation: $q \to e^{i \frac{a}{2f_a} \gamma_5 Q_a} q$
- (2) Alternatively, one can also explicitly keep the $aG\widetilde{G}$ term and match it to Chiral EFT Reminiscent: QCD U(1)_A anomaly that is caused by topological charge density $\omega(x) = \alpha_s G_{\mu\nu} \tilde{G}^{\mu\nu}/(8\pi)$, is responsible for the massive singlet η_0 .

Axion could be similarly included as the η_0 mass via the U(3) χ PT:

$$\mathcal{L}^{\text{LO}} = \frac{F^2}{4} \langle u_{\mu} u^{\mu} \rangle + \frac{F^2}{4} \langle \chi_{+} \rangle + \frac{F^2}{12} M_0^2 X^2$$

$$U = u^2 = e^{i\frac{\sqrt{2}\Phi}{F}}, \qquad \chi = 2B(s+ip), \qquad \chi_{\pm} = u^{\dagger} \chi u^{\dagger} \pm u \chi^{\dagger} u^{-\Phi} = \begin{pmatrix} \frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta_8 + \frac{1}{\sqrt{3}} \eta_0 & \pi^+ & K^+ \\ \pi^- & \frac{-1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta_8 + \frac{1}{\sqrt{3}} \eta_0 & K^0 \\ K^- & \overline{K}^0 & \frac{-2}{\sqrt{6}} \eta_8 + \frac{1}{\sqrt{3}} \eta_0 \end{pmatrix}$$

$$u_{\mu}=iu^{\dagger}D_{\mu}Uu^{\dagger}\,,\quad D_{\mu}U=\partial_{\mu}U-i(v_{\mu}+a_{\mu})U\,+iU(v_{\mu}-a_{\mu}) \qquad X=\log\left(\det U\right)-i\frac{a}{f_{a}}$$

- Q_a is not needed in U(3) χ PT.
- δ expansion scheme: $\delta \sim O(p^2) \sim O(m_q) \sim O(1/N_c)$; $M_0^2 \sim O(1/N_c)$.
- Axion interactions enter via the axion-meson mixing terms at LO.

Calculation of P_1P_2 / Pa form factors

Relevant Resonance Chiral Lagrangians

$$\mathcal{L}^{\text{LO}} = \frac{F^2}{4} \langle u_{\mu} u^{\mu} \rangle + \frac{F^2}{4} \langle \chi_{+} \rangle + \frac{F^2}{12} M_0^2 X^2 \qquad \mathcal{L}_V = \frac{F_V}{2\sqrt{2}} \langle V_{\mu\nu} f_{+}^{\mu\nu} \rangle + \frac{iG_V}{\sqrt{2}} \langle V_{\mu\nu} u^{\mu} u^{\nu} \rangle,$$

$$\mathcal{L}^{\text{NLO,U(3)}}_{\Lambda} = -\frac{F^2 \Lambda_1}{12} D^{\mu} X D_{\mu} X - \frac{F^2 \Lambda_2}{12} X \langle \chi_{-} \rangle \qquad \mathcal{L}_S = c_d \langle S u_{\mu} u^{\mu} \rangle + c_m \langle S \chi_{+} \rangle,$$

$$\downarrow S \qquad \qquad \downarrow S \qquad \qquad \downarrow$$

• Mixing relations of π^0 - η - η '-a (axion) at NLO

(a)

[Gao,ZHG,Oller,Zhou, JHEP'23] [Gao,Hao,ZHG,Oller,Zhou, EPJC'25]

$$\begin{pmatrix} \hat{\pi}^0 \\ \hat{\eta} \\ \hat{\eta}' \\ \hat{a} \end{pmatrix} = \begin{pmatrix} 1 + z_{11} & c_{\theta}(-v_{12} + z_{12}) + s_{\theta}(-v_{13} + z_{13}) & -s_{\theta}(-v_{12} + z_{12}) + c_{\theta}(-v_{13} + z_{13}) & -v_{14} + z_{14} \\ v_{12} + z_{21} & c_{\theta}(1 + z_{22}) + s_{\theta}(z_{23} - v_{23}) & -s_{\theta}(1 + z_{22}) + c_{\theta}(z_{23} - v_{23}) & -v_{24} + z_{24} \\ v_{13} + z_{31} & c_{\theta}(z_{32} + v_{23}) + s_{\theta}(1 + z_{33}) & -s_{\theta}(z_{32} + v_{23}) + c_{\theta}(1 + z_{33}) & -v_{34} + z_{34} \\ v_{41} + z_{41} & c_{\theta}(v_{42} + z_{42}) + s_{\theta}(v_{43} + z_{43}) & -s_{\theta}(v_{42} + z_{42}) + c_{\theta}(v_{43} + z_{43}) & 1 + v_{44} + z_{44} \end{pmatrix} \begin{pmatrix} \pi^0 \\ \eta_8 \\ \eta_0 \\ a \end{pmatrix}$$

(b)

 v_{ij} : LO terms; z_{ij} : NLO terms (L₅, L₈, Λ_1 , Λ_2) or [(L₅, L₈)~ ($c_d c_m$, $c_m c_m$)/ M^2_S , Λ_1 , Λ_2]

> Scalar form factor $\langle P_1 P_2 | (m_D - m_u) \bar{D}u | 0 \rangle$

$$\Delta_{du} = B_0(m_d - m_u) = \Delta_{du}^{\text{Phy}} \left\{ 1 + \frac{m_K^2}{F^2} \left[\frac{16c_m(c_d - c_m)}{M_S^2} + \frac{16c'_m(c'_d - c'_m)}{M_{S'}^2} \right] \right\}$$

$$\Delta_{du}^{\text{Phy}} = m_{K^0}^2 - m_{K^+}^2 - (m_{\pi^0}^2 - m_{\pi^+}^2)$$

$$(m_d - m_u)\langle \pi^- P | \bar{d}u | 0 \rangle = \Delta_{du}^{\text{Phy}} F_0^{\pi^- P}(s) \qquad \qquad \widehat{F}_0^{\pi^- P}(s) = \frac{\Delta_{du}^{\text{Phy}}}{\Delta_{du}} F_0^{\pi^- P}(s)$$

$$\langle \pi^{-}P|\bar{d}\gamma^{\mu}u|0\rangle = \left[(p_{P}-p_{\pi})^{\mu} - \frac{\Delta_{P\pi}}{s}q^{\mu}\right]F_{+}^{\pi^{-}P}(s) + \frac{\Delta_{du}^{\text{Phy}}}{s}q^{\mu}F_{0}^{\pi^{-}P}(s)$$

 \triangleright Finiteness of the above expression at s = 0 requires

$$F_{+}^{\pi^{-}(\eta,\eta',a)}(0) = \frac{\Delta_{du}^{\text{Phy}}}{\Delta_{(\eta,\eta',a)\pi}} F_{0}^{\pi^{-}(\eta,\eta',a)}(0)$$

✓ Non-trivial confirmation is verified in chiral EFT!

Some explicit expressions for Form Factors

VFF-ππ

$$F_{+}^{\pi^{-}\pi^{0}}(s) = -\frac{\sqrt{2}}{F^{2}}G_{\text{LO}+\rho \,\text{Ex}}(s)$$

$$G_{\text{LO}+\rho \,\text{Ex}}(s) = \frac{G_{V}F_{V}s + F^{2}(M_{\rho}^{2} - s)}{M_{\rho}^{2} - s - iM_{\rho}\Gamma_{\rho}(s)} - \frac{G_{V}'F_{V}'s}{M_{\rho'}^{2} - s - iM_{\rho'}\Gamma_{\rho'}(s)} - \frac{G_{V}'F_{V}'s}{M_{\rho''}^{2} - s - iM_{\rho''}\Gamma_{\rho''}(s)},$$

$$\Gamma_{\rho}(s) = \frac{M_{\rho}s}{96\pi F_{\pi}^{2}} \left[\sigma_{\pi\pi}^{3}(s) + \frac{1}{2} \sigma_{KK}^{3}(s) \right], \quad \Gamma_{\rho',\rho''}(s) = \Gamma_{\rho',\rho''} \frac{s}{M_{\rho',\rho''}^{2}} \frac{\sigma_{\pi\pi}^{3}(s)}{\sigma_{\pi\pi}^{3}(M_{\rho',\rho''}^{2})}, \quad \sigma_{P_{1}P_{2}}(s) = \frac{2q_{P_{1}P_{2}}(s)}{\sqrt{s}} \theta[s - (m_{P_{1}} + m_{P_{2}})^{2}]$$

• VFF- $\pi\eta/\pi\eta$ '/ πa

$$F_{+}^{\pi^{-}\eta}(s) = -\frac{\sqrt{2}v_{12}}{F^{2}}G_{\text{LO}+\rho \text{Ex}}(s) - \sqrt{2}\left(y_{12} - v_{13}y_{23}^{(0)}\right),$$

$$F_{+}^{\pi^{-}\eta'}(s) = -\frac{\sqrt{2}v_{13}}{F^{2}}G_{\text{LO}+\rho \text{Ex}}(s) - \sqrt{2}\left(y_{13} + v_{12}y_{23}^{(0)}\right),$$

$$F_{+}^{\pi^{-}a}(s) = -\frac{\sqrt{2}v_{41}}{F^{2}}G_{\text{LO}+\rho \text{Ex}}(s) - \sqrt{2}\left(y_{14} + v_{12}y_{24}^{(0)} + v_{13}y_{34}^{(0)}\right)$$

• SFF-πη/πη'/π**a**

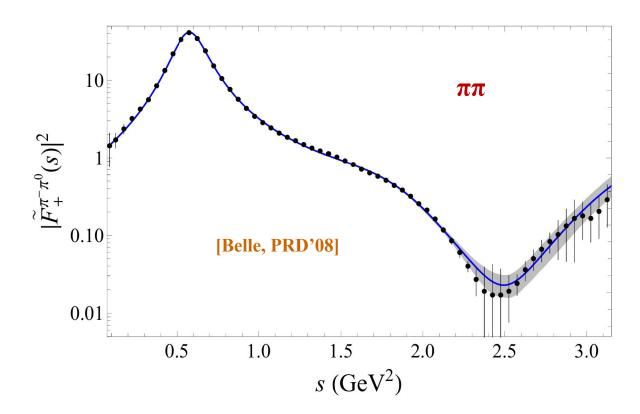
$$\begin{split} F_0^{\pi^-\eta}(s) &= \sqrt{\frac{2}{3}}(c_\theta - \sqrt{2}s_\theta) + \frac{1}{\sqrt{3}}(\Lambda_1 - 2\Lambda_2)s_\theta - \frac{1}{\sqrt{3}}y_{23}(2c_\theta + \sqrt{2}s_\theta) + 4\sqrt{\frac{2}{3}}\frac{c_\theta - \sqrt{2}s_\theta}{F^2} \Big\{ \\ & \left[\frac{c_m(c_m - c_d)2m_\pi^2 + c_mc_d(s + m_\pi^2 - m_\eta^2)}{M_{a_0}^2 - s - iM_{a_0}\Gamma_{a_0}(s)} - \frac{2c_m(c_m - c_d)(2m_K^2 - m_\pi^2)}{M_S^2} \right] \\ & + \left[c_{m,d}, M_{a_0}, \Gamma_{a_0}, M_S \rightarrow c'_{m,d}, M_{a'_0}, \Gamma_{a'_0}, M_{S'} \right] \Big\} \,, \\ F_0^{\pi^-\eta}(s) &= \sqrt{\frac{2}{3}}(c_\theta - \sqrt{2}s_\theta) + \frac{1}{\sqrt{3}}(\Lambda_1 - 2\Lambda_2)s_\theta - \frac{1}{\sqrt{3}}y_{23}(2c_\theta + \sqrt{2}s_\theta) + 4\sqrt{\frac{2}{3}}\frac{c_\theta - \sqrt{2}s_\theta}{F^2} \Big\{ \\ & \left[\frac{c_m(c_m - c_d)2m_\pi^2 + c_mc_d(s + m_\pi^2 - m_\eta^2)}{M_{a_0}^2 - s - iM_{a_0}\Gamma_{a_0}(s)} - \frac{2c_m(c_m - c_d)(2m_K^2 - m_\pi^2)}{M_S^2} \right] \\ & + \left[c_{m,d}, M_{a_0}, \Gamma_{a_0}, M_S \rightarrow c'_{m,d}, M_{a'_0}, \Gamma_{a'_0}, M_{S'} \right] \Big\} \,, \\ F_0^{\pi^-a}(s) &= \frac{(\sqrt{2}c_\theta - 2s_\theta)}{\sqrt{3}}v_{24}^{(0)} + \frac{(2c_\theta + \sqrt{2}s_\theta)}{\sqrt{3}}v_{34}^{(0)} - \frac{2}{\sqrt{3}}\left(s_\theta v_{24}^{(0)} - c_\theta v_{34}^{(0)} + \frac{F}{\sqrt{6}f_a}\right)(\Lambda_2 - \frac{1}{2}\Lambda_1) \\ & + \frac{(\sqrt{2}c_\theta - 2s_\theta)}{\sqrt{3}}y_{24}^{(0)} + \frac{(2c_\theta + \sqrt{2}s_\theta)}{\sqrt{3}}y_{34}^{(0)} + \frac{4(\sqrt{2}c_\theta - 2s_\theta)v_{24}^{(0)} + 4(2c_\theta + \sqrt{2}s_\theta)v_{34}^{(0)}}{\sqrt{3}F^2} \Big\{ \\ & \left[\frac{2c_m^2 m_\pi^2 + c_mc_d(s - m_\pi^2 - m_\pi^2)}{M_{a_0}^2 - s - iM_{a_0}\Gamma_{a_0}(s)} + \frac{2c_m(c_d - c_m)(2m_K^2 - m_\pi^2)}{M_S^2} \right] \\ & + \left[c_{m,d}, M_{a_0}, \Gamma_{a_0}, M_S \rightarrow c'_{m,d}, M_{a'_0}, \Gamma_{a'_0}, M_{S'} \right] \Big\} \,. \end{split}$$

Fits to experimental spectra and BRs

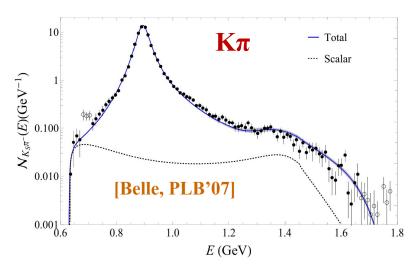
$G_V F_V({ m GeV}^2) \times 10^3$	$10.26^{+0.01}_{-0.01}$	$G_V' F_V'(\text{GeV}^2) \times 10^3$	$0.64^{+0.03}_{-0.02}$
$G_V'' F_V''(\text{GeV}^2) \times 10^3$	$-0.94^{+0.05}_{-0.05}$	$M_{ ho}({ m GeV})$	$0.7738^{+0.0003}_{-0.0003}$
$M_{ ho'}({ m GeV})$	$1.409^{+0.004}_{-0.004}$	$\Gamma_{ ho'}({ m GeV})$	$0.338^{+0.012}_{-0.010}$
$M_{ ho^{\prime\prime}}({ m GeV})$	$1.842^{+0.012}_{-0.013}$	$\Gamma_{\rho''}({ m GeV})$	$0.268^{+0.025}_{-0.026}$
$c_m'({ m GeV})$	$0.053^{+0.007}_{-0.009}$	$M_{K^*}({ m GeV})$	$0.8956^{+0.0002}_{-0.0002}$
$\Gamma_{K^*}(\mathrm{GeV})$	$0.0477^{+0.0005}_{-0.0005}$	$M_{K^{*'}}(\mathrm{GeV})$	$1.339^{+0.009}_{-0.009}$
$\overline{B}_{K_S\pi^-}\times 10^3$	$3.98^{+0.04}_{-0.04}$	$\overline{B}_{K^-\eta} imes 10^4$	$1.34^{+0.04}_{-0.04}$
$\chi^2/\mathrm{d.o.f}$	271.5/(182 - 14) = 1.61		

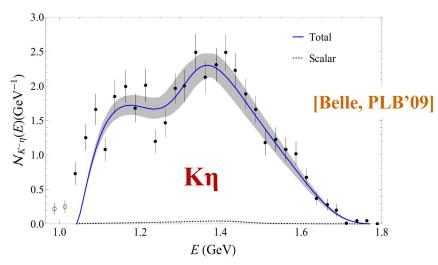
$$c_m c_d + c'_m c'_d = \frac{F^2}{4}$$
 $c_m = 27 \text{ MeV}, c_d = 15 \text{ MeV}$ [ZHG,Oller, PRD'11]

Parameters for $a_0(980)/a_0(1450)/{\rm K_0}^*(700)//{\rm K_0}^*(1430)$ are fixed to their pole positions .



- Crucial inputs to address muon g-2
- ➤ Most precise spectra is from Belle; but most precise BR is from ALEPH: 25.47(13)%
- > Coherent precise measurements of both spectra and BR from one Exp would be invaluable!

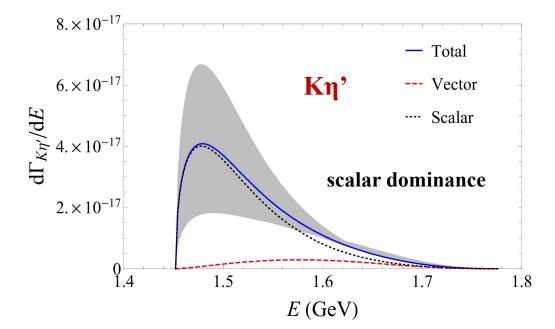




 F_{+}^{KP} : K*, K*(1410), K*(1680)

 F_0^{KP} : κ , $K^*_0(1430)$

prediction to Kn'

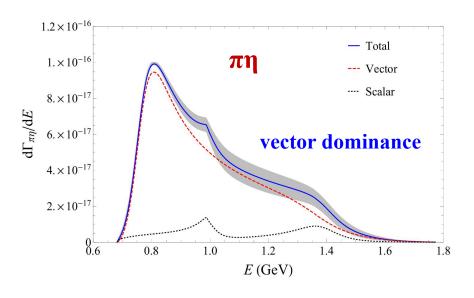


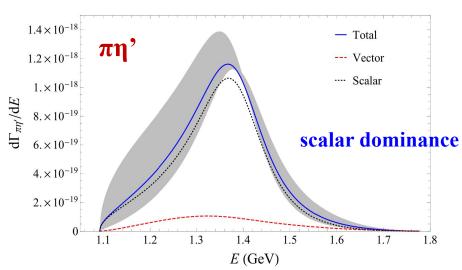
BR(K-
$$\eta$$
')^{Theo} = (2.0±1.0)×10⁻⁶
BR(K- η ')^{Exp, BaBar} < 2.4×10⁻⁶

Predictions to $\tau \to \pi^- \eta^{(\prime)} v_{\tau}$ (Cabibbo allowed): second-class currents

Processes driven by second-class currents are suppressed by isospin breaking:

$$\langle \pi^{-}P|\bar{d}\gamma^{\mu}u|0\rangle = \left[(p_{P}-p_{\pi})^{\mu} - \frac{\Delta_{P\pi}}{s}q^{\mu}\right]F_{+}^{\pi^{-}P}(s) + \frac{\Delta_{du}^{\text{Phy}}}{s}q^{\mu}F_{0}^{\pi^{-}P}(s)$$

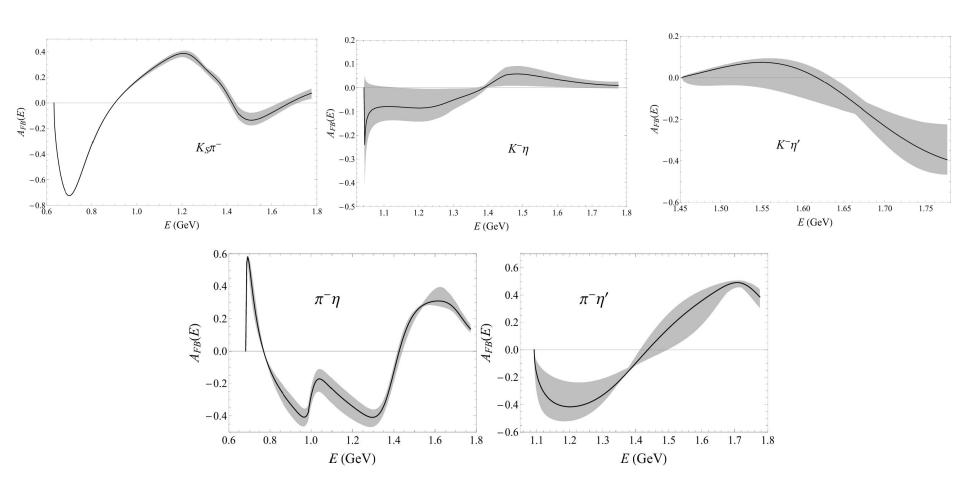




Channel	Total	Vector	Scalar	Exp Limits
$\tau^- \to \pi^- \eta \nu_\tau $ $(\times 10^5)$	$1.63^{+0.14}_{-0.14}$	$1.43^{+0.18}_{-0.21}$	$0.20^{+0.07}_{-0.04}$	< 9.9 (BaBar) [69] < 7.3 (Belle) [70]
$\tau^- \to \pi^- \eta' \nu_\tau \tag{\times 10^7}$	$1.17^{+0.36}_{-0.07}$	$0.14^{+0.09}_{-0.08}$	$1.03^{+0.44}_{-0.16}$	< 40 (BaBar) [71]

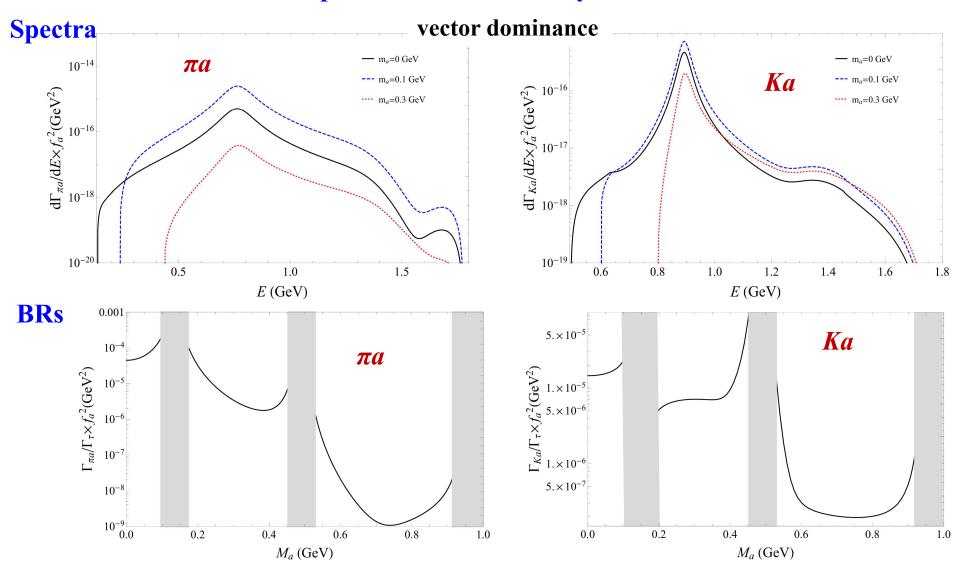
Predictions to Forward-Backward asymmetries

$$\frac{\Delta_{Du} q_{P_1 P_2}(s) \Re \left[F_+^{P_1 P_2}(s) \widehat{F}_0^{P_1 P_2 *}(s) \right]}{\frac{2\sqrt{s}}{3} \left(1 + \frac{2s}{M_\tau^2} \right) q_{P_1 P_2}^2(s) \left| F_+^{P_1 P_2}(s) \right|^2 + \frac{\Delta_{Du}^2}{2\sqrt{s}} \left| \widehat{F}_0^{P_1 P_2}(s) \right|^2}$$



 \triangleright Measurement on A_{FB} can determine the curcial inputs for CPV

Predictions to ALP-meson production in tau decays



> Hadronic resonances enhance the decay widths involving ALPs by around one order of magnitudes, with respect to the results from leading-order χPT.

Summary

Two-boson tau decays are interesting in many aspects:

- $\tau^- \rightarrow \nu_{\tau} \pi^0 \pi^-$ [crucial inputs for muon g-2];
- $\tau^- \rightarrow \nu_{\tau}(K\pi, K\eta, K\eta')^-$ [V_{us}, strange hadron resonances, possible CPV];
- Second-class currents: $\tau^- \rightarrow v_{\tau} \pi^- \eta / \eta^*$;
- Forward-Backward asymmetries in the τ decays;
- Significant enhancement of axion production with hadronic resonances is observed in $\tau^- \rightarrow v_{\tau} a \ K^-/\pi^-$.

Thanks very much for your listening!