Heavy Quark Masses From Calibrated Uncertainty

Pere Masjuan Universitat Autònoma de Barcelona

(masjuan@ifae.es)

Work in collaboration with Jens Erler and Hubert Spiesberger Eur. Phys. J. C 77 (2017) 2, 99 + Eur. Phys. J. C 82 (2022) 11, 1023

The 7th International Workshop
on Future Tau Charm Facilities
FTCF2025, Huangshan

November 23rd - 27th, 2025

Outline

- Motivation and Introduction
- Using Sum Rules to extract mQ
 - overview
 - our proposal for charm (and bottom)
- Impact on the muon g-2
- Conclusions and outlook

Higgs decay
$$\sim \overline{m_b}(M_H)^2$$

"g-2" of the muon:

Hadronic Vacuum Polarization needs quark masses

$$\Gamma(B \to X_u l \nu) \sim G_F^2 m_b^5 |V_{ub}|^2$$

$$B \to K(^*)\ell\ell$$

$$D \to K\ell\nu$$

(pQCD contributions on FFs depend on m_q)

Yukawa unification

$$\frac{\delta m_b}{m_b} \sim \frac{\delta m_t}{m_t}$$
 if $\delta m_t \sim 1 \text{GeV} \Rightarrow \delta m_b \sim 25 \text{MeV}$

Y-spectroscopy

$$m(\Upsilon(1S)) = 2M_b - C\alpha^2 M_b + \cdots$$

Lattice QCD

$$M_{H^{(*)}} = m_h + \overline{\Lambda} + \frac{\mu_\pi^2}{2m_h} - d_{H^{(*)}} \frac{\mu_G^2(m_h)}{2m_h} + \mathcal{O}\left(m_h^{-2}\right)$$

QCD Sum Rules

$$\int \frac{\mathrm{d}s}{s^{n+1}} R_q(s) \sim \left(\frac{1}{m_q}\right)^{2n}$$

Snapshot from PDG: CHARM

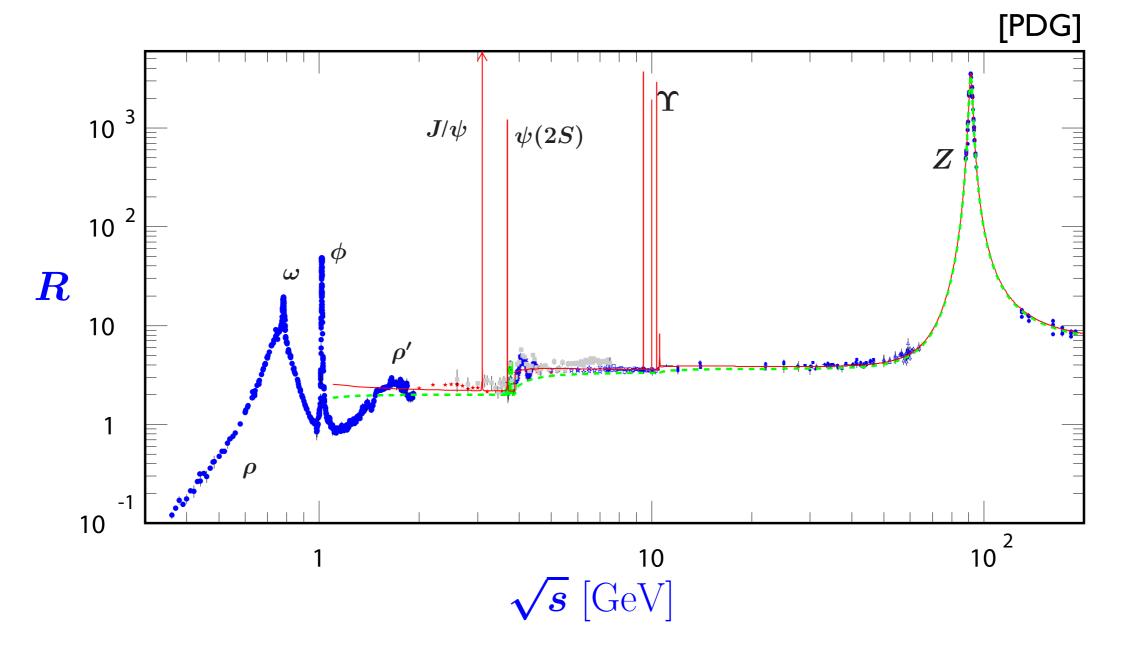
VALUE (GeV)	DOCUMENT ID		TECN
$\boldsymbol{1.27 \pm 0.02}$	OUR EVALUATION		
1.266 ± 0.006	1 NARISON	2020	THEO
$1.290^{+0.077}_{-0.053}$	2 ABRAMOWICZ	2018	HERA
1.273 ± 0.010	3 BAZAVOV	2018	LATT
1.2737 ± 0.0077	4 LYTLE	2018	LATT
1.223 ± 0.033	5 PESET	2018	THEO
1.279 ± 0.008	6 CHETYRKIN	2017	THEO
1.272 ± 0.008	7 ERLER	2017	THEO
1.246 ± 0.023	8 KIYO	2016	THEO
1.288 ± 0.020	9 DEHNADI	2015	THEO
1.348 ± 0.046	10 CARRASCO	2014	LATT
$1.24 \pm 0.03 ^{+0.03}_{-0.07}$	11 ALEKHIN	2013	THEO
1.159 ±0.075	12 SAMOYLOV	2013	NOMD
1.278 ± 0.009	13 BODENSTEIN	2011	THEO
$1.28^{+0.07}_{-0.06}$	14 LASCHKA	2011	THEO
$1.196 \pm 0.059 \pm 0.050$	15 AUBERT	2010A	BABR
1.25 ± 0.04	16 SIGNER	2009	THEO

Snapshot from PDG: BOTTOM

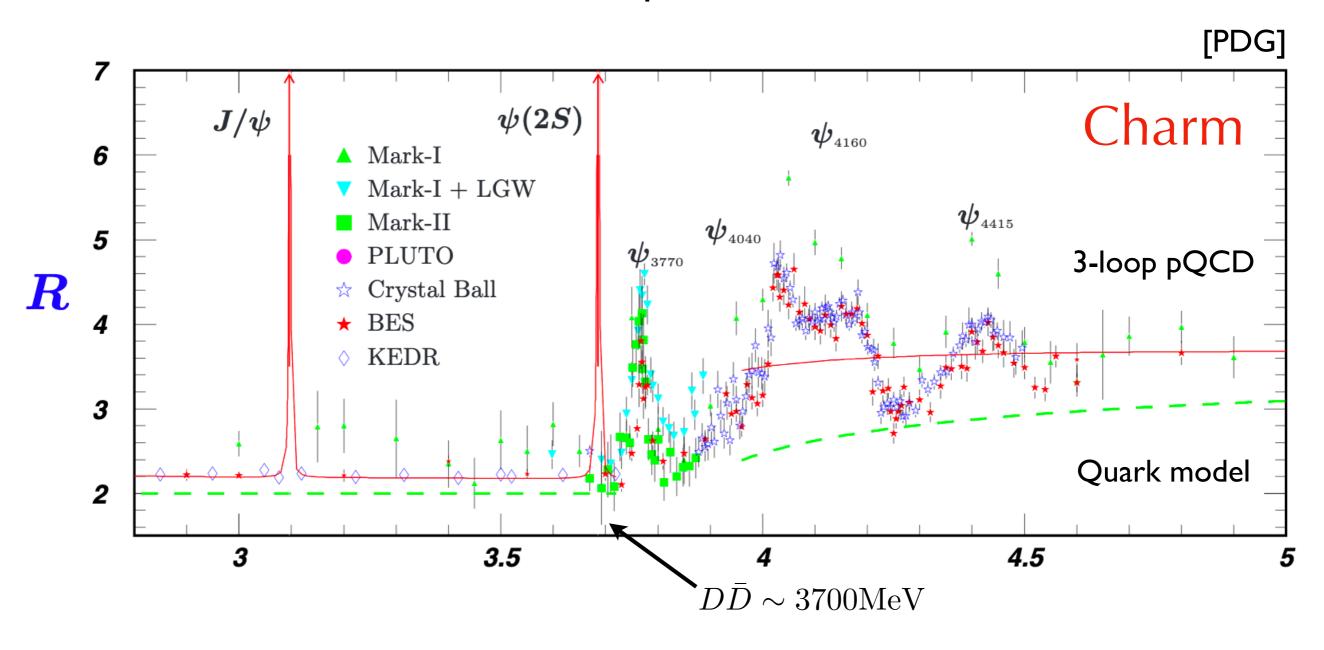
VALUE (GeV)	DOCUMENT ID	TECN
$4.18^{+0.03}_{-0.02}$	OUR EVALUATION of $\overline{\rm MS}$ Mass.	
4.197 ±0.008	1 NARISON 2020	THEO
$4.049_{-0.118}^{+0.138}$	2 ABRAMOWICZ 2018	HERA
4.195 ±0.014	3 BAZAVOV 2018	LATT
4.186 ±0.037	4 PESET 2018	THEO
4.197 ±0.022	5 KIYO 2016	THEO
4.183 ±0.037	6 ALBERTI 2015	THEO
$4.203_{-0.034}^{+0.016}$	7 BENEKE 2015	THEO
4.196 ±0.023	8 COLQUHOUN 2015	LATT
4.176 ±0.023	9 DEHNADI 2015	THEO
4.21 ±0.11	10 BERNARDONI 2014	LATT
$4.169 \pm 0.002 \pm 0.008$	11 PENIN 2014	THEO
4.166 ± 0.043	12 LEE 2013O	LATT
4.247 ± 0.034	13 LUCHA 2013	THEO
4.171 ±0.009	14 BODENSTEIN 2012	THEO
4.29 ± 0.14	15 DIMOPOULOS 2012	LATT
$4.18^{\ +0.05}_{\ -0.04}$	16 LASCHKA 2011	THEO
$4.186 \pm 0.044 \pm 0.015$	17 AUBERT 2010A	BABR
4.163 ±0.016	18 CHETYRKIN 2009	THEO
4.243 ±0.049	19 SCHWANDA 2008	BELL

$$R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

$$\sigma(e^+e^- \to \mu^+\mu^-) = 4\pi\alpha_{\rm em}(s)^2/3s$$

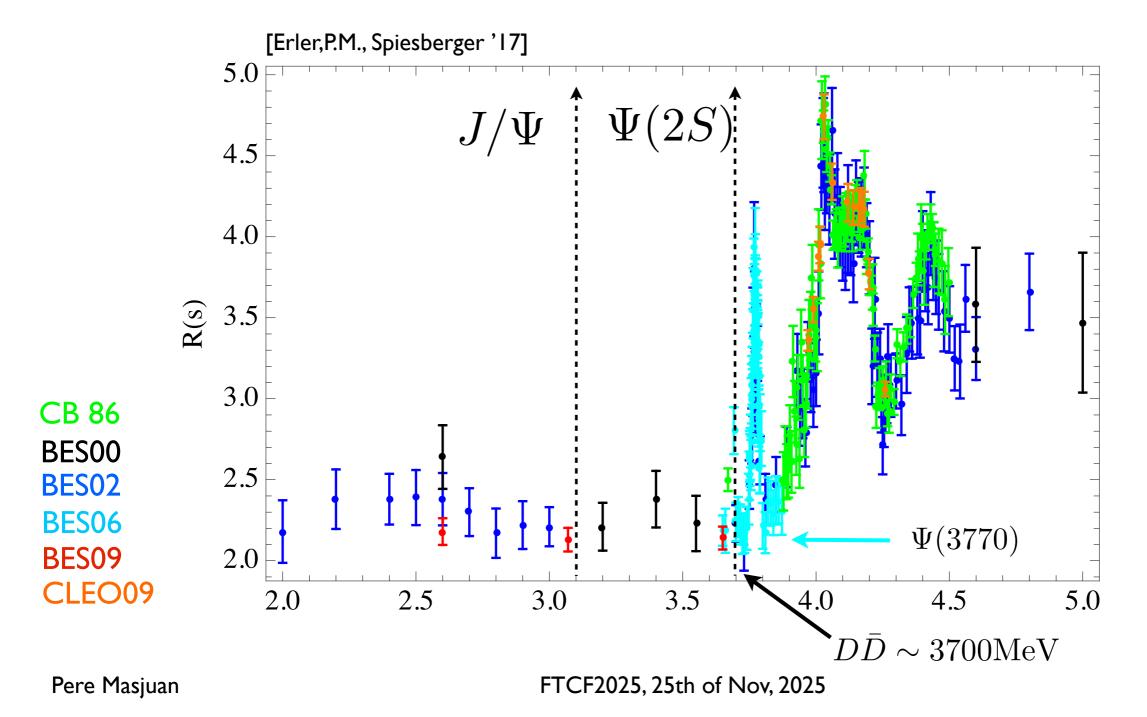


Zoom into the open-charm threshold



Zoom into the open-charm threshold

10



Zoom into the open-charm threshold

$$R(s) = R_{\rm uds}(s) + R_q(s) \qquad \qquad R_q(s) = R_q^{\rm Res}(s) + R_q^{\rm th}(s) + R_q^{\rm cont}(s) \\ \frac{5.0}{4.5} \qquad \qquad J/\Psi \qquad \Psi(2S) \qquad \qquad R_{\rm uds} + R_q^{\rm th} \\ \frac{2}{8} \qquad 3.5 \qquad \qquad R_{\rm uds}(s) \qquad \qquad R_{\rm uds}(s) \\ \frac{2}{8} \qquad 3.5 \qquad \qquad R_{\rm uds}(s) \qquad \qquad R_{\rm uds}(s) \\ \frac{2}{8} \qquad 3.5 \qquad \qquad R_{\rm uds}(s) \qquad \qquad R_{\rm uds}(s) \\ \frac{2}{8} \qquad 3.5 \qquad \qquad R_{\rm uds}(s) \qquad \qquad R_{\rm uds}(s) \qquad \qquad R_q(s) = R_{\rm uds}(s) + R_q^{\rm th}(s) + R_q^{\rm cont}(s) \\ \frac{2}{8} \qquad 3.5 \qquad \qquad R_{\rm uds}(s) \qquad \qquad R_{\rm uds}(s) \qquad \qquad R_q(s) = R_{\rm uds}(s) + R_q^{\rm th}(s) + R_q^{\rm$$

FTCF2025, 25th of Nov, 2025

П

Pere Masjuan

Using the optical theorem:

[SVZ,'79]

$$R(s) = 12\pi \text{Im}[\Pi(s + i\epsilon)]$$

 $\Pi_q(s)$ is the correlator of two heavy-quark vector currents which can be calculated in pQCD order by order in α_s and satisfies a Dispersion Relation:

$$\hat{\Pi}_q(s)$$
 in \overline{MS}

$$R_q(s) = R_q^{\text{Res}}(s) + R_q^{\text{th}}(s) + R_q^{\text{cont}}(s)$$

$$12\pi^2 \frac{\hat{\Pi}_q(0) - \hat{\Pi}_q(-t)}{t} = \int_{4m_q^2}^{\infty} \frac{\mathrm{d}s}{s} \frac{R_q(s)}{s+t}$$

For $t\rightarrow 0$

$$\mathcal{M}_n := \frac{12\pi^2}{n!} \frac{d^n}{dt^n} \hat{\Pi}_q(t) \Big|_{t=0} = \int_{4m_q^2}^{\infty} \frac{\mathrm{d}s}{s^{n+1}} R_q(s)$$

L.H.S.: theory

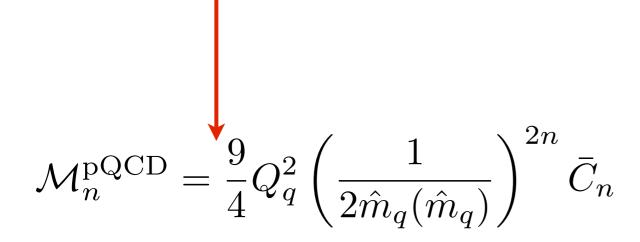
R.H.S.: data

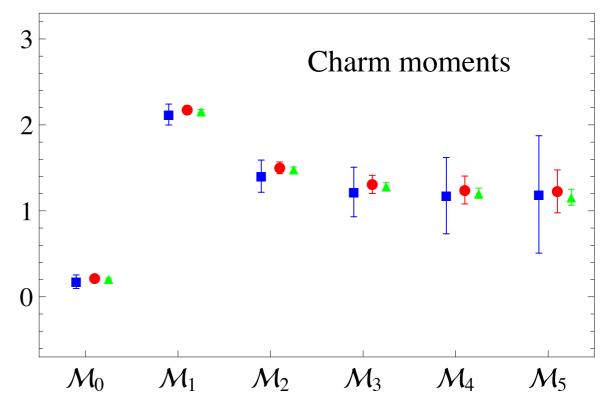
L.H.S.: $\hat{\Pi}_q(s)$ can be Taylor expanded:

$$\Pi_q(t) = Q_q^2 \frac{3}{16\pi^2} \sum_{n\geq 0} \bar{C}_n \left(\frac{t}{4\hat{m}_q^2}\right)^n$$

L.H.S.: $\hat{\Pi}_q(s)$ can be Taylor expanded:

$$\Pi_q(t) = Q_q^2 \frac{3}{16\pi^2} \sum_{n \ge 0} \bar{C}_n \left(\frac{t}{4\hat{m}_q^2} \right)^n$$





$$\hat{\alpha} = \hat{\alpha}(\overline{m_q})$$

$$\bar{C}_n = \bar{C}_n^{(0)} + \left(\frac{\hat{\alpha}}{\pi}\right)\bar{C}_n^{(1)} + \left(\frac{\hat{\alpha}}{\pi}\right)^2\bar{C}_n^{(2)} + \left(\frac{\hat{\alpha}}{\pi}\right)^3\bar{C}_n^{(3)} + \mathcal{O}\left(\frac{\hat{\alpha}}{\pi}\right)^4$$

[Maier et al, '08] [Chetyrkin, Steinhauser'06] [Melnikov, Ritberger'03]

[Kiyo et al '09] [Hoang et al '09] [Greynat et al '09]

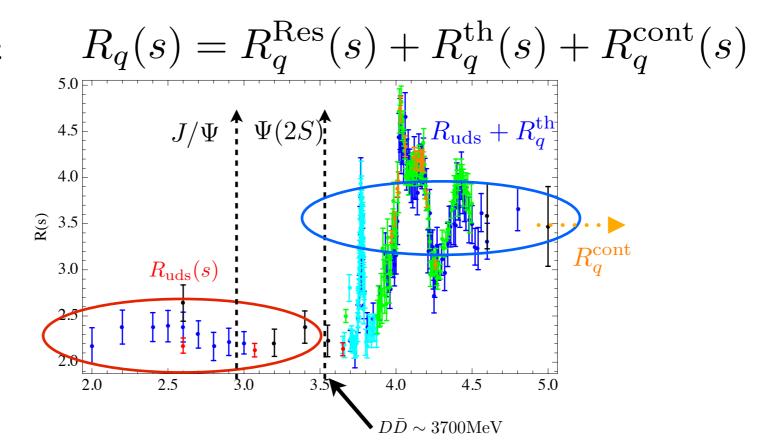
Sum Rules:

$$\mathcal{M}_n = \int_{4m_q^2}^{\infty} \frac{\mathrm{d}s}{s^{n+1}} R_q(s)$$

L.H.S. from theory

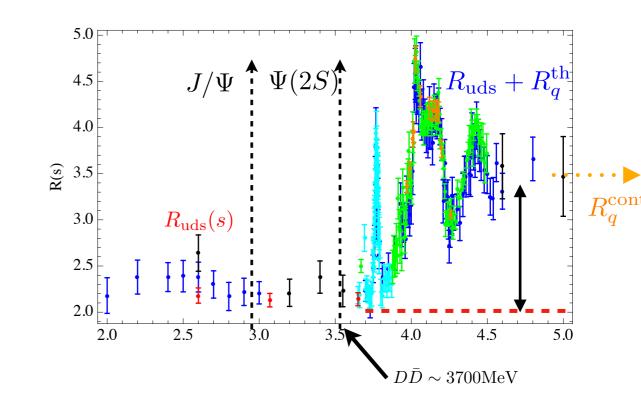
$$\mathcal{M}_n^{\text{pQCD}} = \frac{9}{4} Q_q^2 \left(\frac{1}{2\hat{m}_q(\hat{m}_q)} \right)^{2n} \bar{C}_n$$

R.H.S. from experiment



$$R_q(s) = R_q^{\text{Res}}(s) + R_q^{\text{th}}(s) + R_q^{\text{cont}}(s)$$

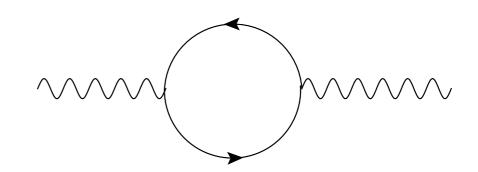
$$R_q^{\text{Res}}(s) = \frac{9\pi M_R \Gamma_R^e}{\alpha_{\text{em}}^2(M_R)} \delta(s - M_R^2)$$



$$R_q^{\text{th}}(s) = R_q(s) - R_{\text{background}}$$

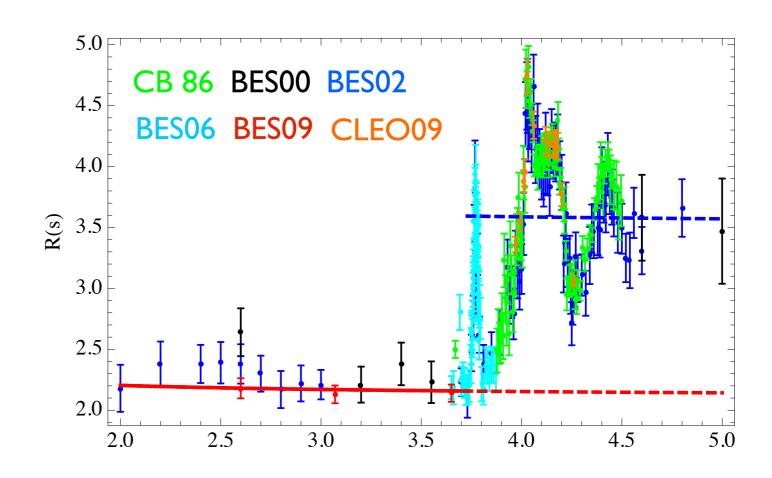
$$(2M_D \le \sqrt{s} \le 4.8 \text{GeV})$$

$$R_q^{
m cont}(s)$$
 calculated using pQCD
$$(\sqrt{s} \geq 4.8 {
m GeV})$$



$$R_{\text{background}} = R_{\text{uds}} + R_{\text{uds(cb)}} + R_{\text{sing}} + R_{\text{QED}}$$

Light flavor
contribution in
charm region
+
secondary
production
+
singlet contribution

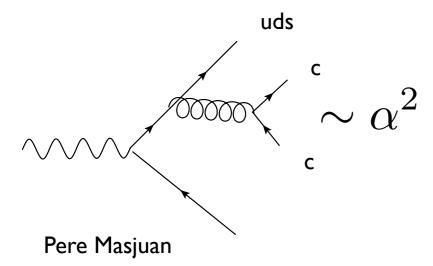


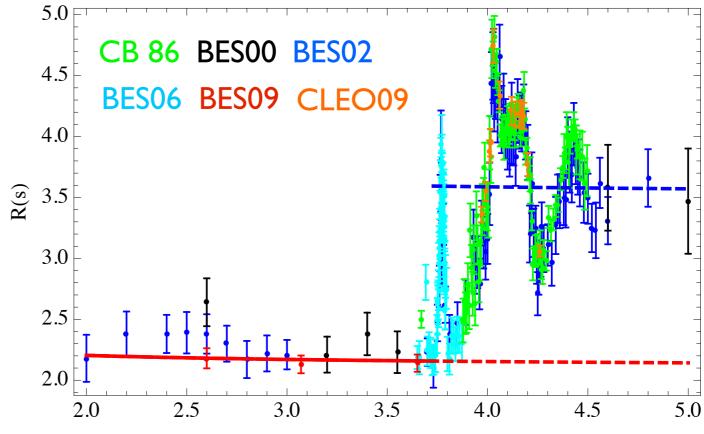
Using pQCD below threshold, calculate R, and extrapolate

$$R_{\text{background}} = R_{\text{uds}} + R_{\text{uds(cb)}} + R_{\text{sing}} + R_{\text{QED}}$$

Light flavor contribution in charm region + secondary production

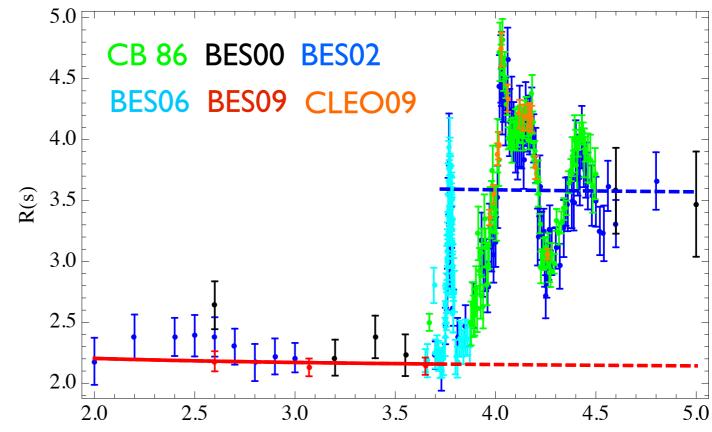
singlet contribution

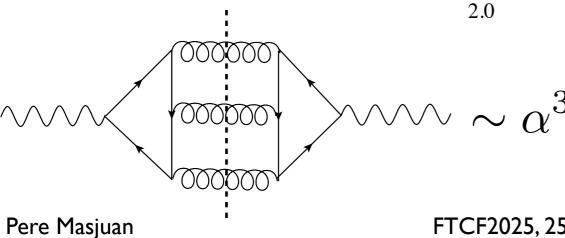




$$R_{\text{background}} = R_{\text{uds}} + R_{\text{uds(cb)}} + R_{\text{sing}} + R_{\text{QED}}$$

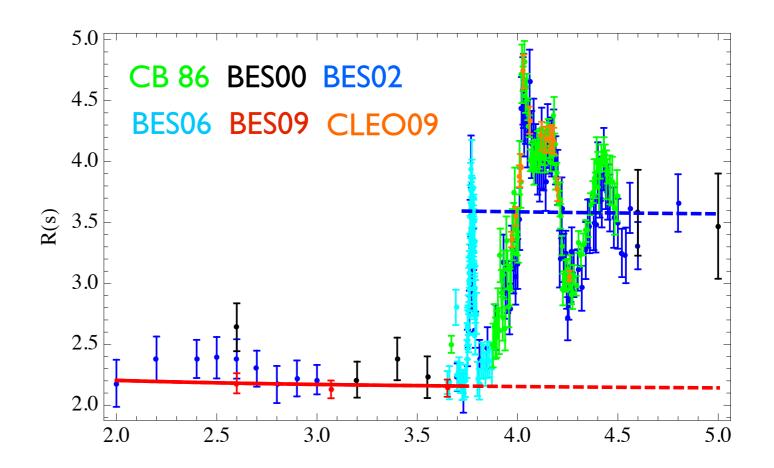
Light flavor
contribution in
charm region
+
secondary
production
+
singlet contribution





$$R_{\text{background}} = R_{\text{uds}} + R_{\text{uds(cb)}} + R_{\text{sing}} + R_{\text{QED}}$$

Light flavor
contribution in
charm region
+
secondary
production
+
singlet contribution
+
2loop QED



Non-perturbative effects

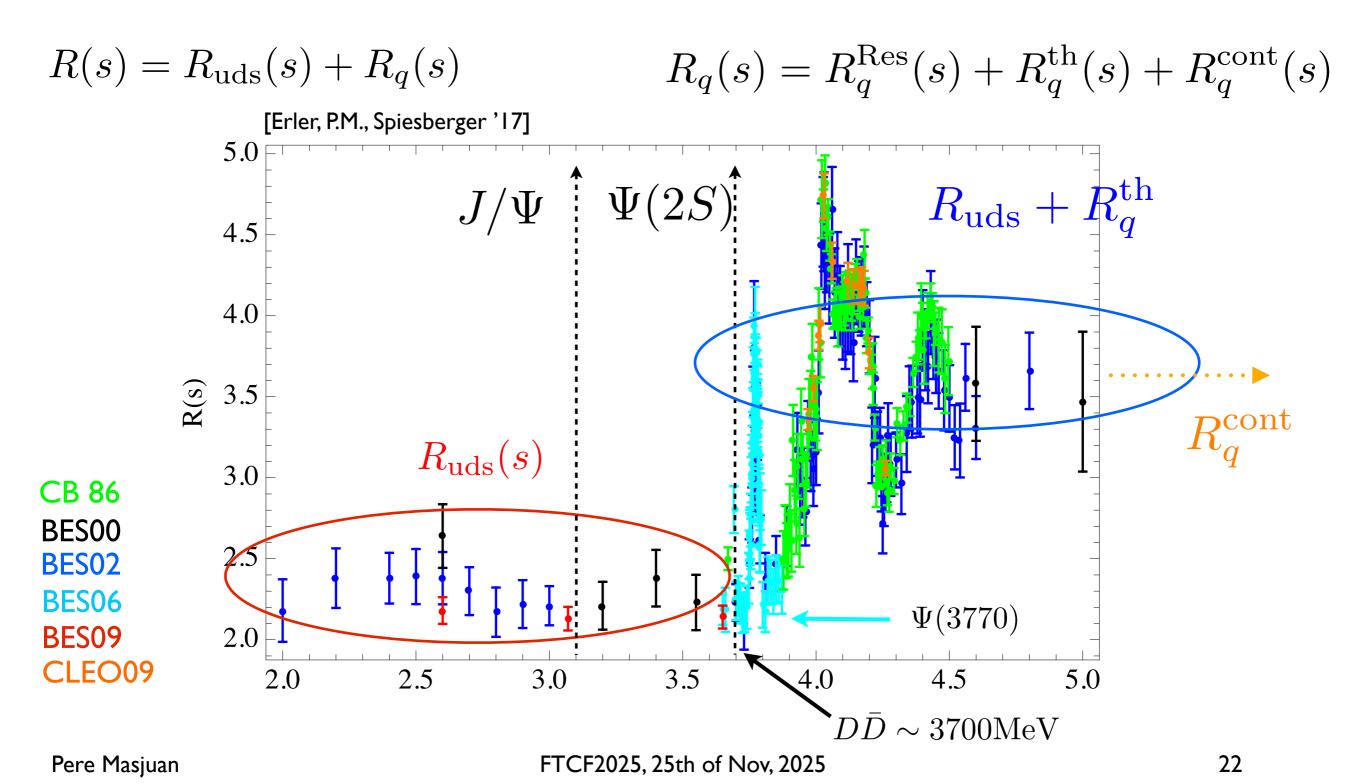
Non-perturbative effects due to gluon condensates to the moments are:

[Chetyrkin et al '12]

$$\mathcal{M}_n^{\text{nonp}}(\mu^2) = \frac{12\pi^2 Q_q^2}{(4\hat{m}_q^2)^{n+2}} \text{Cond } a_n \left(1 + \frac{\alpha_s(\hat{m}_q^2)}{\pi} b_n \right)$$

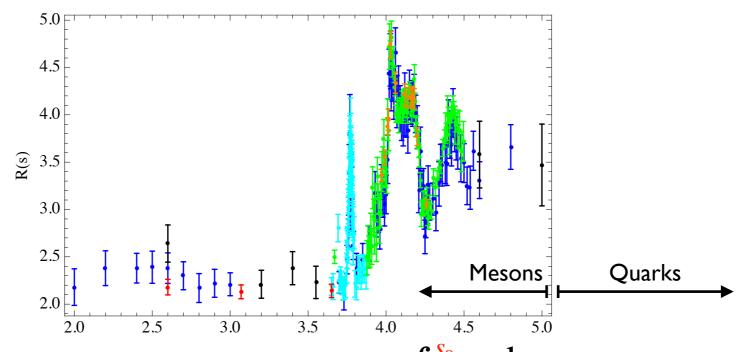
$$a_n$$
 , b_n are numbers, and ${\rm Cond}=\langle \frac{\alpha_s}{\pi}G^2\rangle=(5\pm5)\cdot 10^{-3}{\rm GeV}^4$ [Dominguez et al 'I4] from fits to tau data

$$\frac{\mathcal{M}_n^{\text{nonp}}(\hat{m}_c)}{\mathcal{M}_c^{\text{th}}} \sim 0.5\% - 2\% \longrightarrow \Delta \hat{m}_c(\hat{m}_c) \sim 2\text{MeV} - 8\text{MeV}$$



Our approach is different

• We try to avoid *local* duality: consider *global* duality



Standard procedure:

$$\mathcal{M}_{n}^{\text{pQCD}} = R_{q}^{\text{Res}} + \int_{D\bar{D}}^{s_{0}} \frac{ds}{s^{n+1}} R_{q}(s) + pQCD(\mu)$$

$$\mathcal{M}_n^{\text{pQCD}} = R_q^{\text{Res}} + \int_{D\bar{D}}^{\infty} \frac{\mathrm{d}s}{s^{n+1}} R_q(s)$$

Our approach is different

- We try to avoid *local* duality: consider *global* duality
- Then, we do not use experimental data on threshold region, only resonances below threshold
 - Experimental data in threshold used for error estimation
- How you do it then? Use <u>two different moment equations</u> to determine the continuum requiring self-consistency:
 - extract the quark mass

$$\mathcal{M}_n^{\text{pQCD}} = R_q^{\text{Res}} + \int_{D\bar{D}}^{\infty} \frac{\mathrm{d}s}{s^{n+1}} R_q^{\text{cont}}(s)$$

Charm

Our approach

For a global duality:

$$\hat{\Pi}_q(s)$$
 in \overline{MS}

$$12\pi^2 \frac{\hat{\Pi}_q(0) - \hat{\Pi}_q(-t)}{t} = \int_{4m_q^2}^{\infty} \frac{\mathrm{d}s}{s} \frac{R_q(s)}{s+t}$$

 $t \to \infty$ define the \mathcal{M}_0

[Erler, Luo '03]

Our approach

For a global duality:

$$\hat{\Pi}_q(s)$$
 in \overline{MS}

$$12\pi^2 \frac{\hat{\Pi}_q(0) - \hat{\Pi}_q(-t)}{t} = \int_{4m_q^2}^{\infty} \frac{\mathrm{d}s}{s} \frac{R_q(s)}{s+t}$$

 $t o \infty \quad ext{define the } \mathcal{M}_0 \quad ext{(but has a divergent part)}$

[Erler, Luo '03]

$$\lim_{t \to \infty} \hat{\Pi}_q(-t) \sim \log(t) \quad \longleftarrow \quad \int_{4m_q^2}^{\infty} \frac{\mathrm{d}s}{s} R_q(s) \sim \log(\infty)$$

Fortunately, divergence given by the zero-mass limit of R(s), can be easily subtracted [Chetyrkin, Harlander, Kühn, '00]

zero-mass limit of R(s)

Our approach

$$\begin{split} \lambda_1^q(s) &= 1 + \frac{\alpha_s(s)}{\pi} \\ &+ \left[\frac{\alpha_s(s)}{\pi} \right]^2 \left[\frac{365}{24} - 11\zeta(3) + n_q \left(\frac{2}{3}\zeta(3) - \frac{11}{12} \right) \right] \\ &+ \left[\frac{\alpha_s(s)}{\pi} \right]^3 \left[\frac{87029}{288} - \frac{121}{8}\zeta(2) - \frac{1103}{4}\zeta(3) + \frac{275}{6}\zeta(5) \right. \\ &+ n_q \left(-\frac{7847}{216} + \frac{11}{6}\zeta(2) + \frac{262}{9}\zeta(3) - \frac{25}{9}\zeta(5) \right) \\ &+ n_q^2 \left(\frac{151}{162} - \frac{1}{18}\zeta(2) - \frac{19}{27}\zeta(3) \right) \right] \end{split}$$

 n_q active flavors

Our approach

Zeroth Sum Rule:

$$\sum_{\text{resonances}} \frac{9\pi\Gamma_R^e}{3Q_q^2 M_R \hat{\alpha}_{em}^2(M_R)} + \int_{4M^2}^{\infty} \frac{\mathrm{d}s}{s} \frac{R_q^{\text{cont}}}{3Q_q^2} - \int_{\hat{m}_q^2}^{\infty} \frac{\mathrm{d}s}{s} \lambda_1^q(s)$$

$$= -\frac{5}{3} + \frac{\hat{\alpha}_s}{\pi} \left[4\zeta(3) - \frac{7}{2} \right]$$

$$\hat{\alpha}_s = \alpha_s(\hat{m}_q^2)$$

$$+ \left(\frac{\hat{\alpha}_s}{\pi} \right)^2 \left[\frac{2429}{48} \zeta(3) - \frac{25}{3} \zeta(5) - \frac{2543}{48} + n_q \left(\frac{677}{216} - \frac{19}{9} \zeta(3) \right) \right]$$

$$+ \left(\frac{\hat{\alpha}_s}{\pi} \right)^3 \left[-9.86 + 0.40 \, n_q - 0.01 \, n_q^2 \right]$$

$$= -1.667 + 1.308 \, \frac{\hat{\alpha}_s}{\pi} + 1.595 \left(\frac{\hat{\alpha}_s}{\pi} \right)^2 - 8.427 \left(\frac{\hat{\alpha}_s}{\pi} \right)^3$$

Our approach: ansatz

Zeroth Sum Rule: invoke global quark-hadron duality

[Erler, Luo '03]

$$R_q^{\text{cont}}(s) = 3Q_q^2 \lambda_1^q(s) \sqrt{1 - \frac{4 \,\hat{m}_q^2(2M)}{s'}} \left[1 + \lambda_3^q \frac{2 \,\hat{m}_q^2(2M)}{s'} \right]$$

Simpler version of analytic reconstruction [Greynat, PM, Peris' 12]

$$s' = s + 4(\hat{m}_q^2(2M) - M^2)$$

Two parameters to determine: m_q , λ_3^q

Our approach: ansatz

Zeroth Sum Rule: invoke global quark-hadron duality

[Erler, Luo '03]

$$R_q^{\text{cont}}(s) = 3Q_q^2 \lambda_1^q(s) \sqrt{1 - \frac{4 \,\hat{m}_q^2(2M)}{s'}} \left[1 + \lambda_3^q \frac{2 \,\hat{m}_q^2(2M)}{s'} \right]$$

Simpler version of analytic reconstruction [Greynat, PM, Peris'12]

$$s' = s + 4(\hat{m}_q^2(2M) - M^2)$$

Two parameters to determine: m_q , λ_3^q

We need two equations: zeroth moment + nth moment

$$\frac{9}{4}Q_q^2 \left(\frac{1}{2\hat{m}_q(\hat{m}_q)}\right)^{2n} \bar{C}_n = \sum_{\text{resonances}} \frac{9\pi\Gamma_R^e}{M_R^{2n+1}\hat{\alpha}_{em}^2(M_R)} + \int_{4M^2}^{\infty} \frac{\mathrm{d}s}{s^{n+1}} R_q(s)$$

$$n \ge 1$$

Our approach: ansatz

Zeroth Sum Rule: invoke global quark-hadron duality

[Erler, Luo '03]

$$R_q^{\text{cont}}(s) = 3Q_q^2 \lambda_1^q(s) \sqrt{1 - \frac{4 \,\hat{m}_q^2(2M)}{s'}} \left[1 + \lambda_3^q \frac{2 \,\hat{m}_q^2(2M)}{s'} \right]$$

Simpler version of analytic reconstruction [Greynat, PM, Peris' 12]

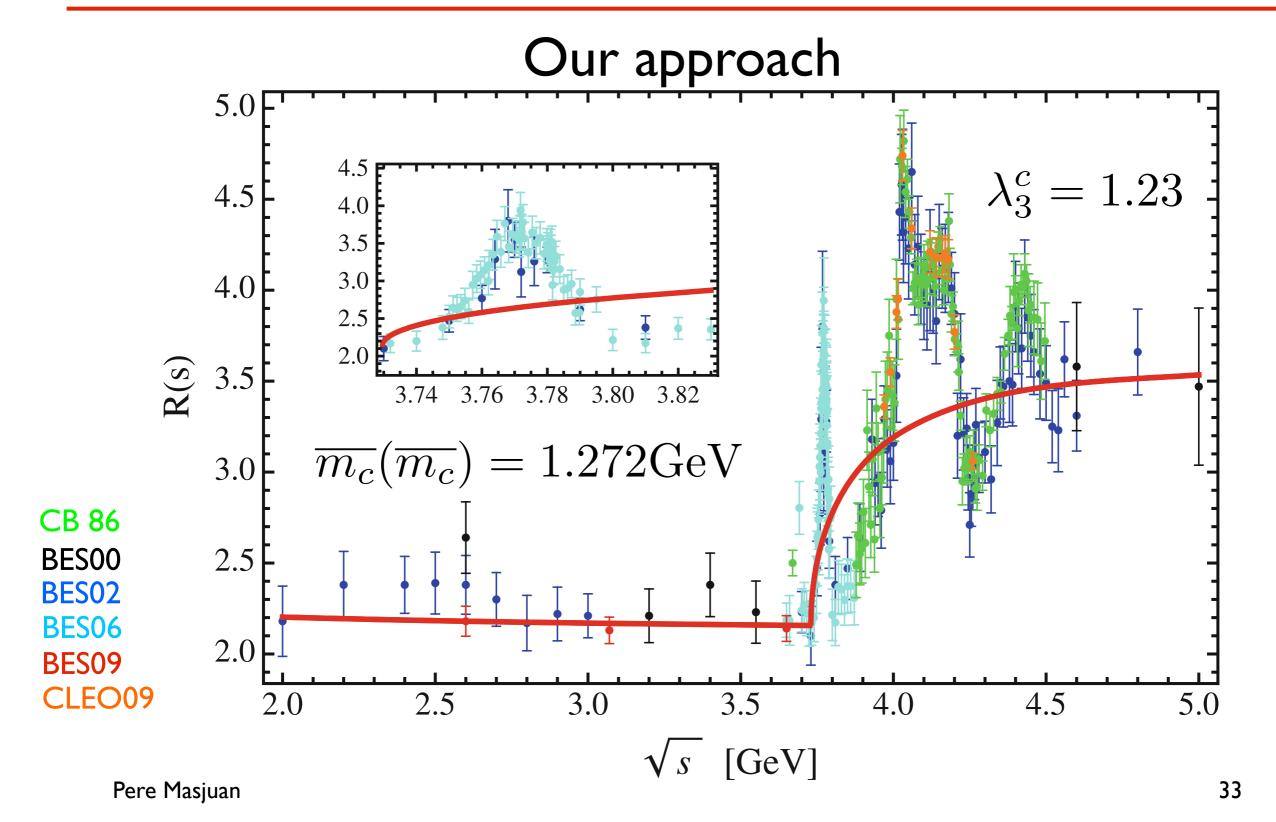
$$s' = s + 4(\hat{m}_q^2(2M) - M^2)$$

Two parameters to determine: m_q , λ_3^q

We use Zeroth + 2nd moments (no experimental data on R(s) so far)

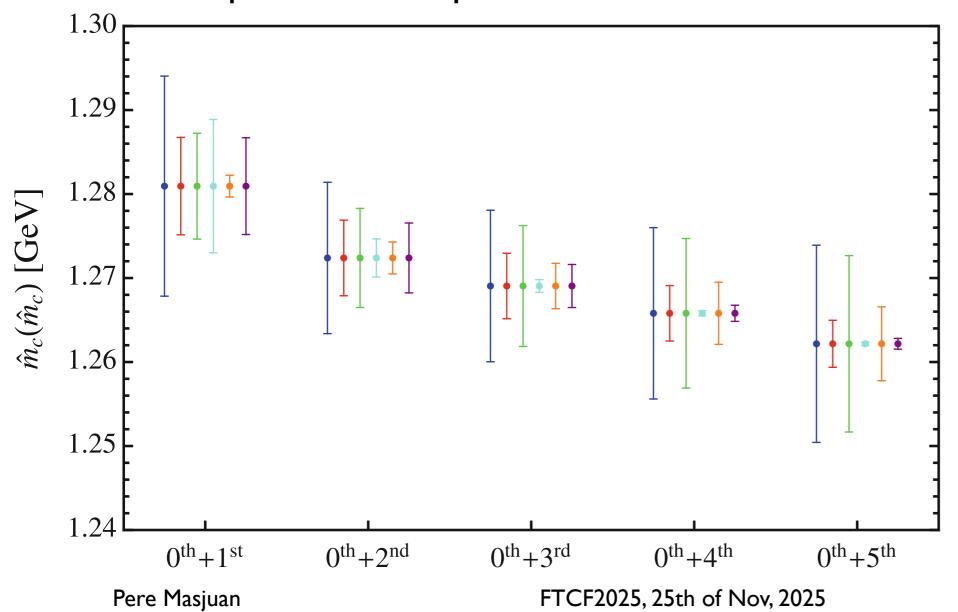
we require selfconsistency among the 2 moments

n	Resonances	Continuum	Total	Theory
0	1.231 (24)	-3.229(+28)(43)(1)	-1.999(56)	Input (11)
1	1.184 (24)	0.966(+11)(17)(4)	2.150(33)	2.169(16)
2	1.161 (25)	0.336(+5)(8)(9)	1.497(28)	Input (25)
3	1.157 (26)	0.165(+3)(4)(16)	1.322(31)	1.301(39)
4	1.167 (27)	0.103(+2)(2)(26)	1.270(38)	1.220(60)
5	1.188 (28)	0.080(+1)(1)(38)	1.268(47)	1.175(95)



Our approach

Repeat for each pair Zeroth+nth moment



Total Resonances Truncation error Comparison with Rexp threshold data Condensates $\Delta \alpha_s(M_z)$

Good consistency between different pairs of sum rules

Our approach: error budget

Resonances:

$$\frac{9}{4}Q_q^2 \left(\frac{1}{2\hat{m}_q(\hat{m}_q)}\right)^{2n} \bar{C}_n = \sum_{\text{resonances}} \frac{9\pi\Gamma_R^e}{M_R^{2n+1}\hat{\alpha}_{em}^2(M_R)} + \int_{4M^2}^{\infty} \frac{\mathrm{d}s}{s^{n+1}} R_q(s)$$

from 6 MeV to 3 MeV (0th+1st) (0th+5th)

(completely dominated by J/Ψ)

R	M_R [GeV]	$\Gamma_R^e \; [\mathrm{keV}]$
J/Ψ	3.096916	5.55(14)
$\Psi(2S)$	3.686109	2.36(4)

Our approach: error budget

Truncation Error (theory error):

$$\mathcal{M}_n^{\text{pQCD}} = \frac{9}{4} Q_q^2 \left(\frac{1}{2\hat{m}_q(\hat{m}_q)} \right)^{2n} \bar{C}_n$$

$$\bar{C}_n = \bar{C}_n^{(0)} + \left(\frac{\hat{\alpha}}{\pi}\right)\bar{C}_n^{(1)} + \left(\frac{\hat{\alpha}}{\pi}\right)^2\bar{C}_n^{(2)} + \left(\frac{\hat{\alpha}}{\pi}\right)^3\bar{C}_n^{(3)} + \mathcal{O}\left(\frac{\hat{\alpha}}{\pi}\right)^4$$

(use the largest group th. factor in the next uncalculated pert. order)

[Erler, Luo '03]

$$\Delta \mathcal{M}_{n}^{(4)} = \pm N_{C} C_{F} C_{A}^{3} Q_{q}^{2} \left[\frac{\hat{\alpha}_{s}(\hat{m}_{q})}{\pi} \right]^{4} \left(\frac{1}{2\hat{m}_{q}(\hat{m}_{q})} \right)^{2n}$$

Example known orders

$\frac{\Delta \mathcal{M}_n^{(2)}}{\left \mathcal{M}_n^{(2)}\right }$	$\frac{\Delta \mathcal{M}_n^{(3)}}{\left \mathcal{M}_n^{(3)}\right }$
1.88	3.03
2.14	2.84
1.92	4.58
3.25	5.63
6.70	4.30
19.18	3.62

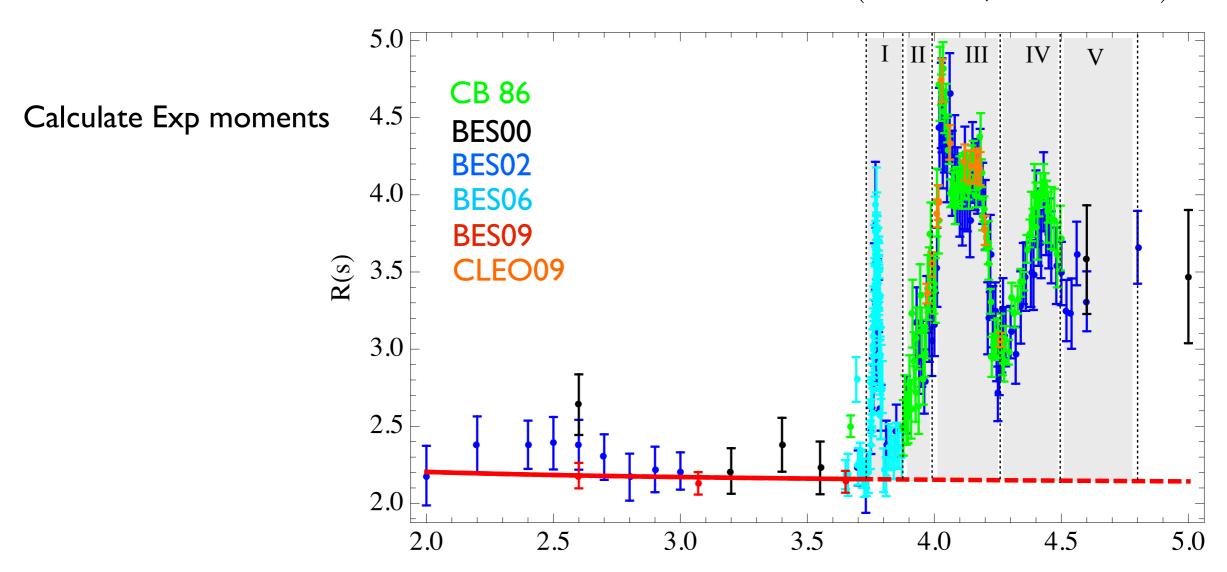
from 5 MeV to 10 MeV (0th+1st) (0th+5th)

More conservative than varying the renorm, scale within a factor of 4

Our approach: error budget

Comparison with R^{Exp} threshold data:

$$(2M_D \le \sqrt{s} \le 4.8 \text{GeV})$$



Our approach: error budget

Comparison with R^{Exp} threshold data:

Collab.	n	$[2M_{D^0}, 3.872]$	[3.872, 3.97]	[3.97, 4.26]	[4.26, 4.496]	[4.496, 4.8]
CB86	0	_	0.0339(22)(24)	0.2456(25)(172)	0.1543(27)(108)	_
	1	_	0.0220(14)(15)	0.1459(16)(102)	0.0801(14)(56)	_
	2	_	0.0143(9)(10)	0.0868 (9)(61)	0.0416(7)(29)	_
BES02	0	0.0334(24)(17)	0.0362(29)(18)	0.2362(41)(118)	0.1399(38)(70)	0.1705(63)(85)
	1	0.0232(17)(12)	0.0235(19)(12)	0.1401(24)(70)	0.0726(20)(36)	0.0788(30)(39)
	2	0.0161(12)(8)	0.0152(13)(8)	0.0832(15)(42)	0.0378(10)(19)	0.0365(14)(18)
BES06	0	0.0311(16)(15)	_	_	_	_
	1	0.0217(11)(11)	_	_	_	_
	2	0.0151(8)(7)	_	_	_	_
CLEO09	0	_	_	0.2591(22)(52)	_	_
	1	_	_	0.1539(13)(31)	_	_
	2	_	_	0.0915(8)(18)	_	_
Total	0	0.0319(14)(11)	0.0350(18)(15)	0.2545(18)(46)	0.1448(27)(59)	0.1705(63)(85)
	1	0.0222(9)(8)	0.0227(12)(10)	0.1511(11)(27)	0.0752(14)(31)	0.0788(30)(39)
	2	0.0155(6)(6)	0.0147(8)(6)	0.0899(6)(16)	0.0391(7)(16)	0.0365(14)(18)

Our approach: error budget

Comparison with R^{Exp} threshold data:

$$\int_{(2M_{p0})^2}^{(4.8 \,\text{GeV})^2} \frac{ds}{s} R_c^{\text{cont}}(s) \Big|_{\hat{m}_c = 1.272 \,\text{GeV}} = \mathcal{M}_0^{\text{Data}} = 0.6367(195) \longrightarrow \lambda_3^{\text{c,exp}} = 1.34(17)$$

$$(2M_D \le \sqrt{s} \le 4.8 \text{GeV})$$

Error induced to Quark mass:

1)
$$\lambda_3^c = 1.23 \rightarrow \lambda_3^{c,exp} = 1.34$$

from $+6.4$ MeV to $+0.2$ MeV

II)
$$\Delta \lambda_3^{c,exp} = 0.17$$
 from 4.7 MeV to 0.1 MeV

\overline{n}	Data	$\lambda_3^c = 1.34(17)$	$\lambda_3^c = 1.23$
0	0.6367(195)	0.6367(195)	0.6239
1	0.3500(102)	0.3509(111)	0.3436
2	0.1957(54)	0.1970(65)	0.1928
3	0.1111(29)	0.1127(38)	0.1102
4	0.0641(16)	0.0657(23)	0.0642
5	0.0375(9)	0.0389(14)	0.0380

Our approach: error budget

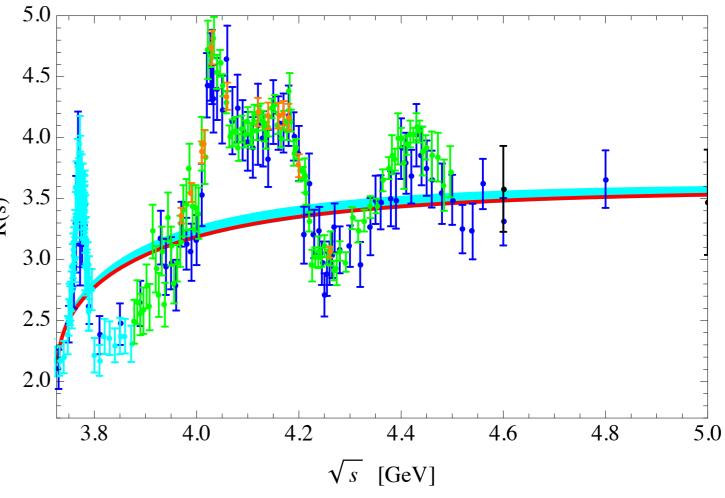
Comparison with R^{Exp} threshold data:

$$\int_{(2M_{D^0})^2}^{(4.8 \,\text{GeV})^2} \frac{ds}{s} R_c^{\text{cont}}(s) \Big|_{\hat{m}_c = 1.272 \,\text{GeV}} = \mathcal{M}_0^{\text{Data}} = 0.6367(195) \longrightarrow \lambda_3^{\text{c,exp}} = 1.34(17)$$

Error induced to Quark mass:

1) $\lambda_3^c = 1.23 \rightarrow \lambda_3^{c, exp} = 1.34$ from +6.4 MeV to +0.2 MeV

II) $\Delta \lambda_3^{c,exp} = 0.17$ from 4.7 MeV to 0.1 MeV



Our approach: error budget

Condensates:

Non-perturbative effects due to gluon condensates to the moments are: [Che

[Chetyrkin et al '12]

$$\mathcal{M}_n^{\text{nonp}}(\mu^2) = \frac{12\pi^2 Q_q^2}{(4\hat{m}_q^2)^{n+2}} \text{Cond } a_n \left(1 + \frac{\alpha_s(\hat{m}_q^2)}{\pi} b_n \right)$$

$$a_n$$
 , b_n are numbers, and ${
m Cond}=\langle {\alpha_s\over \pi}G^2\rangle=(5\pm5)\cdot 10^{-3}{
m GeV}^4$ [Dominguez et al 'I4]

$$\Delta \langle \frac{\alpha_s}{\pi} G^2 \rangle = 5 \cdot 10^{-3} \text{GeV}^4$$

from 1 MeV to 4 MeV (0th+1st) (0th+5th)

Parametric error:

$$\Delta \overline{m_c}(\overline{m_c})[\text{MeV}] = -0.5 \cdot 10^3 \frac{\text{MeV}}{\text{GeV}^4} \Delta \langle \frac{\alpha_s}{\pi} G^2 \rangle$$

(but this is only the first condensate)

Our approach: error budget

$$\Delta \alpha_s(M_z)$$

$$\alpha_s(M_z) = 0.1182(16)$$

from PDG16

$$\Delta \alpha_s(M_z) = 0.0016 \quad ---$$

from 6 MeV to 1 MeV

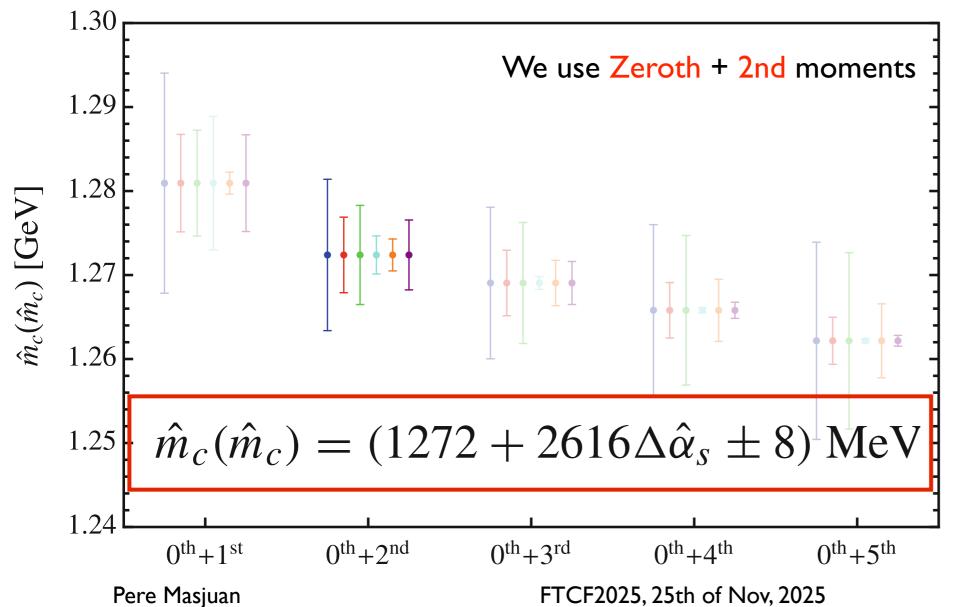
Parametric error:

(0th+1st)
$$\Delta \overline{m_c}(\overline{m_c})[{\rm MeV}] = 3.6 \cdot 10^3 \Delta \alpha_s(M_z)$$

(0th+5th)
$$\Delta \overline{m_c}(\overline{m_c})[{\rm MeV}] = -0.4 \cdot 10^3 \Delta \alpha_s(M_z)$$

Our approach: final result

[J.Erler, P.M., H. Spiesberger' 17]



Resonances

Truncation error

Comparison with

R^{Exp} threshold data

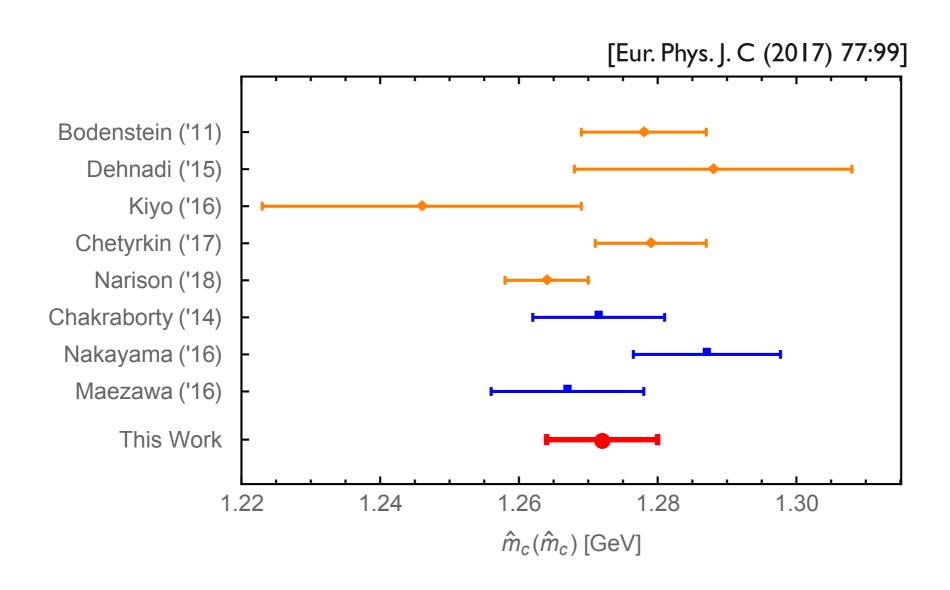
Condensates

$$\Delta \alpha_s(M_z)$$

$$\Delta \hat{\alpha}_s = \hat{\alpha}_s(M_z) - 0.1182$$

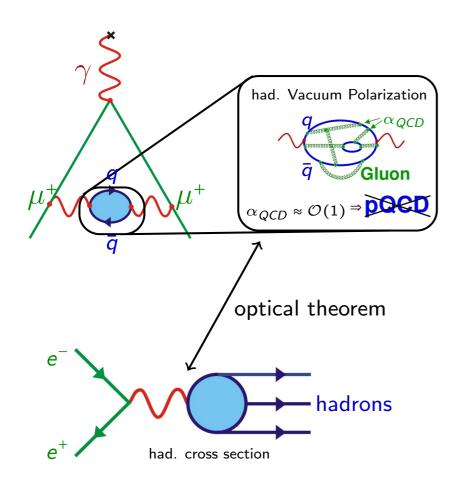
43

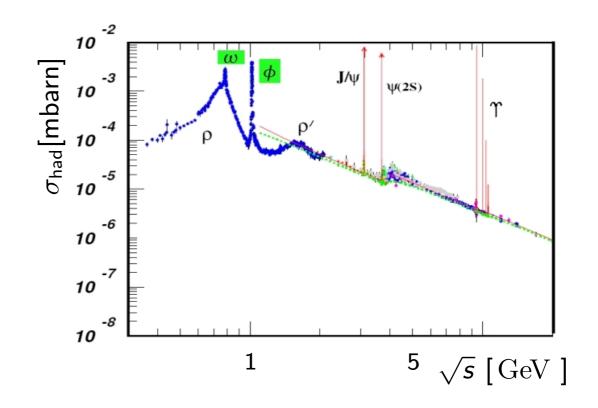
results for the charm quark mass



Heavy-quark contribution to $(g-2)_{\mu}$

Hadronic Vacuum Polarization: largest source of uncertainty in $(g-2)_{\mu}$ Flavor decomposition may help, specially to compare with lattice QCD estimates

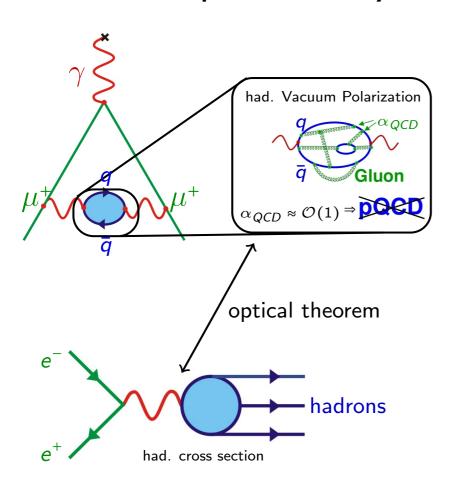




$$a_{\mu,LO}^{\text{had}} = \frac{1}{4\pi^3} \int_{m_{\pi^0}^2}^{\infty} ds \ K(s) \ \underline{\sigma_{\text{had}}(s)}$$

Heavy-quark contribution to $(g-2)_{\mu}$

Hadronic Vacuum Polarization: largest source of uncertainty in $(g-2)_{\mu}$ Flavor decomposition may help, specially to compare with lattice QCD estimates



$$a_{\mu,LO}^{\mathsf{had}} = \frac{1}{4\pi^3} \int_{m_{\pi^0}^2}^{\infty} ds \ K(s) \ \sigma_{\mathsf{had}}(s)$$

$$a_{\mu}^{\rm charm} = 14.36(23) \times 10^{-10}$$
 $a_{\mu}^{\rm bottom} = 0.30(2) \times 10^{-10}$

$$a_{\mu}^{\rm charm-lattice} = 14.6(1) \times 10^{-10}$$
 $a_{\mu}^{\rm bottom-lattice} = 0.27(4) \times 10^{-10}$ from Borsanyi et al, *Nature* **593**, 51–55 (2021)

	central value	total error	resonances	$\Delta \lambda_3$	$\Delta \alpha_s$	Condensates	Truncation
a_{μ}^{charm}	1.436	0.023	0.012	0.018	0.005	0.001	0.004
$a_{\mu}^{ m bottom}$	2.978	0.171	0.012	0.170	0.005		0.004

Conclusions and Outlook

• Using SR technique + zeroth moment (very sensitive to the continuum) + data on charm resonances below threshold + continuum exploiting self-consistency among different moments:

$$\hat{m}_c(\hat{m}_c) = 1.272(9) \text{GeV}$$
 $\hat{m}_b(\hat{m}_b) = 4.180(8) \text{GeV}$

- Error sources are understood: seems a clear roadmap for improvements
- Impact on (g-2)_{μ} from heavy quarks: $a_{\mu}^{\text{charm+bottom}} = 14.66(23) \times 10^{-10}$
- Opportunities for FTCF:
 - α_{s} at low energies, $R_{uds}(s)$, condensates at low energies

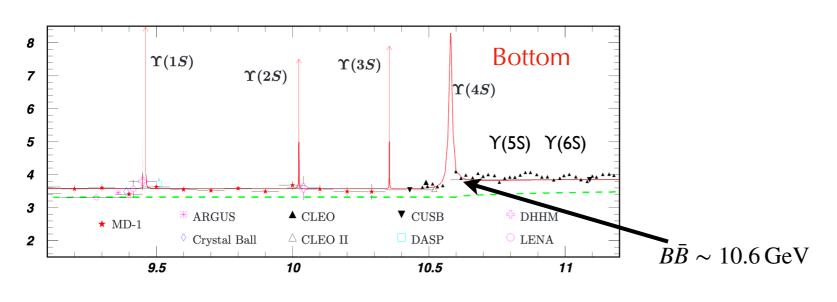
Thanks!

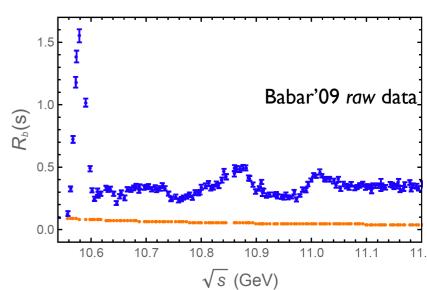
Bottom case

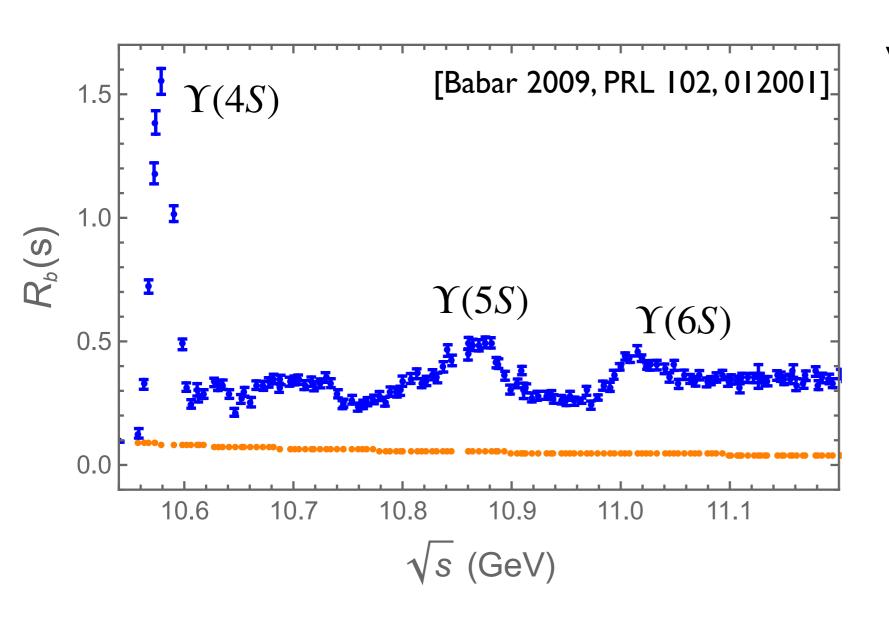
Procedure: the same as in the charm case

Main differences:

- \blacksquare Data from Babar '09 and Belle '15 for $R_b(s) = \sigma_b(s)/\sigma_{\mu\mu}^0$
- Condensates negligible
- Add systematically the $\Upsilon(4S)$, $\Upsilon(5S)$, $\Upsilon(6S)$







Vacuum polarization

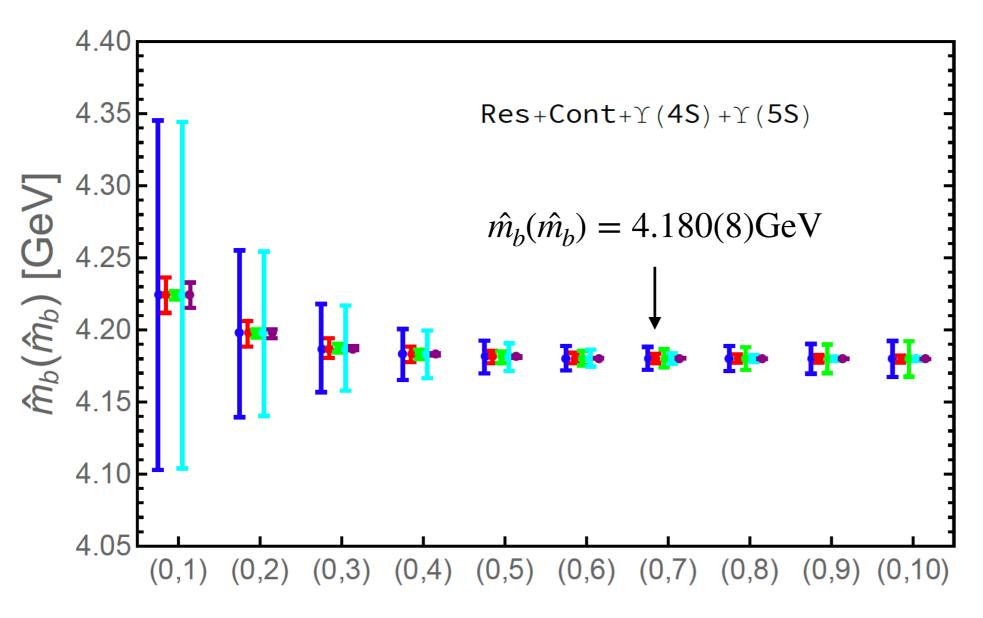
$$\left(\alpha(0)/\alpha(M_R)\right)^2 \equiv 0.93$$

Radiative tails

ISR corrections

$$\hat{R}(s) = \int_{z_0}^{1} \frac{\mathrm{d}z}{z} G(z, s) R(zs)$$
$$z_0 = 10.6^2/s$$

Our approach



Total
Resonances
Truncation error
Comparison with
REXP threshold data

$$\Delta \alpha_s(M_z)$$

Good consistency between different pairs of sum rules

Pere Masjuan

FTCF2025, 25th of Nov, 2025

Our approach

Explore systematically
$$R_b(s) = R_b^{\text{res}}(s) + R_b^{\text{cont}}(s) + R_b^{\text{res,Gamma}}(s)$$

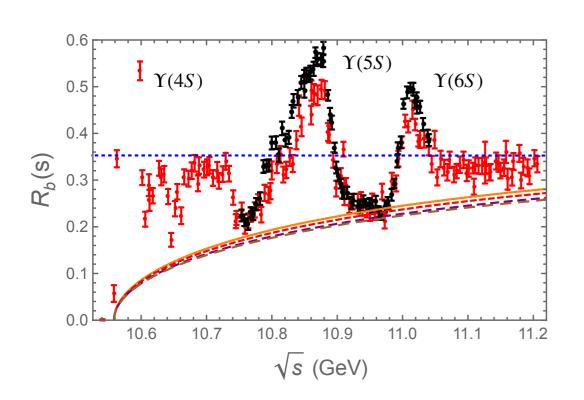
	$\hat{m}_b(\hat{m}_b) \; [\text{MeV}]$	Pair of moments
Only resonances below threshold	$4186.7 - 39.5 \Delta \hat{\alpha}_s \pm 12.7$	$(\mathcal{M}_0,\mathcal{M}_9)$
$+\Upsilon(4S)$	$4183.8 - 68.0 \Delta \hat{\alpha}_s \pm 9.7$	$(\mathcal{M}_0,\mathcal{M}_8)$
$+\Upsilon(4S)+\Upsilon(5S)$	$4180.2 - 108.5 \Delta \hat{\alpha}_s \pm 7.9$	$(\mathcal{M}_0,\mathcal{M}_7)$
$+\Upsilon(4S)+\Upsilon(5S)+\Upsilon(6S)$	$4178.9 - 64.0 \ \Delta \hat{\alpha}_s \pm 9.7$	$(\mathcal{M}_0,\mathcal{M}_8)$

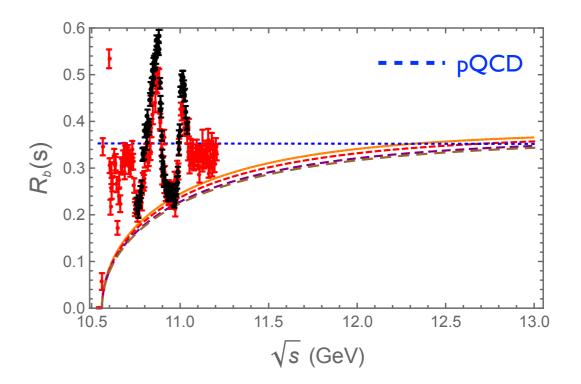
$$R_b^{\text{res,Gamma}}(s) = \sum_{R = \Upsilon(4S), \Upsilon(5S)} \frac{9\pi}{\alpha_{\text{em}}^2(M_R)} \frac{\Gamma_R^e}{M_R} \text{Gamma}(s - 4M_B^2 | \alpha, \beta)$$

$$\alpha = 1 + \frac{2}{\sqrt[3]{\pi}} \frac{(M_R^2 - 4M_B^2)^2}{\Gamma_R^2 M_R^2} \qquad \beta = \frac{\alpha - 1}{M_R^2 - 4M_B^2}$$

Our approach

Data beyond 11.2 GeV will help reducing error: pQCD reaching at 13 GeV





$$R_b(s) = R_b^{\text{res}}(s) + R_b^{\text{cont}}(s) + R_b^{\text{res,Gamma}}(s)$$