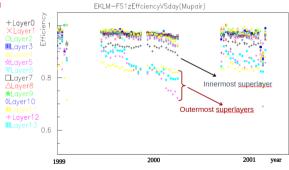
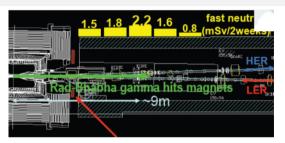

The experience of construction, production and exploiting of the Belle II muon system

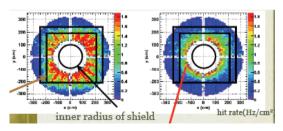
Timofey Uglov

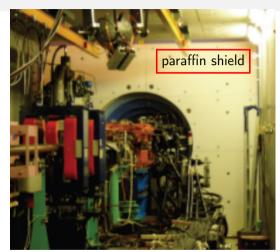
HSE


The 7th International Workshop on Super Tau-Charm Factory, Huangshan, 2025

Belle endcap muon system

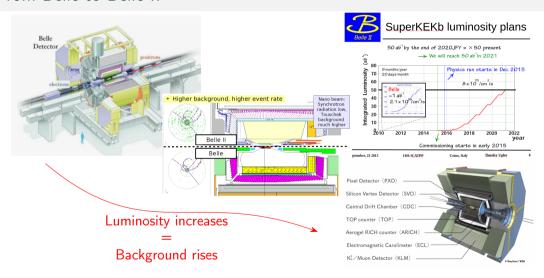

By the end of the first year of operation and efficiency degradation became evident. the effect was especially noticeable in the outermost layers. Main reason: RPC dead time due to neutron background.


- RPC technology
- 14(BW) or 15(FW) layers btw. Fe plates
- RPC HV 7kV



2 / 18

Shielding



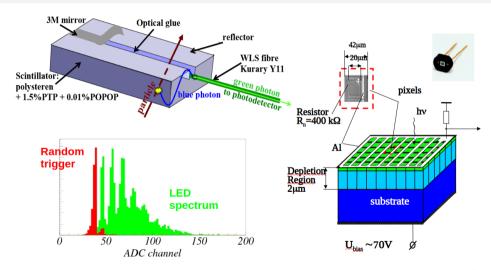
View from inside the accelerator tunnel

From Belle to Belle II

4 / 18

Belle RPC efficiency in Belle II environment

	Mod	<mark>derate</mark>	Higher luminosity	Higher background		Larger dead time		Lower efficiency	
Belle2 TDR	Layer	Barrel		Endcap forward			Endcap backward		
		KEKB	SuperKEKB	KEKB	SuperKEI	KΒ	KEKB	$\operatorname{SuperKEKB}$	
	0	0.91	0.70	0.91	0.0		0.90	0.0	
	1	0.94	0.81	0.93	0.0	\	0.90	0.0	
	2	0.96	0.87	0.94	0.0	١ ١	0.90	0.0	
	3	0.98	0.91	0.94	0.0	1	0.90	0.0	
	4	0.98	0.94	0.94	0.0	11	0.89	0.0	
	5	0.99	0.95	0.92	0.0	Ш	0.88	0.0	
	6	0.99	0.95	0.93	0.0	Ш	0.89	0.0	
	7	0.99	0.96	0.92	0.0	Ш	0.87	0.0	
	8	0.99	0.94	0.92	0.0		0.86	0.0	
	9	0.99	0.96	0.90	0.0		0.85	0.0	
	10	0.99	0.98	0.87	0.0		0.82	0.0	
	11	0.99	0.97	0.82	0.0		0.80	0.0	
	12	0.99	0.96	0.78	0.0	/ 1	0.81	0.0	
	13	0.99	0.97	0.77	0.0	'	0.76	0.0	
	14	0.99	0.96	N/A	N/A			N/A	
Acceptable		RPC	RPC efficiency measured in KEKB and carappeared to superKEKB.						


1 U P 1 OF P 1 E P 1 E P 1 C

Requirements to the Belle II KLM system

- High (> 98%) MIP efficiency
- Large geometrical acceptance (> 95%)
- Fast detector to diminish integration time (bg raise linear with integration time)
- Low efficiency to neutrons
- Geometrically compatible with existing frames (4 cm thick)
- As cheap as possible (largest detector in Belle II, $S \approx 1600 \text{ m}^2$)

Solution: Scintillator-based detector with WLS light-collection with independent operation of X and Y layers, utilizing SiPM as a photodetector

Scintillator option for the Belle II KLM

Plastic scintillator+ WLS +SiPM scheme: pros and contras

Technology

The technology had never been tested in such large device

Neutron background

Contains a lot of hydrogen – effective neutron target

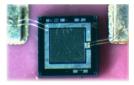
Adjustable threshold

In contrast to RPC, which produces hit at \sim 100keV protons, scintillator sensitivity is justable and usually set at a half of MIP (\sim 1MeV)

Birks's law

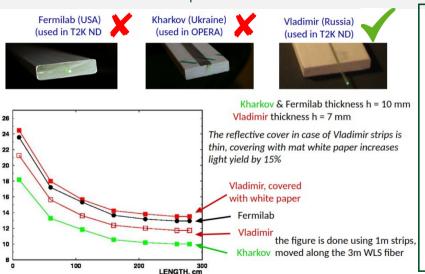
Protons from the neutron background are relatively slow and Birk's law reduces effective signal by factor of $\sim 5\,$

Two-layer scheme


Independent operation of the two layers makes possible to use hit time information to from 2D hits and reduce neutron background which always produces 1D hits.

Choice of the photodetector

- A strong magnetic field inside the magnet yoke forbids the use of the PMT inside the module
- OPERA experiment used clear fibers to transport light from the WLS fiber to multi-channel PMT
- In the Belle II layout (reuse of RPC frames) the use of clear fibers seemed to be technically complex
- SiPM was chosen (Hamamatsu MPPC S10362-13-050)

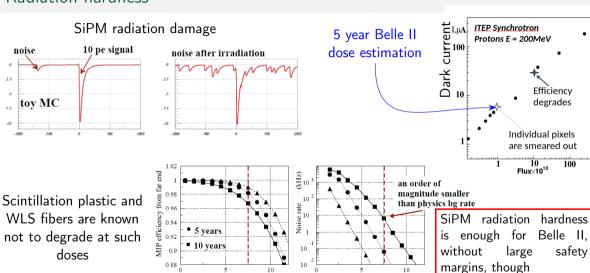

MPPC S10362-13-050

CPTA 143

MEPhI/PULSAR

9 / 18

Choice of the scintillator producer



Chosen technology:

- Producer: Vladimir (UNIPLAST)
- Size: 7mm × 40 mm
- Reflective cover: diffusive, by chemical etching
- Groove for fiber: milled
- Fiber: Kuraray WLS Y-11(200)MSJ
- Optical contact: SUREL SL1 optical gel

NUMBER OF PHOTO ELECTRONS (N p.e.)

Radiation hardness

10

(N_{p.e.})

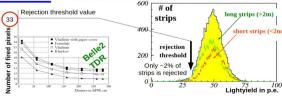
Threshold

Timofey Uglov (HSE) Belle II KLM expirience FTCF 2025 11 / 18

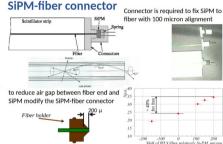
Threshold

 $(N_{p.e.})$

Improvement of the strip performance

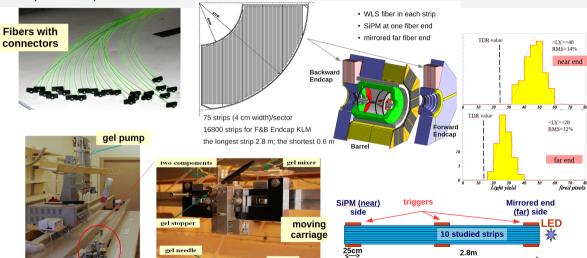

Improving performance: WLS fiber

Milling with diamond cutter provides sufficient edge quality (both ends).



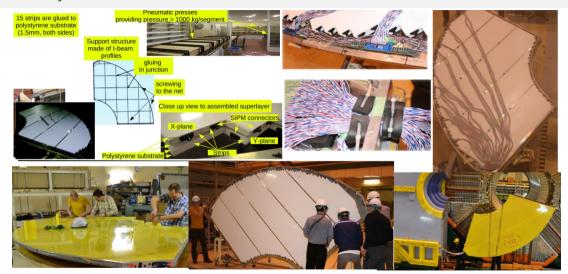
- Mirroring far edge: study first T2K experience:
- use glueing of a mirroring foil as SMRD – effective but timeconsuming
- vacuum aluminization as FGD low efficiency 70%.
 We tried many other options
- including spying of silver, until

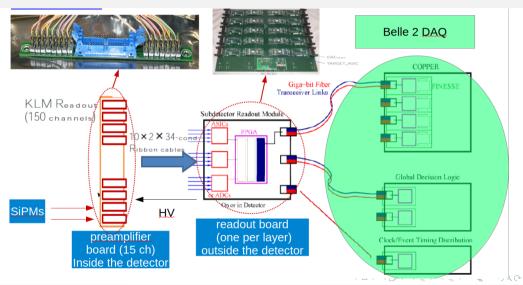
fast and efficient solution was found: just paint with silver shine paint (textile paint for fabrics) and get >90% efficiency for 1 sec operation.


Improving performance:

- Light yield is twice larger than at TDR
- •For many strips the statistics is nice: good Gaussian distribution with a small RMS

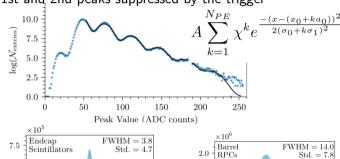
Timofey Uglov (HSE) Belle II KLM expirience FTCF 2025 12 / 18

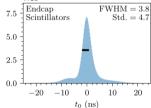

Strip mass production

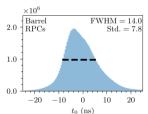

4 D > 4 B > 4 E > 4 E >

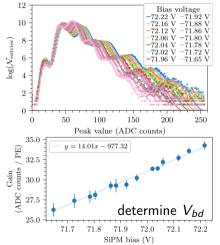
strip

Assembly and installation


Readout electronics




Calibration


Single photon spectrum

1st and 2nd peaks suppressed by the trigger

Timofey Uglov (HSE)

Current RnD activities

Long-term stability

The last Belle II muon system component was installed \sim 10 years ago.

Now is the very time to test it long-term stability.

- Disassemble spare segments
- Re-test strips to compare parameters with data collected during mass production

Neutron background measurement

- The neutron background is poorly known and highly depends on the focusing magnets/masks etc.
- Polystyrene scintillator strip is sensitive to the neutrons
- ightarrow turn Belle 2 muon system to the neutron detector by strip response calibration with known source.
 - Waveform-based analysis can distinguish btw. neutron and MIP hits

Timofey Uglov (HSE) Belle II KLM expirience FTCF 2025 17 / 18

Conclusion

- First used for the muon detector at the large-scale accelerator experiment in Belle II, organic scintillator WLS SiPM technology is now matured and well-established
- Good time resolution, tiny dead time and ability to measure signal amplitudes allows to cope with higher background and be efficient at flavor superfactories, including STCF.
- Huge expertise in developing, producing and assembling has been collected during Belle II KLM production
- R'n'D works aimed to better understanding long-term stability of the technology and its future developments are ongoing