

On-the-Fly SEU Correction in FPGAs of the Aerogel RICH at Belle II

R. Giordano^{1,2}, G. Tortone², D. Vincenzi³, Y. Lai⁴, S. Korpar^{5,6}, R. Pestotnik⁶, A. Lozar⁶, L. Šantelj^{6,7}, M. Shoji⁴, and S. Nishida⁴

¹University of Naples "Federico II", Italy

²INFN Sezione di Napoli, Italy

³Roma Tre University and INFN, Italy

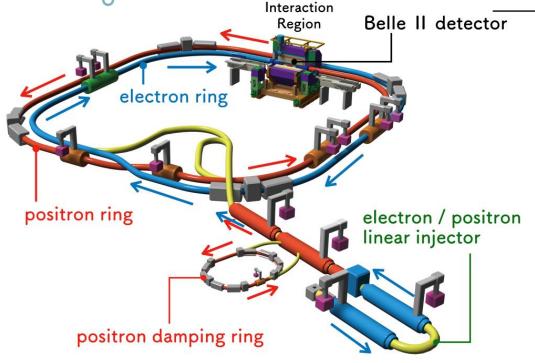
⁴High Energy Accelerator Research Organization, Japan

⁵University of Maribor, Slovenia

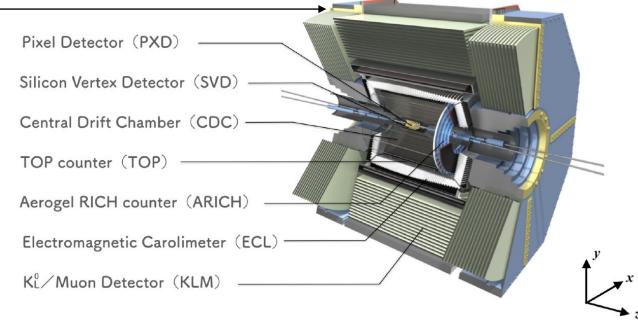
⁶Jozef Stefan Institute, Slovenia

⁷University of Ljubljana, Slovenia

Presenter email: raffaele.giordano@unina.it


Outline

- SuperKEKB, Belle II and ARICH
- Single event upsets in ARICH front-end boards
- Configuration scrubbing solution and irradiation test
- FPGA-embedded SEU Monitors
- Summary

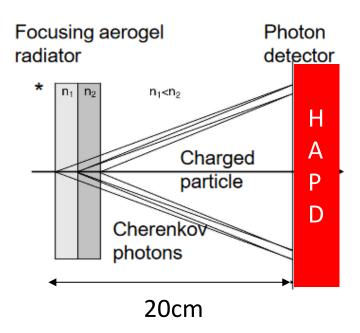


SuperKEKB and Belle II

2013/July/29	LER	HER	unit
E	4.000	7.007	GeV
	3.6	2.6	Α
Number of bunches	2,5		
Bunch Current	1.44	1.04	mA
Circumference	3,016.315		m

- SuperKEKB e⁺e⁻ B factory @ KEK (Tsukuba, Japan)
- e⁺ 4 GeV (LER), e⁻ 7 GeV (HER)
- Target L= 6×10^{35} cm⁻² s⁻¹
- Belle II detector at beam collision point
- Physics beyond the Standard Model at the intensity frontier (CKM matrix elements, CPV studies, rare B,D, τ decays and more)

Aerogel Ring Imaging CHerenkov Counter



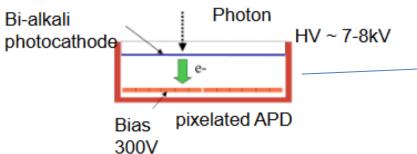

Goals

- Particle Identification in end cap
- K/π separation > 4σ in momentum range 1-3.5 GeV/c

• Requirements

- operation in 1.5T magnetic field
- limited space ~280 mm
- radiation hardness
 - 1MeV eq. neutron fluence: 10¹² n/cm²
 - Total ionizing dose: 1 kGy

Proximity focusing aerogel RICH


- <n> ≈ 1.05
- θc(π) ≈ 307 mrad@ 3.5 GeV/c
- $-\theta c(\pi) \theta c(K) = 30 \text{ mrad} @ 3.5 \text{ GeV/c}$
- pion threshold 0.44 GeV/c, kaon threshold 1.54 GeV/c

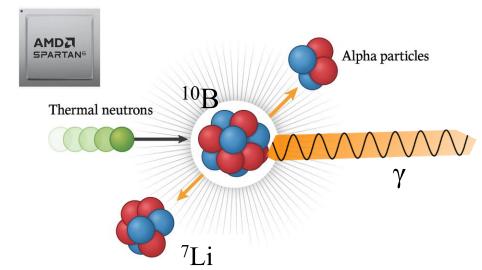
Photon Detector & Readout Electronics

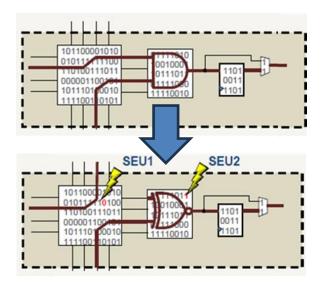
Custom design with Hamamatsu

Specifications				
Package	73×73mm2			
sensitive area	64%			
# of pixels	144(36×4chips)			
capacitance	80pF			
weight	220g			
peak QE	28%			
bombardment gain	1500			
avalanche gain	~30			
total gain	~45000			

5-6 Front-end Boards (FEBs) per Merger

 Mergers aggregate data from FEBs, transmit them over Belle2Link, and manage FPGA configuration via JTAG



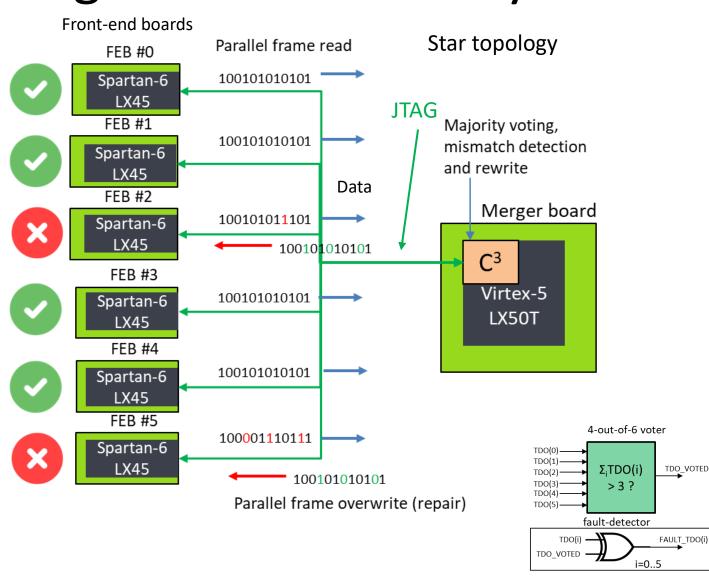

Configuration SEUs in FEB FPGAs

- Background neutrons at SuperKEKB Interaction Region
- Spartan-6 devices use Boron as p-type dopant
- ¹⁰B (20%) has a high σ for thermal neutron capture => single event upsets (SEUs) in configuration SRAM

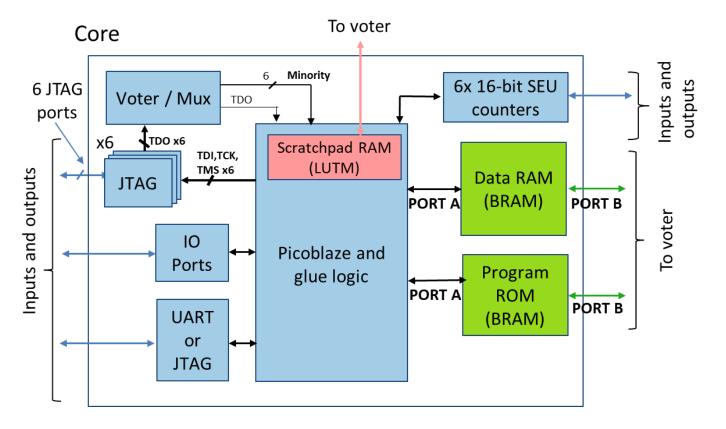
10
B+n → 7 Li + α + γ (94%)
→ 7 Li + α (6%) 3.5 kbarns

- In October 2019, 5% of front-end FPGAs were affected by at least one configuration SEU over 24 hours
- Effect expected to rise with scheduled luminosity increase => SEU mitigation effort

Repairing FEB Configuration On-the-fly


Ф

 Front-end boards (FEB) FPGAs are programmed with the same bitstream => redundancy at system-level


Idea

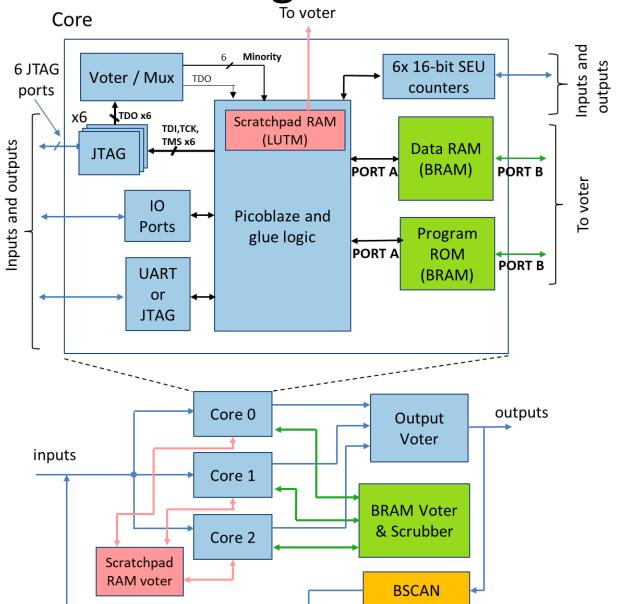
- Parallel readback of FEB (Spartan 6) configuration from Merger (Virtex-5)
- Real-time 4-out-of-6 bitwise majority voting on JTAG streams (TDOs) for error detection
- Quick single frame reconfiguration for error correction
- Star topology is widely used in DAQ systems, easily-exportable solution

The Configuration Consistency Corrector - C³

- No golden memory needed and no a priori limit on # of bitflips per frame that can be repaired
- Xilinx Soft Error Mitigation (SEM) controller limited at 2

Features

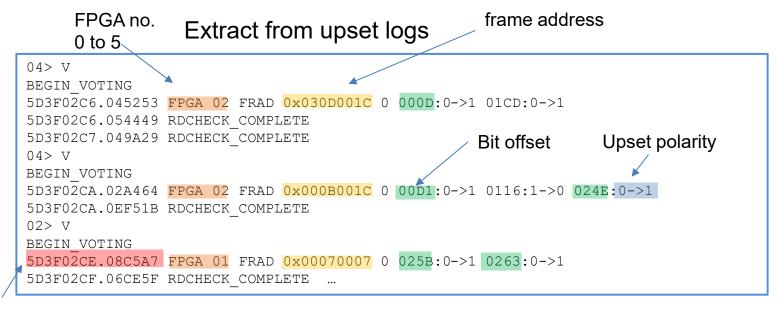
- Majority voting configuration of up to 6 JTAG streams
- built around Xilinx PicoBlaze6 processor
- runs at 127 MHz (Belle2Link clock in Merger)
- 3.3s scrubbing period
- BRAMs store
 - Frame buffers (260x8b)
 - Target FPGA frame addressing device-specific information (1252x8b)
 - uP Program (4096x18b)
- 16-bit upset counter for each target FPGA


Architecture derived from

R. Giordano et al., "Configuration Self-Repair in Xilinx FPGAs," doi: 10.1109/TNS.2018.2868992

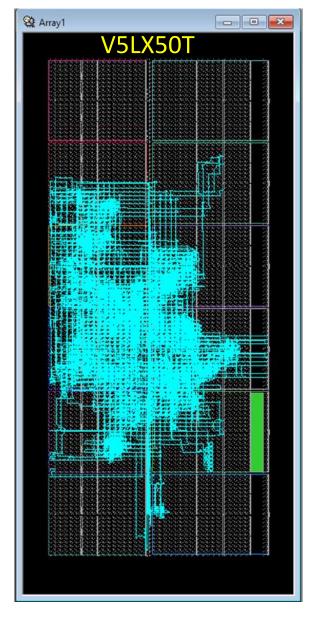
R. Giordano et al., "Custom Scrubbing for Robust Configuration Hardening in Xilinx FPGAs," doi: 10.3390/instruments3040056

The Configuration Consistency Corrector – C³ (2)



- Triple Modular Redundancy for logic and scrubbing for BRAMs
- Periodic reset of uP for internal registers cleanup and scratchpad voting
- UART (or JTAG) for scrubber control and logging of upsets details
- Runs in background, no disruption of user design implemented in FPGA

Scrubbing Logs



detection time stamp (unix time hex)

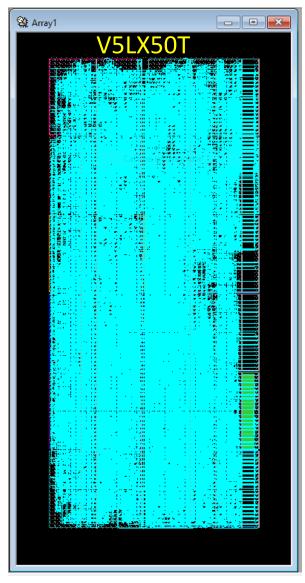
- For each upset, the C³ sends a text line on UART with
 - unix time stamp, FPGA no., frame address, bit offset(s), polarities
- Very useful for testing and debugging, but the same info could be used to study correlations
 with of upsets to the radiation environment or to reset FEBs only when essential bits are hit

Φ

C³ firmware standalone

Implementation

- C³ has a small logic footprint
- In V5LX50T 828 slices (11%) and 9 BRAMs (15%)
- Projected to Kintex Ultrascale+ K5UP => 1.5% slices and 1.9% BRAM


C³ firmware standalone

Logic Resources	Used	Available	%
Slices: FFs	1,068	28,800	3
Slices: LUTs	2,005	28,800	6
Slices: overall	828	7,200	11
BUFGs	3	32	9
BRAM 36k	9	60	15
BSCAN	1	4	25

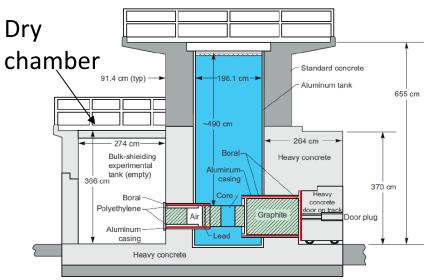
Φ

Implementation (2)

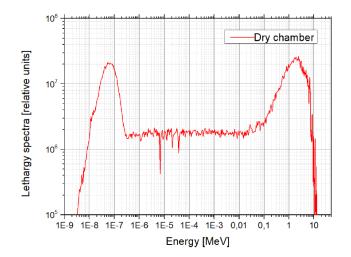
Readout + C³ firmware

Readout + C³ firmware

Logic Resources	Used	Available	%
Slices: FFs	14,932	28,800	51
Slices: LUTs	16,159	28,800	56
Slices: overall	5,977	7,200	83
BUFGs	10	32	31
BRAM 36k	35	60	58
BSCAN	1	4	25

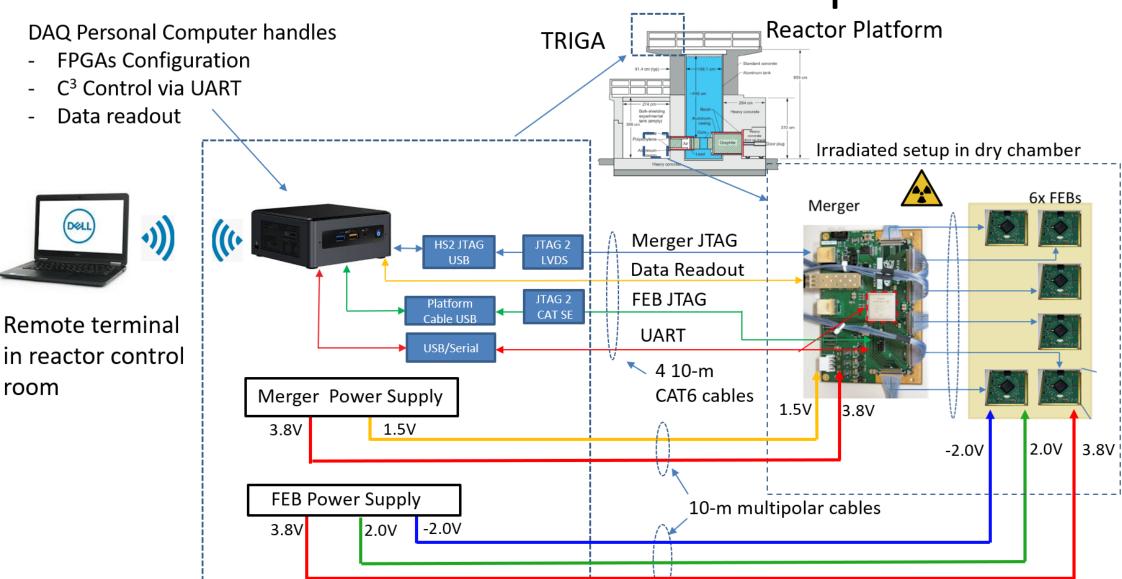

- Implementation of Merger firmware w/ C³
- Fits V5LX50T resource availability
 - Slices at 80%, BRAMs at 58%

Neutron Irradiation Test


Ф

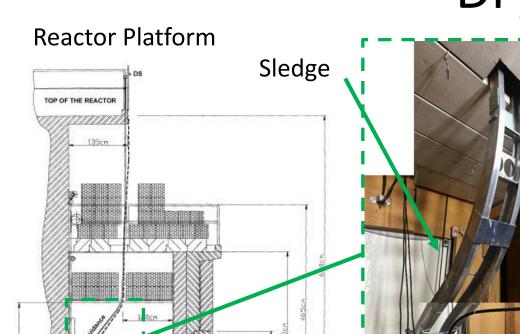
- Irradiation tests at the TRIGA reactor of Jožef Stefan Institute (Ljubljana, Slovenia)
- MARK II 250 kW water-cooled, research reactor from General Atomics
- Dry chamber for large samples (60cm x 60cm)

TRIGA layout



Calculated properties at 250 kW:

	Neutron flux - no fission plate [cm ⁻² s ⁻¹]	Neutron flux - fission plate installed [cm ⁻² s ⁻¹]
Thermal (< 0.625 eV)	8.8 × 10 ⁷	8.3 × 10 ⁷
Epithermal (0.625 – 10 ⁵ eV)	2.6 × 10 ⁷	2.9 × 10 ⁷
Fast (> 10 ⁵ eV)	1.7 × 10 ⁷	9.5 × 10 ⁷
Total	1.3 × 10 ⁸	2.1 × 10 ⁸


Irradiation Test Setup

Dry Chamber

Merger

trays

6 FEBs: 2 layers Bottom 4, top 2

Side view

- Sledge for sliding DUTs in and out irradiation channel for quick irradiation start/stop
- Reactor always on at 250 kW during test

Test Results: Cross Sections

• 29 runs, total irradiation time 14 hours, on average 29 minutes per run

Description	Value
Total # of C ³ failures – N _{C3} –	10
Total # of upsets Merger – N _{MERGER} –	$1.1 \cdot 10^3$
Mean # of upsets in Merger between C ³ failures	$1.1 \cdot 10^2$
Total # of upsets (bitflips) in 6 FEBs	$3.8 \cdot 10^5$
Total # upsets per FEB – N _{FEB} –	6.3·104
Mean # of upsets per 6 FEBs between C3 failures	3.8·104
Mean # of upsets per FEB between C3 failures	$6.3 \cdot 10^3$
Average upsets rate detected by C ³ per FEB	1.26 Hz

$$\sigma = \frac{N_{events}}{\Phi}$$

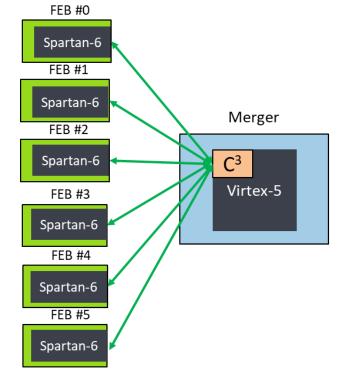
Failure cross section

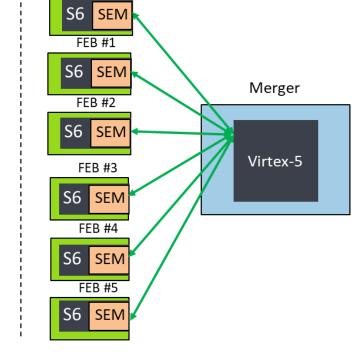
$$\frac{N_{C3}}{N_{FEB}} = \frac{\sigma_{C3}}{\sigma_{FEB}} = 1.6 \cdot 10^{-4}$$

upset cross section

Upset cross sections

$$\frac{N_{MERGER}}{N_{FEB}} = \frac{\sigma_{MERGER}}{\sigma_{FEB}} = 1.7 \cdot 10^{-2}$$

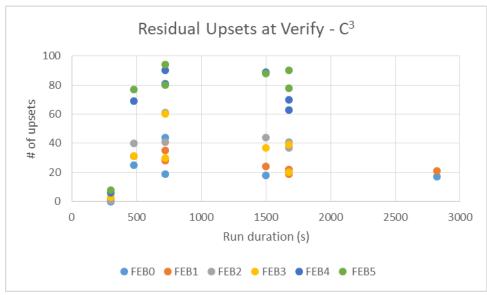

Assuming same neutron fluence on merger and FEB



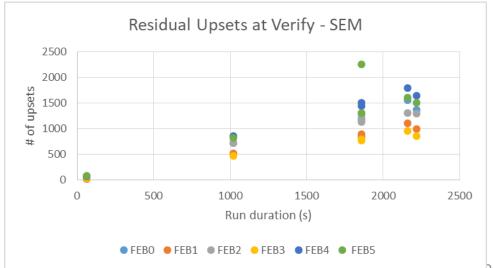
Impact on Readout Functionality: C³ Vs SEM

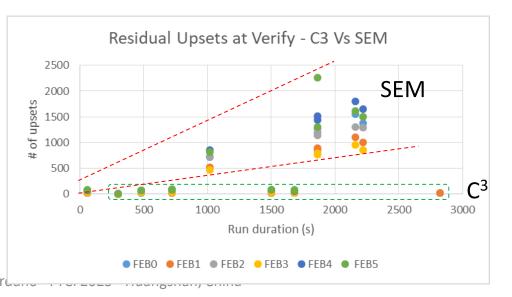
- Failure defined as readout interrupted or data corrupted
- Two sets of runs
 - A single C3 implemented in Merger
 - A SEM implemented in each FEB

	SEM in FEB	C ³ in Merger
# of runs w/ readout testing	11	13
Test time (h)	4.8	8.0
# of read out failures	10	13
Average upset rate per FEB (Hz)	1.26	1.26
Readout MTBF (s)	$1.7 \cdot 10^3$	$2.2 \cdot 10^3$
Readout MTBF (upsets)	$2.2 \cdot 10^{3}$	$2.8 \cdot 10^{3}$

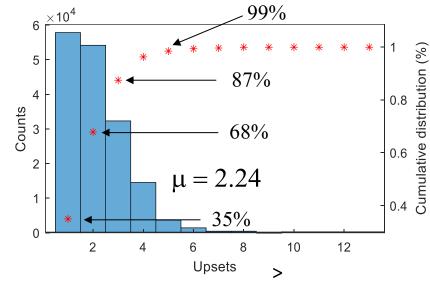

FEB #0

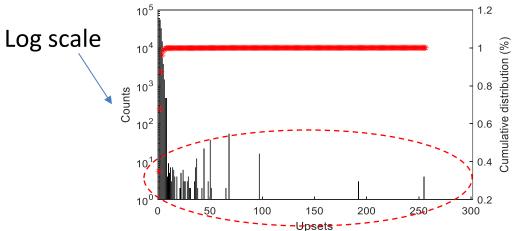
$$\frac{MTBF_{C3}}{MTBF_{SEM}} = 1.3$$


30% improvement moving from SEM to C³

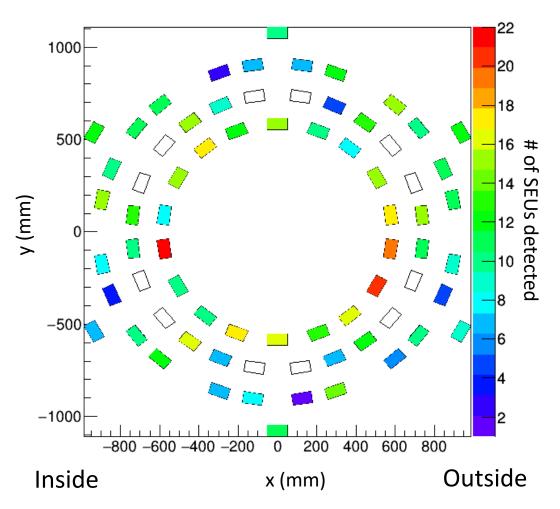


Upset Correction Capability: C³ vs SEM

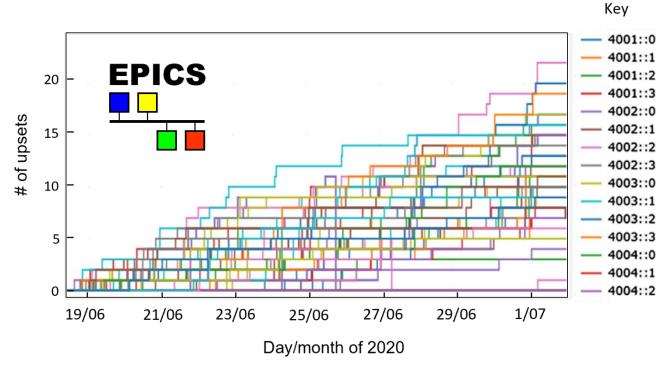

- Residual upsets in FEBs at the end of the run
- SEM lets upsets accumulate over time
- C³ reduces accumulation
 - Small amount residual related to stop (or failure) of C³ at the end of the run before verify



Number of Upsets per Frame

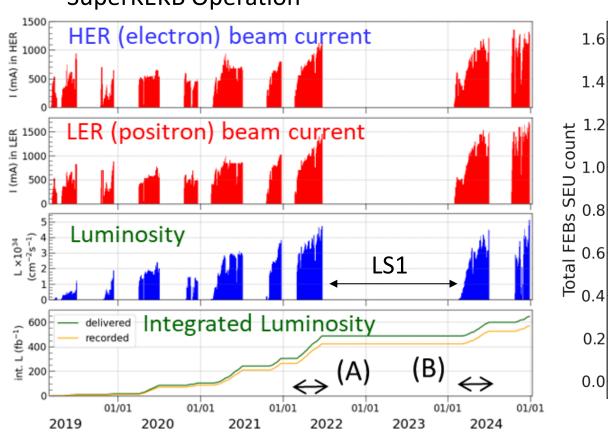


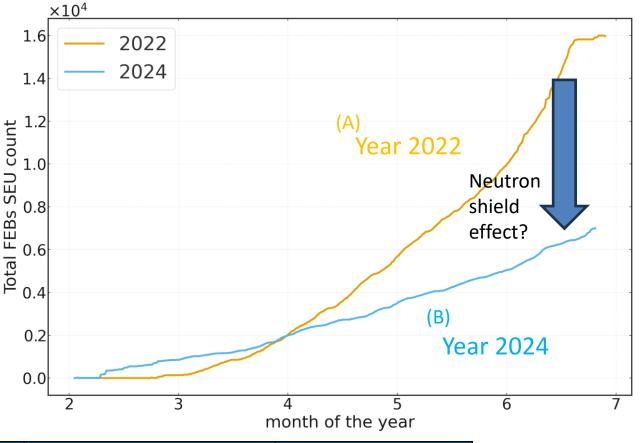
- Distribution of the number of bitflips per frame (multiplicity) in each SEU event detected by C3
- Total events 165k
- Average multiplicity 2.24 upsets per SEU event
- 65% of events have multiplicity > 1 (not correctable by SEM)
- 99% of events have multiplicity <= 5
- Includes also few tens of events w/ up to 256 flips, likely configuration SEFIs



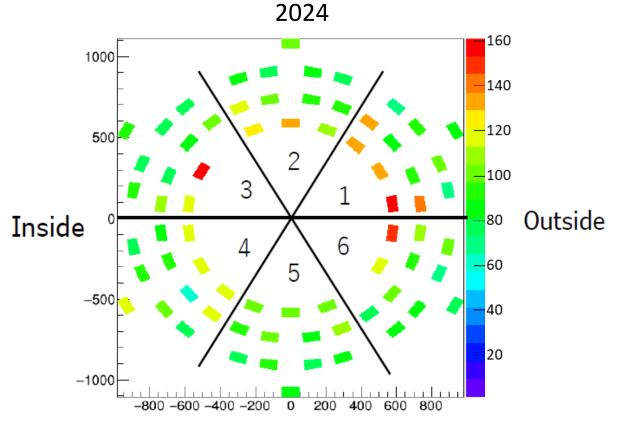
2020 Run

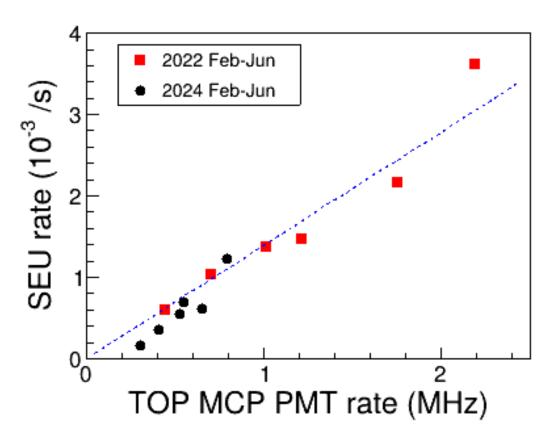
SEU map of FEB groups (14 days, Jun. 18 to Jul. 1 2020)


- C³ fully integrated and running in Belle II TDAQ since the middle of 2020 spring run
- SEUs monitored via EPICS slow control system
- FEBs now robust against configuration SEUs



2022 and 2024 Runs





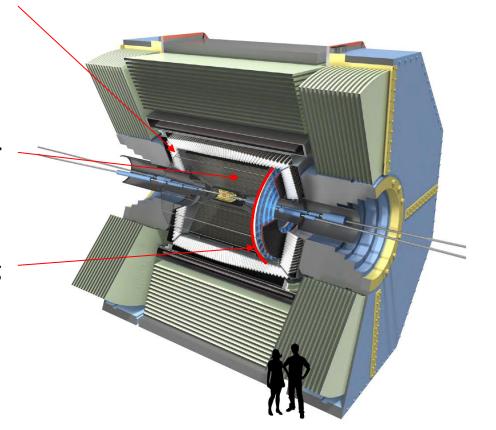
From Feb. to July of	2022	2024
Total SEUs on 420 FEBs	16k	7k
Detected and fixed SEUs / (FPGA · day)	~0.2	~0.1

2022 and 2024 Runs (2)

• Position dependence of SEU counts is confirmed as in 2020.

- Each point corresponds to ~ 2 weeks.
- TOP MCP PMT rate is known to correlate well with the SuperKEKB beam background level.
- May be used to predict future SEU rates.

FPGAs at Belle II



Time of Propagation counter

256 Zynq-7030 64 Zynq-7045

Central Drift Chamber 300 Virtex-5 LX155T

Aerogel Ring Imaging
CHerenkov counter
420 Spartan-6 LX45
72 Virtex-5 LX50T

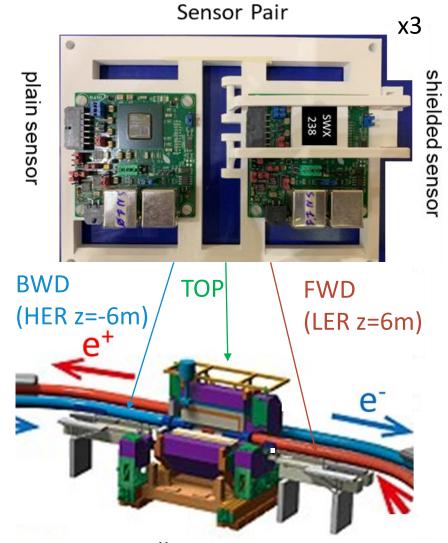
- Overall 1100+ SRAM-based FPGAs used on detector
 - 46% for ARICH
- SEU mitigation efforts
 - On-the-fly SEU correction for ARICH (this talk and [1])
 - Concrete, PE and boratedpolymer shields against fast and thermal neutrons
 - FPGA-embedded sensors added for monitoring neutrons/SEUs [2,3]

[1] doi: 10.1109/TNS.2021.3127446 [2] doi: 10.1109/TNS.2023.3265740

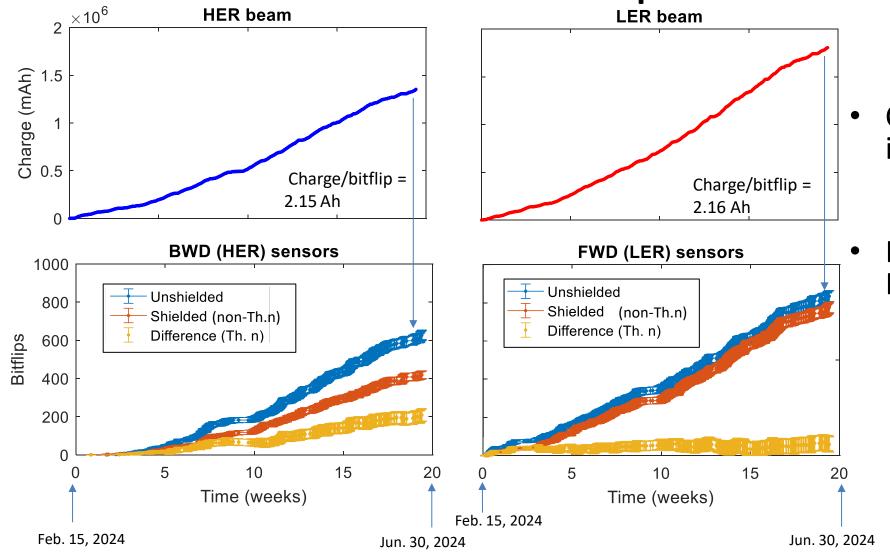
[3] doi: 10.1088/1748-0221/19/06/P06043

FPGA-embedded SEU Monitors at Belle II

Idea



- Use Artix-7 FPGAs (include Boron) as radiation sensors
- Arrange sensors in pairs, plain (thermal+fast) and shielded against thermal neutrons (only fast)
- Estimate thermal and fast neutrons fluence by difference


- SWX-238 polymer as thermal neutron shield
 - 27.6% Boron in weight
 - 1-layer 1/8" thickness (3.2 mm)
 - Shields 99.75% thermal neutrons
 - Minimal thermalization of fast neutrons

Belle II

Cumulated Bit Flip Trends in 2024

- Correlation with integrated beam currents
 - $-\rho > 99.57\%$ (correlation coefficient)
- Electron (BWD) vs Positron ring (FWD)
 - Different thermal vs nonthermal contribution
 - (Integrated Beam Current)/(Plain Counts) ratios match within 1%

Summary and...

- Developed a scrubber (C³) to majority vote configuration across FPGAs connected in a star topology
 - Fast detection by means of parallel readback and correction by partial reconfiguration
- Irradiation test results show
 - $-\sigma$ of failures in C^3 almost four orders of magnitude lower than upset σ in FEBs
 - 30% better MTBF of C³ w.r.t. SEM
- System installed and fully operational in Belle II since 2020
 - Robust against background increases, SEUs in mergers are probably the next issue to be addressed
- Dedicated FPGA-based SEU monitoring system running since 2024

...Acknowledgments

- We wish to thank
 - A. Boiano, A. Vanzanella, A. Pandalone, V. Masone from SER (Electronics and Detectors Service), A. Bertocco and G. Passeggio from PM (Mechanics Design) of INFN Napoli for their technical support to this activity

JSI TRIGA staff for their technical support during the irradiation test

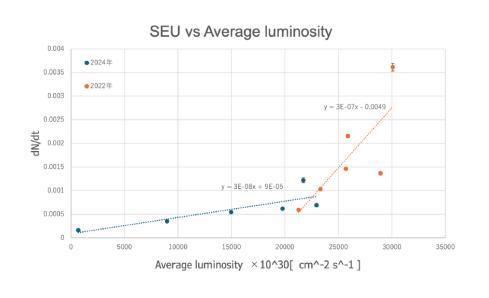
Backup

Resource Usage in a Modern FPGA

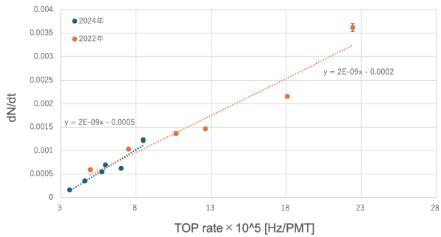
C ³ firmware standalone	Virtex-5 LX50T			Kintex	Ultrascale+	5UP*
Logic Resources	Used	Available	%	Used	Available	%
Slices: FFs	1,068	28,800	3	1,068	434,000	0.25
Slices: LUTs	2,005	28,800	6	2,005	217,000	0.92
Slices: overall	828	7,200	11	~400*	~27,000	~1.5
BUFGs	3	32	9	3	32	9
BRAM 36k	9	60	15	9	481	1.9
BSCAN	1	4	25	1	4	25

^{*}Projected

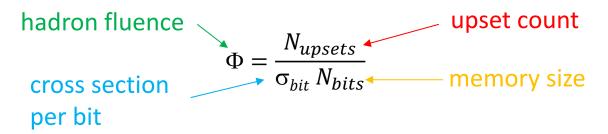
Backup



Comments


- SEUs in FEBs are manageable with the Configuration Consistency Corrector, even the luminosity and/or background increases from now.
- SEUs in mergers are probably the next issue in future.
 - ✓ DAQ errors by ARICH occur a few times per week. Most of them are suspected due to SEUs in mergers.
 - ✓ Possible solution: automatic recovery from SEUs without stopping DAQ.

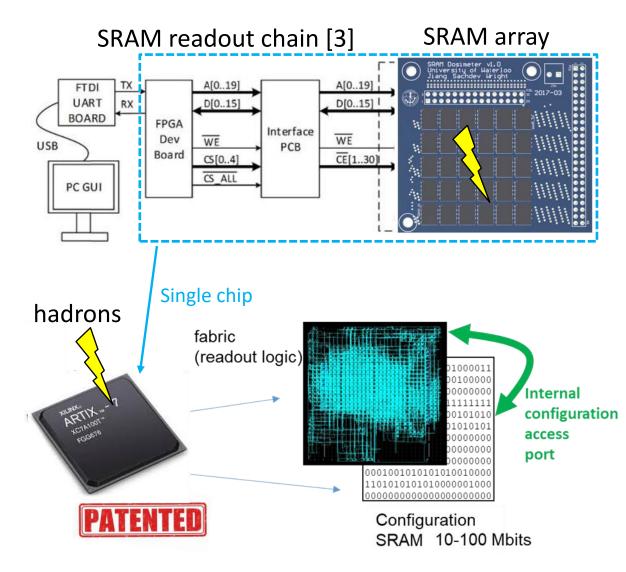
Backup



• The data shows that the SEU counts depends on the SuperKEKB beam background level, rather than the luminosity or HER/LER currents.

SRAM-based SEU Monitors

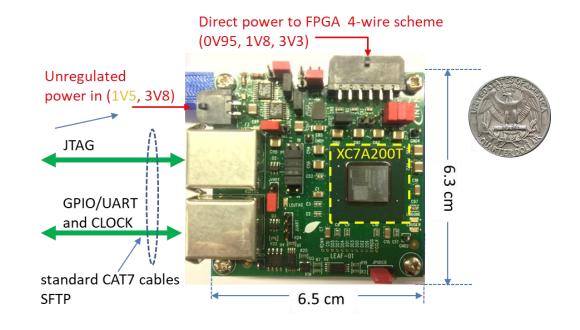
- SRAMs used as hadron fluence sensors at LHC [1] and in proton therapy [2,3]
- Hadrons with energy>few MeV and thermal neutrons may indirectly induce SEUs in SRAMs

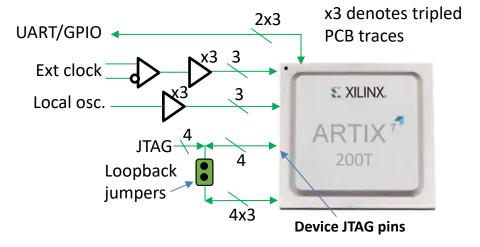

- $\sigma_{bit} = \sigma_{bit}(device, V_{DD}, hadron, E)$
- Classic solutions: SRAM + readout device
- Novel solution [4,5]: sensor embedded in a SRAM-based FPGA
 - CRAM as sensitive element + fabric programmed as readout

[4] doi: 10.1109/TNS.2023.3265740

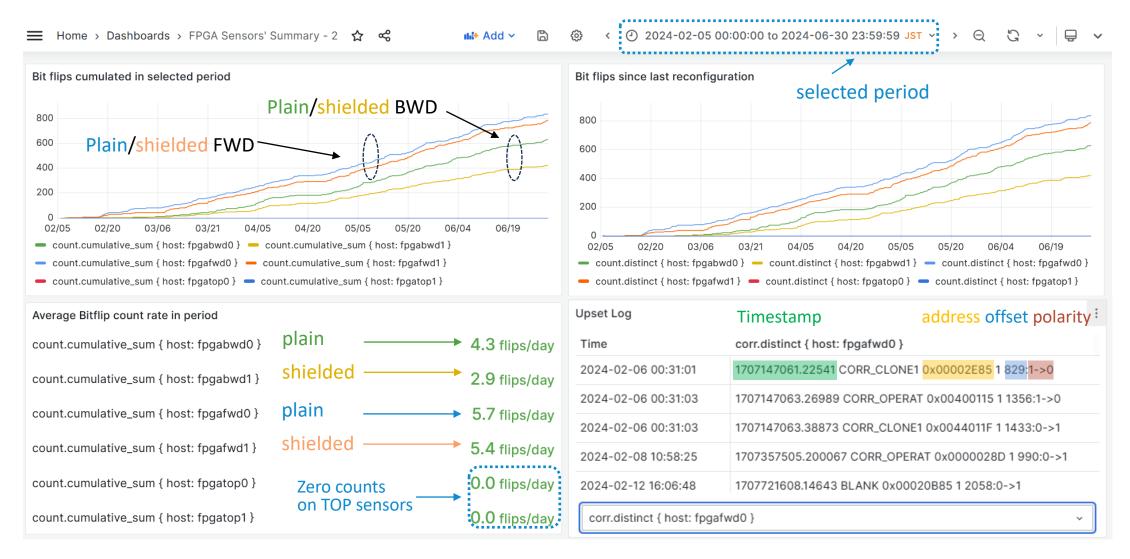
[2] doi: 10.1016/j.radmeas.2019.01.001 [5] tinyurl.com/yxcymnd7

[3] doi: 10.1109/TNS.2018.2884148

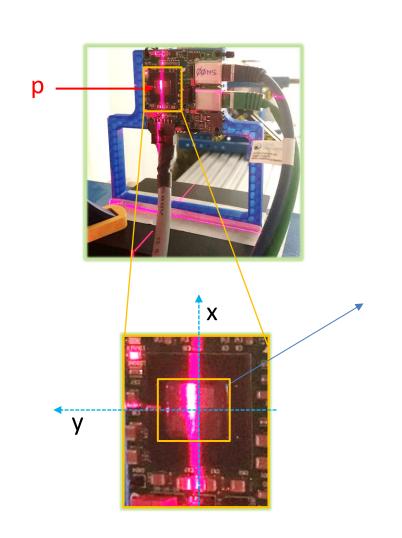

[1] doi: 10.1109/TNS.2014.2365042

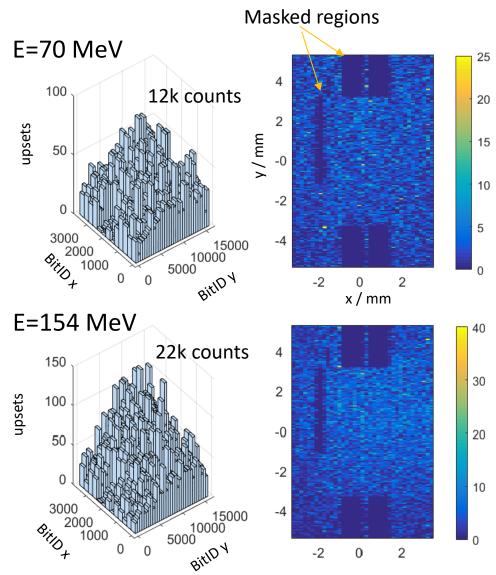


FPGA-embedded SEU Monitor

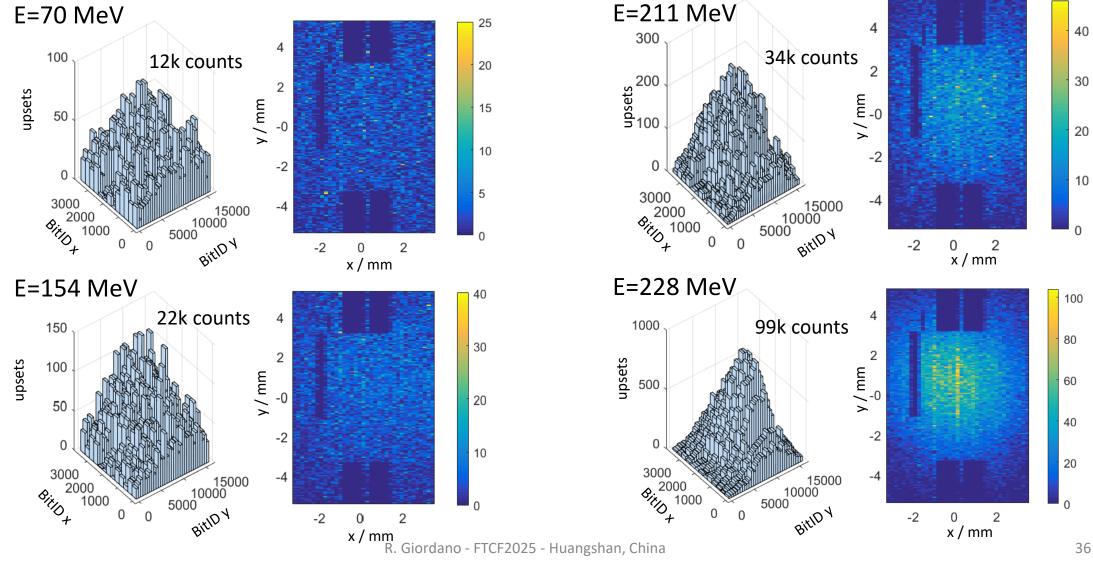

- Compact PCB
 - Only COTS components, radiation tolerance studies in [1,2]
 - Low power consumption (~0.7 W)
- AMD Artix-7 FPGA
 - 28nm CMOS
 - 59 Mb CRAM
- Radiation-Hardening by Design on PCB and firmware
 - Redundant CRAM content and selfreading firmware
- Artix-7 sensitive to fast hadrons (protons/neutrons) and thermal neutrons
- [1] T. Higuchi et al., 2012, doi: 10.1088/1748-0221/7/02/C02022
- [2] Y. Nakazawa et al., 2020, doi: 10.1016/j.nima.2019.163247

Grafana Dashboard

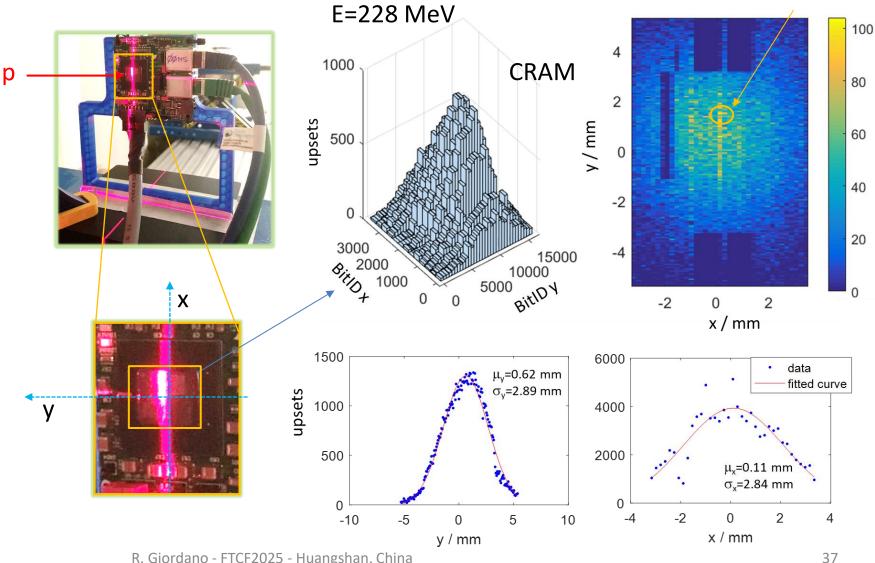




Imaging the Beam with an FPGA


- Readback CRAM bitmap
- Cluster adjacent bits,
 1 cluster = 100 bits x
 100 bits
- Upsets per cluster => histogram and density map
- Approximate proton beam image
- Masked regions

Beam Image Vs Proton Energy



False counts

Imaging the Beam with an FPGA (2)

- Useful to check sample alignment and estimate proton fluence
- CRAM access logic SEFIs => false counts
- JTAG failed (13 times), but very reliable
 - $-\sigma_{JTAG} = 1.0 \pm 0.2 \cdot 10^{-12} \text{ cm}^2$

SWX-238 Specs

Thermal Neutron One-Tenth Thickness: 0.048 inch

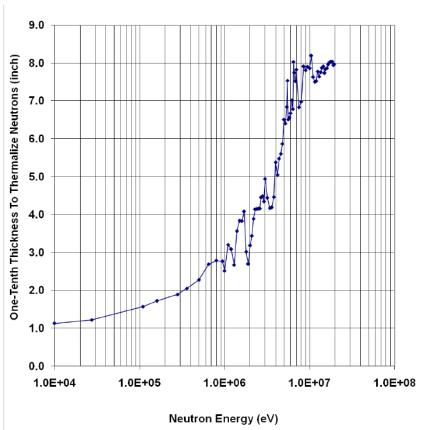
Thickness of SWX-238 required to reduce incident flux of thermal neutrons by a factor of 10 (exit thermal flux is 10% of incident thermal flux)

Composition Data

Hydrogen atom density / cm 3 : 2.70 x 10 22 Hydrogen weight percent: 2.76 % Boron atom density / cm 3 : 2.51 x 10 22

Boron atom density / cm 3 : 2.51 x 10 22 Boron natural isotope distribution: 19.6 % 10 B and 80.4% 11 B

Boron weight percent: 27.6 %


Total Density: 1.64 g / cm³ (102 lbs. / ft³)

Radiation Properties

Macroscopic thermal neutron cross section: $18.9 \text{ (cm}^{-1})$ Gamma resistance: $1 \times 10^{10} \text{ rad}$ Neutron resistance: $5 \times 10^{18} \text{ n/cm}^2$

Element	Percent by Weight	Number of atoms/cc
Boron	27.55	2.51 x 10 ²²
Silicon	26.85	9.41 x 10 ²¹
Oxygen	23.57	1.45 x 10 ²²
Carbon	18.69	1.53 x 10 ²²
Hydrogen	2.76	2.70 x 10 ²²

Thickness of SWX-238 required to reduce to thermal 90% of an incident neutron flux, as a function of initial neutron energy (exit epithermal flux is 10% of incident neutron flux)

